Computer Science
Curricula 2013

Curriculum Guidelines for
Undergraduate Degree Programs
IN Computer Science

December 20, 2013
The Joint Task Force on Computing Curricula

Association for Computing Machinery (ACM)
|IEEE Computer Society

A Cooperative Project of

IEEE

B) s, IEEE =~ @compyter,

Advancing Computing as a Science & Profession

Computer Science
Curricula 2013

Curriculum Guidelines for
Undergraduate Degree Programs
In Computer Science

December 20, 2013

The Joint Task Force on Computing Curricula
Association for Computing Machinery (ACM)
IEEE Computer Society

®
Advancing Computing as a Science & Profession

. |EEE
@ computer
soclety

Computer Science Curricula 2013

Copyright © 2013 by ACM and IEEE.
All rights reserved.

Copyright and Reprint Permissions: Permission is granted to use these curriculum guide-
lines for the development of educational materials and programs. Other use requires
specific permission. Permission requests should be addressed to: ACM Permissions Dept. at per-
missions@acm.org or to the IEEE Copyrights Manager at copyrights@ieee.org.

ISBN: 978-1-4503-2309-3
DOI: 10.1145/2534860
Web link: http://dx.doi.org/10.1145/2534860
ACM Order Number: 999133

Additional copies may be ordered from:

|IEEE Computer Society IEEE Service Center IEEE IEEE Computer Society ACM Order Department
Customer Service Center 445 Hoes Lane Asia/Pacific Office P.O. Box 30777
10662 Los Vaqueros P.O. Box 1331 Watanabe Bldg., 1-4-2 New York, NY 10087-0777
P.O. Box 3014 Piscataway, NJ 08855-1331 Minami-Aoyama
Los Alamitos, CA 90720-1314 Minato-ku, Tokyo 107-0062
JAPAN
Tel: + 1800 272 6657 Tel: +1732 981 0060
Fax: + 1714 821 4641 Fax: +1732 981 9667 Tel: + 81 3 3408 3118 1-800-342-6626
http://computer.org/cspress http://shop.ieee.org/store/ Fax: + 813 3408 3553 1-212-626-0500 (outside U.S.)
csbook@computer.org customerservice@ieee.org tokyo.ofc@computer.org orders@acm.org

Cover art by Robert Vizzini
Printed in the United States of America

Sponsoring Societies

This report was made possible by
financial support from the following societies:

ACM
IEEE Computer Society

The CS2013 Final Report has been endorsed by ACM and the IEEE Computer Society.
E

B IEEE co'r%pi%gety

Advancing Computing as a Science & Profession

Computer Science

Curricula 2013

Final Report

December 2013

The Joint Task Force on Computing Curricula
Association for Computing Machinery
IEEE-Computer Society

CS2013 Steering Committee

ACM Delegation IEEE-CS Delegation

Mehran Sahami, Chair (Stanford University) Steve Roach, Chair (Exelis Inc.)

Andrea Danyluk (Williams College) Ernesto Cuadros-Vargas (Univ. Catdlica San Pablo)
Sally Fincher (University of Kent) Ronald Dodge (US Military Academy)

Kathleen Fisher (Tufts University) Robert France (Colorado State University)

Dan Grossman (University of Washington) Amruth Kumar (Ramapo Coll. of New Jersey)

Elizabeth Hawthorne (Union County College) Brian Robinson (ABB Corporation)

Randy Katz (UC Berkeley) Remzi Seker (Embry-Riddle Aeronautical Univ.)
Rich LeBlanc (Seattle University) Alfred Thompson (Microsoft, retired)

Dave Reed (Creighton University)

Table of Contents

Chapter 1: INtrOQUCTIONcc.viiiieiiieiecte ettt ettt et e s b e ebeeeaaeenseessseeseesnseans 10
Overview Of the CS2013 PrOCESS ...c..cecveriiriieiieiieniieieeiiesitete ettt sttt sttt st 11
SUIVEY INPUL ...t e e ettt e e s e e e sttt e e e tteeeeansaeeesnnssaeesensseeeesnnns 12
High-1€Vel TREIMES....c.uviiiiiiieiiie ettt e e e ae e et e e e saeeentaeeenaeeeenseeenenes 13
KNOWIEAZE ATCAS.....eiiiiieiieciieiie ettt ettt ettt et e s et estae e bt e saseenseesabeenbeassseenseennseans 14
Professional PraCtiCe.........coiiiiiiiriiiiiiieiecetee ettt 15
Exemplars of Curricula and COUTSESc..eeeiuieiiiiiieeiieeeiieeeiee e eeree e e eereesaaeesaeeeenreeenens 16
Community Involvement and WebSIteccoeciiieiiiiiiiieiccce e 16
ACKNOWIEAZIMENLSooviiiiiiiiiieiieciie ettt ettt ettt e et e et e e beesbeesabeensaeenbeebeesnseenseennseens 16
RETETEICES ...ttt ettt sttt sttt st e b e 19

CRAPLET 2: PIINCIPIES .. .viiieiieeiiie ettt ettt ettt e e et e e steeestaeeetaeeessaeessaeeenssaesnsseesnseeensseeens 20

Chapter 3: Characteristics Of Graduatescccvviieciiiiiiieeiiie et 23

Chapter 4: Introduction to the Body of Knowledge..........cccccvoriiiiiiiiiiiiiiiececeeeee 27
Knowledge Areas are Not Necessarily Courses (and Important Examples Thereof)............... 28
Core Tier-1, Core Tier-2, Elective: What These Terms Mean, What is Required.................... 29
Further Considerations in Designing a Curriculum............ccccvveriieeiiieeiiee e 32
Organization of the Body of KNowledge...........cceviieiiiiiiiiieiiieieieeeee e 32
CUITICULAT HOUTS ...ttt ettt et sbt et e e st e b e 32
COUTSES. ettt ettt ettt e et e ettt e e sttt e sab et e bt e e e bteeeabbeeeabbeesabaeesabeeenaneeas 33
Guidance on Learning OULCOMEScccueeeiveeeiiieeiiieeieeesieeesieeesreeesseeessseeessseesssseesseeesseens 33
Overview of New KNnowledge ATCaScceeeiieiiieiiieiieiie ettt 34

Chapter 5: INtrodUCIOTY COUISEScccuiieeiieeeiiieeeiieeeieeeeieeesteeesreeessseeessreeesaeessseesssseesseeessseeenns 39

DeSI@N DIMENSIONS ..c.uevieiiiieeiiie et e et e ete e e ieeeetteesteeesteeessseeessseeesseeesseessseesssseesseeesnseeennses 39
Mapping to the Body of KNOWIedge.........cccvvviiiiiiiiiiiiciieeeeeee e 45
Chapter 6: Institutional Challenges............ccueeviieriiiiiiiiiieiii et ens 46
Localizing CS2013 ...ttt et e et e et e e e ta e e e saeeesaeeensaeeensaeesnseeesnseeenanes 46
Actively Promoting COMPULET SCIBNCEcccuvieeiiieiiieeciieeeieeeeieeetee e e e e e e sree e 46
Broadening PartiCiPationccceerieiiiienieeiieeie ettt ettt et ee et e seaeeteesaaeenbeesaneenseesnneens 47
Computer Science ACTOSS CAMPUS.....ccuieruierieeriieriiertierteerteeeteeseesseenseessseeseessseenseessseenseessns 48
ComPULET SCIENCE MINOTSvviiiiiiiciiieeiieeiee ettt e et et e s te e e sbeeestaeeessaeeesaeeesseessseesnseeensseens 48
Mathematics Requirements in COMPULET SCIENCEeeeeuviieriieeiiieeieeeiieeeieeeereeeeaeeeereeeeenes 49
COMPULING RESOUICESveeeiieiiieeiiieiie ettt ettt eite et et e et e sateesbeessbeetaesabeenseessseenseesnseenseennns 51
Maintaining a Flexible and Healthy Faculty...........ccccoociiiiiiiiiiiiiiiiceeeeeeee e 51
TeaChiNg FaACUILY.....cccuiiiiiiiecie e e e e e e eaae e e aae e ennaeesaneees 52
Undergraduate Teaching ASSISTANTS.........cccueereuieiiiiieeiiieeiieeeteeeieeesteeesaeeeseaeeessseeesareesseeenenes 53
ONlINE EAUCATION ..euvtiniiiiiiiiiiiieie ettt sttt st et sbt et eate st e b e 53
RETETEICES ...ttt sttt sttt sttt et e b enees 54
Appendix A: The Body of KNOWIEAZEeieiiiiiiiieiie et 55
Algorithms and CompleXity (AL)....cccuiieoieeeiieeie et e e e e 55
Architecture and Organization (AR).........cociiiiiiiiiiiiieiieie ettt 62
Computational SCIENCE (CIN)ociiiiiiieiiieiieeie ettt ettt ete et e eeteesibeebeesabeenseesnseenseennne 68
Discrete Structures (DS) . ..vie it et e e 76
Graphics and Visualization (GV)eeeciieeiiieeiicceeee ettt e ae e saee e sanee s 82
Human-Computer Interaction (HCI)cccuieeiiiiiiiiiiiiiiciieceeeeee et 89
Information Assurance and Security (IAS) ...ccoooiioiioiiieieee e 97

Information Management (IIM)cccuiiiiiiiriiie et e erae e e e s aee e 112

Intelligent SYStEmMS (IS) ...uviiiiiiieiieeee et et e et e e etae e ere e e s aee e 121
Networking and Communication (NC)........c.eeriieiiienieeiiienie ettt eee e eee 130
Operating SYStEMS (OS) ..ecvviiiiiiiieiieie ettt ettt e sbte st e e bt e sebeesaeessseeseesnsaens 135
Platform-Based Development (PBD)c.ooooiiiiiiiiiiiece et 142
Parallel and Distributed Computing (PD).........cooouiiiiiiiiiieeieeee e 145
Programming Languages (PL)......c..coiiiiiiiiiiiieieie ettt 155
Software Development Fundamentals (SDF)cccooouiiiiiiiiiiiiiiceeeeee e 167
Software Engineering (SE)cocuviiiiiiiiiiieie ettt e e e e e s 172
Systems Fundamentals (SEF).........cooouiioiiiiiiie et e s 186
Social Issues and Professional Practice (SP)cccuevoiuiiiiiiiiieiieeeeeee e 192
Appendix B: Migrating to CS2013ooiiiiiieiieie ettt ettt te e e s esaaeens 204
OULCOMMES ...ttt ettt ettt e sttt e et e e s ettt e bt e e bteesbbeesabbeesabeeesabeeenane 204
Changes in Knowledge Area StIUCLUTE.c..eeecuiiieiiiieeiieceiie et eeee et e eeveeeeaeeeaaeeeevee e 205
COTE COMPATISONeeuiieeniieiieetiesiieeteestteeteestteeseesseeesseesseeasseeseeanseenseessseenssessseenseessseenseesnseans 206
CONCIUSIONS ...ttt ettt ettt b et sh e bt et sae e bt est e eae e bt eatesaeebeentesbeenee 211
Appendix C: Course EXEMPIATS........cccviiiiuiiiiiieeiiie et e aee s aaeeevee s 228
Course Exemplar TEMPIAtec.coooviiiiiiiiiiecieeeeeeeee et e e e eaaeeeeree e 232
CSCI 140: Algorithms, Pomona College..........ccueeriiiiiiriiiiieiieeieeiie ettt 234
COS 226: Algorithms and Data Structures, Princeton University.........cccocceeecveeriencieeninennnnns 237
CS 256 Algorithm Design and Analysis, Williams College..........ccccceevvveeriieeciieeieeeieeee, 240
CSE332: Data Abstractions, University of Washington............ccceeevveeviiieciieciiieeieeeeeeee 243
CS/ECE 552: Introduction to Computer Architecture, University of Wisconsin................... 246
CS150: Digital Components and Design, University of California, Berkeley 249

CC152: Computer Architecture and Engineering, University of California, Berkeley.......... 251

eScience, University of North Carolina at Charlottecccoeecviveriieeriieecieeeee e 253
COSC/MATH 201: Modeling and Simulation for the Sciences, Wofford College 258
MAT 267: Discrete Mathematics, Union County Collegeccceevvieriienciieniieniieieeieenee. 262
CS103: Mathematical Foundations of Computer Science, Stanford University 265
CS109: Probability Theory for Computer Scientists, Stanford Universitycccceevveennnee. 265
CS 250 - Discrete Structures I, Portland Community Collegeccccevvieiciienieiiiieniiene, 268
CS 251 - Discrete Structures II, Portland Community College...........cccceevierciienieniieeniiennnne 271
CS 175 Computer Graphics, Harvard Universityccccveeciiieriiieeriie e 274
CS371: Computer Graphics, Williams College..........ceovuiiiiiieiiiiieiie e 277
Human Aspects of Computer Science, University of York.........cocccoevieviiniiiiniiniiiiiecieeen. 280
FIT3063 Human Computer Interaction, Monash University..........ccccceceeverveneenenieneenennens 282
CO328: Human Computer Interaction, University of Kent...........cccceeveivieeiiieiiieeiieeeieeee 285
Human Computer Interaction, University of Cambridgeccceeevvieeriieeiieeeiieecieeeeieeens 287
Human-Computer Interaction, Stanford Universitycc.cceoereeririenienenienieenieneeeeens 289
Human Information Processing (HIP), Open University Netherlandscccoceeeiiennnnnen. 291
Software and Interface Design, University of Cambridge...........ccoveeeiieeniieenieeeieeeieeeen 293
Computer Systems Security (CS-475), Lewis-Clark State Collegecccveeeveeeciveenrneenee. 295
CS430: Database Systems, Colorado State UniverSity........ccceecueeevierieeiieeniienieenieeeieenieeseens 298
Technology, Ethics, and Global Society (CSE 262), Miami Universitycccceeceeveeuenneene 301
CS 662; Artificial Intelligence Programming, University of San Franciscoc.cc.ue....... 304
Intelligenza Artificiale (Artificial Intelligence), Politecnico di Milanocccccecvveenneenne. 306

CMSC 471, Introduction to Artificial Intelligence, U. of Maryland, Baltimore County 308

Introduction to Artificial Intelligence, Case Western Reserve Universityccccceceeveeneennnee 310

CS188: Artificial Intelligence, University of California Berkeleyccccccevvveeviiiennnnnee. 313

Introduction to Artificial Intelligence, University of Hartford..........c.ccooovveeeiiiniieiniecnes 315
Computer Networks I, Case Western Reserve University........ccoeceevieeciieniesciieniesiieenieeeneens 318
CS144: Introduction to Computer Networking, Stanford University..........ccccceevverieennennnns 320
Computer Networks, Williams Coll€e.........ccevuiieiiiiiiiiiciieeciie et 323
CSCI 432 Operating Systems, Williams Collegeccceevciiieriiiieiiieeieeeeee e 327
CS 420, Operating Systems, Embry-Riddle Aeronautical University............ccceeceeevueenirennnnns 330
CPSC 3380 Operating Systems, U. of Arkansas at Little Rockcc.coceviiniiiinininnennne. 332
582219 Operating Systems, University of HelSInKiccccvveeiiiieiiiiiciiieeeeeeeeee 334
RU STY1 Operating Systems, Reykjavik University........ccccevveervieerieeeiieeeieecieeeeieeesneeenns 336
Parallel Programming Principle and Practice, Huazhong U. of Science and Technology..... 339
Introduction to Parallel Programming, Nizhni Novgorod State Universityc..ccoceeverunee 342
CS in Parallel (course modules on parallel computing)ccccveeviieeriieenieeeiieeeiee e 344
(CS453: Introduction to Compilers, Colorado State Universitycccceeevveerveeerveeesiveerneeennne 348
Csc 453: Translators and Systems Software, The University of Arizonacccceevevenenn. 351
CSCI 434T: Compiler Design, Williams Collegeccceevvierireiieniiieiieiieeieeie e 353
Compilers, Stanford UNIVETSITYcc.eeeiiieeiiieeiiieeiieeeiieesieeesteeesaeeeseveeessaeessaeeesaeessseeesenes 356
Languages and Compilers, Utrecht UNIVeTSIty........ccouvieriieeiiieeiiieeiieeveeeireeeieeeeieeesnee e 359
COMP 412: Topics in Compiler Construction, Rice Universitycccceeveeverviereeneenienenn 361
CSC 131: Principles of Programming Languages, Pomona College...........ccccoevverivenirennnnnn. 364
CSCI 1730: Introduction to Programming Languages, Brown Universityc.cccceeeveeenee. 367

CSC 2/454: Programming Language Design and Implementation, University of Rochester 369
CSE341: Programming Languages, University of Washingtonccccceceeveivinienennennne. 372

CSCI 334: Principles of Programming Languages, Williams College...........c.ccccceevuverirennnnnn. 374

Programming Languages and Techniques I, University of Pennsylvania...........c..c.ccceeuneenn. 377

15-312 Principles of Programming Languages, Carnegie Mellon University........................ 380
15-150: Functional Programming, Carnegie Mellon Universityc.cccccevvvereevierieneeniennns 384
CIS 133J: Java Programming I, Portland Community College............ccccevvverervierienenniennenne 388
Introduction to Computer Science, Harvey Mudd Collegeccoevvveeviieeciieeiieecieeeieeens 391
CpSc 215: Software Development Foundations, Clemson University..........cccceveeeeuveeeveeennne. 394
CS1101: Introduction to Program Design, WPL.........c.cccciiiiiiiiiiiiiiiieieceeeeeeee e 397
Data Abstraction and Data Structures, Miami Universityccceccveeiierienieenieenieenieeneeenenen 400
Software Engineering Practices, Embry Riddle Aeronautical University..........cccceevevveennnenn. 402
CS169: Software Engineering, University of California, Berkeley..........cccceeevieeiiiennnnenne. 406
SE-2890 Software Engineering Practices, Milwaukee School of Engineering...................... 409
Software Development, QUINNIpiac UNIVETSITYcevveeiuierieeiiienieeiieeieeieesiteeieesneeseesaneens 411
CS2200: Introduction to Systems and Networking, Georgia Institute of Technology........... 414
CS61C: Great Ideas in Computer Architecture, University of California, Berkeley.............. 418
CSE333: Systems Programming, University of Washingtoncccccecevvieniiiinienennennne 420
Ethics in Technology (IFSM304), University of Marylandcccccooviiiiiienieniiicieeieeee. 423
Technology Consulting in the Community, Carnegie Mellon University.........c.ccccveevveeennee. 426
Issues in Computing, Saint Xavier UNIVErSItY.........cccvvieriuieeriieeeriieerieeeieeeiveeeneeeeveeesnee e 430
Ethics & the Information Age (CSI 194), Anne Arundel Community College 433
Professional Development Seminar, Northwest Missouri State University.........c.ccceeeveenenee 436
The Digital Age, Grinnell College.........couviiiiiieiiiieiieee et 439
COS 126: General Computer Science, Princeton Universitycccveeeveeerveeesveenciveesreeennne 443
CSCI 0190: Accelerated Introduction to Computer Science, Brown University 447
An Overview of the Two-Course Intro Sequence, Creighton University..........cccccceeeveennennne. 449

CSC 221: Introduction to Programming, Creighton Universityccccccveeeveeeeveeeceveenveeennne. 450

CSC 222: Object-Oriented Programming, Creighton University..........ccceeevvveevieeeciveenneeennne. 452
An Overview of the Mulit-paradigm Three-course CS Introduction at Grinnell College...... 454
CSC 151: Functional problem solving, Grinnell College...........ccceevvvriienierciieniiiiieiieeies 456
CSC 161: Imperative Problem Solving and Data Structures, Grinnell College...................... 458
CSC 207: Algorithms and Object-Oriented Design, Grinnell College...........ccccvveveuveerernnnnnee. 460
Appendix D: Curricular EXEMPIATSccccoeiiiiiiiiiieiieiie ettt et ens 463
Bluegrass Community and Technical College (A.S. Degree)ccocveveevereeneenienieneeniennns 465
Bluegrass Community and Technical College (A.A.S. DeZIee)cccvvevveeecrreeeirieeeiieeeieeens 472
(€55 031 1 1<) | I O0) 1 1oL USSR 480
StANTOTd UNIVETSIEYvietieiiieiiieeiieeie ettt ettt et et e et e st e ebeessaeenseessseenseessneenseenasaens 492
WIHLHAMS COIIEZE ...ttt ettt ettt et e st eebeesabeesseassseenseas 503

Chapter 1: Introduction

ACM and IEEE-Computer Society have a long history of sponsoring efforts to establish
international curricular guidelines for undergraduate programs in computing on roughly a ten-
year cycle, starting with the publication of Curriculum 68 [1] over 40 years ago. This volume is
the latest in this series of curricular guidelines. As the field of computing has grown and
diversified, so too have the curricular recommendations, and there are now curricular volumes
for Computer Engineering, Information Systems, Information Technology, and Software
Engineering in addition to Computer Science [3]. These volumes are updated regularly with the
aim of keeping computing curricula modern and relevant. The last complete Computer Science
curricular volume was released in 2001 (CC2001) [2], and an interim review effort concluded in

2008 (CS2008) [4].

This volume, Computer Science Curricula 2013 (CS2013), represents a comprehensive revision.
The CS2013 guidelines include a redefined body of knowledge, a result of rethinking the
essentials necessary for a Computer Science curriculum. It also seeks to identify exemplars of
actual courses and programs to provide concrete guidance on curricular structure and

development in a variety of institutional contexts.

The development of curricular guidelines for Computer Science has always been challenging
given the rapid evolution and expansion of the field. The growing diversity of topics potentially
relevant to an education in Computer Science and the increasing integration of computing with
other disciplines create particular challenges for this effort. Balancing topical growth with the
need to keep recommendations realistic and implementable in the context of undergraduate
education is particularly difficult. As a result, the CS2013 Steering Committee made
considerable effort to engage the broader computer science education community in a dialog to
better understand new opportunities and local needs, and to identify successful models of

computing curricula — whether established or novel.

Charter
The ACM and IEEE-Computer Society chartered the CS2013 effort with the following directive:

To review the Joint ACM and IEEE-CS Computer Science volume of
Computing Curricula 2001 and the accompanying interim review CS 2008, and
develop a revised and enhanced version for the year 2013 that will match the
latest developments in the discipline and have lasting impact.

The CS2013 task force will seek input from a diverse audience with the goal of
broadening participation in computer science. The report will seek to be
international in scope and offer curricular and pedagogical guidance
applicable to a wide range of institutions. The process of producing the final
report will include multiple opportunities for public consultation and scrutiny.

The process by which the volume was produced followed directly from this charter.

Overview of the CS2013 Process

The ACM and IEEE-Computer Society respectively appointed the Steering Committee co-chairs,
who, in turn, recruited the other members of the Steering Committee in the latter half of 2010.
This group received its charter and began work in fall 2010, starting with a survey of Computer
Science department chairs (described below). The Steering Committee met for the first time in
February 2011, beginning work with a focus on revising the Body of Knowledge (BoK). This
initial focus was chosen because both the CS2008 report and the results of the survey of
department chairs pointed to a need for creation of new knowledge areas in the Body of

Knowledge.

The Steering Committee met in person roughly every 6 months throughout the process of
producing this volume and had conference call meetings at monthly intervals. Once the set of
areas in the new Body of Knowledge was determined, a subcommittee was appointed to revise or
create each Knowledge Area (KA). Each of these subcommittees was chaired by a member of
the Steering Committee and included at least two additional Steering Committee members as
well as other experts in the area chosen by the subcommittee chairs. As the subcommittees
produced drafts of their Knowledge Areas, others in the community were asked to provide
feedback, both through presentations at conferences and direct review requests. The Steering

Committee also collected community input through an online review and comment process. The

-11 -

KA subcommittee Chairs (as members of the CS2013 Steering Committee) worked to resolve
conflicts, eliminate redundancies and appropriately categorize and cross-reference topics
between the various KAs. Thus, the computer science community beyond the Steering
Committee played a significant role in shaping the Body of Knowledge throughout the
development of CS2013. This two-year process ultimately converged on the version of the Body

of Knowledge presented here.

Beginning at its summer meeting in 2012, the Steering Committee turned much of its focus to
course and curricular exemplars. In this effort, a broad community engagement was once again a
key component of the process of collecting exemplars for inclusion in the volume. The results of

these efforts are seen in Appendix C which presents these exemplars.

Survey Input

To lay the groundwork for CS2013, the Steering Committee conducted a survey of the use of the
CC2001 and CS2008 volumes. The survey was sent to approximately 1500 Computer Science
(and related discipline) department chairs and directors of undergraduate studies in the United
States and an additional 2000 department chairs internationally. We received 201 responses,
representing a wide range of institutions (self-identified):

e Research-oriented universities (55%)

e Teaching-oriented universities (17.5%)

e Undergraduate-only colleges (22.5%)

e Community colleges (5%)

The institutions also varied considerably in size, with the following distribution:

e Less than 1,000 students (6.5%)

e 1,000 to 5,000 students (30%)

e 5,000 to 10,000 students (19%)

e More than 10,000 students (44.5%)

In response to questions about how they used the CC2001/CS2008 reports, survey respondents
reported that the Body of Knowledge (i.e., the outline of topics that should appear in

undergraduate Computer Science curricula) was the most used component of the reports. When

-12-

questioned about new topical areas that should be added to the Body of Knowledge, survey
respondents indicated a strong need to add the topics of Security as well as Parallel and
Distributed Computing. Indeed, feedback during the CS2008 review had also indicated the
importance of these two areas, but the CS2008 steering committee had felt that creating new
KAs was beyond their purview and deferred the development of those areas to the next full
curricular report. CS2013 includes these two new KAs (among others): Information Assurance

and Security, and Parallel and Distributed Computing.

High-level Themes

In developing CS2013, several high-level themes provided an overarching guide for the
development of this volume. The followings themes embody and reflect the CS2013 Principles

(described in detail in the next chapter of this volume):

e The “Big Tent” view of CS. As CS expands to include more cross-disciplinary work and
new programs of the form “Computational Biology,” “Computational Engineering,” and
“Computational X” are developed, it is important to embrace an outward-looking view
that sees CS as a discipline actively seeking to work with and integrate into other
disciplines.

o Managing the size of the curriculum. Although the field of computer science continues to
rapidly expand, it is not feasible to proportionately expand the size of the curriculum. As
a result, CS2013 seeks to re-evaluate the essential topics in computing to make room for
new topics without requiring more total instructional hours than the CS2008 guidelines.
At the same time, the circumscription of curriculum size promotes more flexible models
for curricula without losing the essence of a rigorous CS education.

o Actual course exemplars. CS2001 took on the significant challenge of providing
descriptions of six curriculum models and forty-seven possible course descriptions
variously incorporating the knowledge units as defined in that report. While this effort
was valiant, in retrospect such course guidance did not seem to have much impact on
actual course design. CS2013 takes a different approach: we identify and describe
existing successful courses and curricula to show how relevant knowledge units are
addressed and incorporated in actual programs.

e Institutional needs. CS2013 aims to be applicable in a broad range of geographic and
cultural contexts, understanding that curricula exist within specific institutional needs,
goals, and resource constraints. As a result, CS2013 allows for explicit flexibility in
curricular structure through a tiered set of core topics, where a small set of Core-Tierl
topics are considered essential for all CS programs, but individual programs choose their
coverage of Core-Tier2 topics. This tiered structure is described in more detail in
Chapter 4 of this report.

-13 -

Knowledge Areas

The CS2013 Body of Knowledge is organized into a set of 18 Knowledge Areas (KAs),

corresponding to topical areas of study in computing. The Knowledge Areas are:

e AL - Algorithms and Complexity

e AR - Architecture and Organization

e (N - Computational Science

e DS - Discrete Structures

e GV - Graphics and Visualization

e HCI - Human-Computer Interaction

e JAS - Information Assurance and Security
e M - Information Management

e IS - Intelligent Systems

e NC - Networking and Communications

e OS - Operating Systems

e PBD - Platform-based Development

e PD - Parallel and Distributed Computing
e PL - Programming Languages

e SDF - Software Development Fundamentals
e SE - Software Engineering

e SF - Systems Fundamentals

e SP - Social Issues and Professional Practice

Many of these Knowledge Areas are derived directly from CC2001/CS2008, but have been
revised—in some cases quite significantly—in CS2013; other KAs are new to CS2013. Some
represent new areas that have grown in significance since CC2001 and are now integral to
studies in computing. For example, the increased importance of computer and network security
in the past decade led to the development of Information Assurance and Security (IAS). Other
new KAs represent a restructuring of knowledge units from CC2001/CS2008, reorganized in a
way to make them more relevant to modern practices. For example, Software Development

Fundamentals (SDF) pulls together basic knowledge and skills related to software development,

-14 -

including knowledge units that were formerly spread across Programming Fundamentals,
Software Engineering, Programming Languages, and Algorithms and Complexity. Similarly,
Systems Fundamentals (SF) brings together fundamental, cross-cutting systems concepts that can

serve as a foundation for more advanced work in a number of areas.

It is important to recognize that Knowledge Areas are interconnected and that concepts in one
KA may build upon or complement material from other KAs. The reader should take care in
reading the Body of Knowledge as a whole, rather than focusing on any given Knowledge Area
in isolation. Chapter 4 contains a more comprehensive overview of the KAs, including

motivations for the new additions.

Professional Practice

The education that undergraduates in computer science receive must adequately prepare them for
the workforce in a more holistic way than simply conveying technical facts. Indeed, soft skills
(such as teamwork, verbal and written communication, time management, problem solving, and
flexibility) and personal attributes (such as risk tolerance, collegiality, patience, work ethic,
identification of opportunity, sense of social responsibility, and appreciation for diversity) play a
critical role in the workplace. Successfully applying technical knowledge in practice often
requires an ability to tolerate ambiguity and to negotiate and work well with others from
different backgrounds and disciplines. These overarching considerations are important for

promoting successful professional practice in a variety of career paths.

Students will gain some soft skills and personal attributes through the general college experience
(e.g., patience, time management, work ethic, and an appreciation for diversity), and others
through specific curricula. CS2013 includes examples of ways in which an undergraduate
Computer Science program encourages the development of soft skills and personal attributes.
Core hours for teamwork and risk management are covered in the Software Engineering (SE)
Knowledge Area under Project Management. The ability to tolerate ambiguity is also core in
Software Engineering under Requirements Engineering. Written and verbal communications are
also part of the core in the Social Issues and Professional Practice (SP) Knowledge Area under
Professional Communication. The inclusion of core hours in the Social Issues and Professional

Practice KA under the Social Context knowledge unit helps to promote a greater understanding

-15-

of the implications of social responsibility among students. The importance of lifelong learning
as well as professional development is described in the preamble of the Social Issues and
Professional Practice Knowledge Area as well as in both Chapter 2 (Principles) and Chapter 3

(Characteristics of Graduates).

Exemplars of Curricula and Courses

The CS2013 report includes examples of actual fielded courses—from a variety of universities
and colleges—to illustrate how topics in the Knowledge Areas may be covered and combined in
diverse ways. The report also offers examples of CS curricula from a handful of institutions to
show different ways in which a larger collection of courses can be put together to form a
complete curriculum. Importantly, we believe that the presentation of exemplar courses and
curricula promotes greater sharing of educational ideas within the computing community. It also
promotes on-going engagement by encouraging educators to share new courses and curricula
from their own institutions (or other institutions with which they may be familiar) with the

broader community.

Community Involvement and Website

The CS2013 report benefitted from a broad engagement of members of the computing
community who reviewed and critiqued successive drafts of this document. Indeed, the
development of this report benefited from the input of more than 100 contributors beyond the
Steering Committee. More information about the CS2013 effort is available at the CS2013

website:

http://cs2013.0rg

Acknowledgments

The CS2013 draft reports have benefited from the input of many individuals, including: Alex
Aiken (Stanford University), Jeannie Albrecht (Williams College), Ross Anderson (Cambridge
University), Florence Appel (Saint Xavier University), Helen Armstrong (Curtin University),
Colin Armstrong (Curtin University), Krste Asanovic (UC Berkeley), Radu F. Babiceanu

- 16 -

(University of Arkansas at Little Rock), Duane Bailey (Williams College), Doug Baldwin
(SUNY Geneseo), Mike Barker (Massachusetts Institute of Technology), Michael Barker (Nara
Institute of Science and Technology), Paul Beame (University of Washington), Robert Beck
(Villanova University), Matt Bishop (University of California, Davis), Alan Blackwell
(Cambridge University), Don Blaheta (Longwood University), Olivier Bonaventure (Université
Catholique de Louvain), Roger Boyle (University of Leeds), Clay Breshears (Intel), Bo
Brinkman (Miami University), David Broman (Linkoping University), Dick Brown (St. Olaf
College), Kim Bruce (Pomona College), Jonathan Buss (University of Waterloo), Netiva Caftori
(Northeastern Illinois University, Chicago), Paul Cairns (University of York), Alison Clear
(Christchurch Polytechnic Institute of Technology), Curt Clifton (Rose-Hulman and The Omni
Group), Yvonne Cody (University of Victoria), Steve Cooper (Stanford University), Tony
Cowling (University of Sheffield), Joyce Currie-Little (Towson University), Ron Cytron
(Washington University in St. Louis), Melissa Dark (Purdue University), Janet Davis (Grinnell
College), Marie DesJardins (University of Maryland, Baltimore County), Zachary Dodds
(Harvey Mudd College), Paul Dourish (University of California, Irvine), Lynette Drevin (North-
West Universit), Scot Drysdale (Dartmouth College), Kathi Fisler (Worcester Polytechnic
Institute), Susan Fox (Macalester College), Edward Fox (Virginia Tech), Eric Freudenthal
(University of Texas El Paso), Stephen Freund (Williams College), Lynn Futcher (Nelson
Mandela Metropolitan University), Greg Gagne (Wesminister College), Dan Garcia (University
of California, Berkeley), Judy Gersting (Indiana University-Purdue University Indianapolis),
Yolanda Gil (University of Southern California), Michael Gleicher (University of Wisconsin,
Madison), Frances Grodzinsky (Sacred Heart University), Anshul Gupta (IBM), Mark Guzdial
(Georgia Tech), Brian Hay (University of Alaska, Fairbanks), Brent Heeringa (Williams
College), Peter Henderson (Butler University), Brian Henderson-Sellers (University of
Technology, Sydney), Matthew Hertz (Canisius College), Tom Hilburn (Embry-Riddle
Aeronautical University), Tony Hosking (Purdue University), Johan Jeuring (Utrecht
University), Yiming Ji (University of South Carolina Beaufort), Maggie Johnson (Google), Matt
Jones (Swansea University), Frans Kaashoek (Massachusetts Institute of Technology), Lisa
Kaczmarczyk (ACM Education Council), Jennifer Kay (Rowan University), Scott Klemmer
(Stanford University), Jim Kurose (University of Massachusetts, Amherst), Doug Lea (SUNY
Oswego), Terry Linkletter (Central Washington University), David Lubke (NVIDIA), Bill

-17 -

Manaris (College of Charleston), Samuel Mann (Otago Polytechnic), C. Diane Martin (George
Washington University), Dorian McClenahan (IEEE-CS), Andrew McGettrick (University of
Strathclyde), Morgan McGuire (Williams College), Keith Miller (University of Illinois at
Springfield), Tom Murtagh (Williams College), Narayan Murthy (Pace University), Kara Nance
(University of Alaska, Fairbanks), Todd Neller (Gettysburg College), Reece Newman (Sinclair
Community College), Christine Nickell (Information Assurance Center for Computer Network
Operations, CyberSecurity, and Information Assurance), James Noble (Victoria University of
Wellington), Peter Norvig (Google), Joseph O'Rourke (Smith College), Jens Palsberg (UCLA),
Robert Panoff (Shodor.org), Sushil Prasad (Georgia State University), Michael Quinn (Seattle
University), Matt Ratto (University of Toronto), Samuel A. Rebelsky (Grinnell College), Penny
Rheingans (University of Maryland, Baltimore County), Carols Rieder (Lucerne University of
Applied Sciences), Eric Roberts (Stanford University), Arny Rosenberg (Northeastern and
Colorado State University), Ingrid Russell (University of Hartford), Dino Schweitzer (United
States Air Force Academy), Michael Scott (University of Rochester), Robert Sedgewick
(Princeton University), Helen Sharp (Open University), Robert Sloan (University of Illinois,
Chicago), Ann Sobel (Miami University), Carol Spradling (Northwest Missouri State
University), John Stone (Grinnell College), Michelle Strout (Colorado State University), Alan
Sussman (University of Maryland, College Park), Blair Taylor (Towson University), Simon
Thompson (University of Kent), Yan Timanovsky (ACM), Cindy Tucker (Bluegrass Community
and Technical College), lan Utting (University of Kent), Gerrit van der Veer (Open University
Netherlands), Johan Vanniekerk (Nelson Mandela Metropolitan University), Christoph von
Praun (Georg-Simon-Ohm Hochschule Niirnberg), Rossouw Von Solms (Nelson Mandela
Metropolitan University), Henry Walker (Grinnell College), John Wawrzynek (University of
California, Berkeley), Charles Weems (University of Massachusetts, Amherst), Jerod Weinman
(Grinnell College), David Wetherall (University of Washington), Melanie Williamson
(Bluegrass Community and Technical College), Michael Wrinn (Intel) and Julie Zelenski
(Stanford University).

Additionally, review of various portions of draft CS2013 report took place in several venues,
including: the 42nd ACM Technical Symposium of the Special Interest Group on Computer
Science Education (SIGCSE-11); the 24th IEEE-CS Conference on Software Engineering
Education and Training (CSEET-11); the 2011 IEEE Frontiers in Education Conference (FIE-

- 18 -

11); the 2011 Federated Computing Research Conference (FCRC-11); the 2nd Symposium on
Educational Advances in Artificial Intelligence (EAAI-11); the Conference of ACM Special
Interest Group on Data Communication 2011 (SIGCOMM-11); the 2011 IEEE International
Joint Conference on Computer, Information, and Systems Sciences and Engineering (CISSE-11);
the 2011 Systems, Programming, Languages and Applications: Software for Humanity
Conference (SPLASH-11); the 15th Colloquium for Information Systems Security Education;
the 2011 National Centers of Academic Excellence in IA Education (CAE/IAE) Principles
meeting; the 7th IFIP TC 11.8 World Conference on Information Security Education (WISE); the
43rd ACM Technical Symposium of the Special Interest Group on Computer Science Education
(SIGCSE-12); the Special Session of the Special Interest Group on Computers and Society at
SIGCSE-12; the Computer Research Association Snowbird Conference 2012; and the 2012
IEEE Frontiers in Education Conference (FIE-12), among others.

A number of organizations and working groups also provided valuable feedback to the CS2013
effort, including: the ACM Education Board and Council; the IEEE-CS Educational Activities
Board; the ACM Practitioners Board; the ACM SIGPLAN Education Board; the ACM Special
Interest Group Computers and Society; the SIGCHI executive committee; the Liberal Arts
Computer Science Consortium (LACS); the NSF/IEEE-TCPP Curriculum Initiative on Parallel
and Distributed Computing Committee; the Intel/NSF sponsored workshop on Security; and the
NSF sponsored project on Curricular Guidelines for Cybersecurity. We are also indebted to all

the authors of course and curricular exemplars.

References

[1] ACM Curriculum Committee on Computer Science. 1968. Curriculum 68:
Recommendations for Academic Programs in Computer Science. Comm. ACM 11, 3
(Mar. 1968), 151-197.

[2] ACM/IEEE-CS Joint Task Force on Computing Curricula. 2001. ACM/IEEE Computing
Curricula 2001 Final Report. http://www.acm.org/sigcse/cc2001.

[3] ACM/IEEE-CS Joint Task Force for Computer Curricula 2005. Computing Curricula
2005: An Overview Report. http://www.acm.org/education/curric_vols/CC2005-
MarchO6Final.pdf

[4] ACM/IEEE-CS Joint Interim Review Task Force. 2008. Computer Science Curriculum
2008: An Interim Revision of CS 2001, Report from the Interim Review Task Force.
http://www.acm.org/education/curricula/ComputerScience2008.pdf

-19-

Chapter 2: Principles

Early in its work, the 2013 Steering Committee agreed on a set of principles to guide the
development of this volume. The principles adopted for CS2013 overlap significantly with the
principles adopted for previous curricular efforts, most notably CC2001 and CS2008. As with
previous ACM/IEEE curricula volumes, there are a variety of constituencies for CS2013,
including individual faculty members and instructors at a wide range of colleges, universities,
and technical schools on any of six continents; CS programs and the departments, colleges, and
institutions housing them; accreditation and certification boards; authors; and researchers. Other
constituencies include pre-college preparatory schools and advanced placement curricula as well
as graduate programs in computer science. These principles were developed in consideration of
these constituencies, as well as consideration of issues related to student outcomes, development
of curricula, and the review process. The order of presentation is not intended to imply relative

importance.

1. Computer science curricula should be designed to provide students with the flexibility to
work across many disciplines. Computing is a broad field that connects to and draws from
many disciplines, including mathematics, electrical engineering, psychology, statistics, fine
arts, linguistics, and physical and life sciences. Computer Science students should develop

the flexibility to work across disciplines.

2. Computer science curricula should be designed to prepare graduates for a variety of
professions, attracting the full range of talent to the field. Computer science impacts nearly
every modern endeavor. CS2013 takes a broad view of the field that includes topics such as
“computational-x” (e.g., computational finance or computational chemistry) and “x-
informatics” (e.g., eco-informatics or bio-informatics). Well-rounded CS graduates will have

a balance of theory and application, as described in Chapter 3: Characteristics of Graduates.

3. CS2013 should provide guidance for the expected level of mastery of topics by graduates. It
should suggest outcomes indicating the intended level of mastery and provide exemplars of

instantiated courses and curricula that cover topics in the Body of Knowledge.

4. CS2013 must provide realistic, adoptable recommendations that provide guidance and
flexibility, allowing curricular designs that are innovative and track recent developments in
the field. The guidelines are intended to provide clear, implementable goals, while also
providing the flexibility that programs need in order to respond to a rapidly changing field.
(CS2013 is intended as guidance, not as a minimal standard against which to evaluate a

program.

5. The CS2013 guidelines must be relevant to a variety of institutions. Given the wide range of
institutions and programs (including 2-year, 3-year, and 4-year programs; liberal arts,
technological, and research institutions; and institutions of every size), it is neither possible
nor desirable for these guidelines to dictate curricula for computing. Individual programs will

need to evaluate their constraints and environments to construct curricula.

6. The size of the essential knowledge must be managed. While the range of relevant topics has
expanded, the size of undergraduate education has not. Thus, CS2013 must carefully choose

among topics and recommend the essential elements.

7. Computer science curricula should be designed to prepare graduates to succeed in a rapidly
changing field. Computer Science is rapidly changing and will continue to change for the
foreseeable future. Curricula must prepare students for lifelong learning and must include
professional practice (e.g., communication skills, teamwork, ethics) as components of the
undergraduate experience. Computer science students must learn to integrate theory and
practice, to recognize the importance of abstraction, and to appreciate the value of good

engineering design.

8. (CS2013 should identify the fundamental skills and knowledge that all computer science
graduates should possess while providing the greatest flexibility in selecting topics. To this
end, we have introduced three levels of knowledge description: Tier-1 Core, Tier-2 Core, and
Elective. For a full discussion of Tier-1 Core, Tier-2 Core, and Elective, see Chapter 4:

Introduction to the Body of Knowledge.

9. (CS2013 should provide the greatest flexibility in organizing topics into courses and

curricula. Knowledge areas are not intended to describe specific courses. There are many

221 -

novel, interesting, and effective ways to combine topics from the Body of Knowledge into

coursces.

10. The development and review of CS2013 must be broadly based. The CS2013 effort must
include participation from many different constituencies including industry, government, and
the full range of higher education institutions involved in computer science education. It must

take into account relevant feedback from these constituencies.

_02 -

Chapter 3: Characteristics of Graduates

Graduates of computer science programs should have fundamental competency in the areas
described by the Body of Knowledge (see Chapter 4), particularly the core topics contained
there. However, there are also competences that graduates of CS programs should have that are
not explicitly listed in the Body of Knowledge. Professionals in the field typically embody a
characteristic style of thinking and problem solving, a style that emerges from the experiences
obtained through study of the field and professional practice. Below, we describe the
characteristics that we believe should be attained at least at an elementary level by graduates of
computer science programs. These characteristics will enable their success in the field and
further professional development. Some of these characteristics and skills also apply to other
fields. They are included here because the development of these skills and characteristics should
be explicitly addressed and encouraged by computer science programs. This list is based on a
similar list in CC2001 and CS2008. The substantive changes that led to this new version were

influenced by responses to a survey conducted by the CS2013 Steering Committee.

At a broad level, the expected characteristics of computer science graduates include the

following:

Technical understanding of computer science
Graduates should have a mastery of computer science as described by the core of the Body of

Knowledge.

Familiarity with common themes and principles

Graduates need understanding of a number of recurring themes, such as abstraction, complexity,
and evolutionary change, and a set of general principles, such as sharing a common resource,
security, and concurrency. Graduates should recognize that these themes and principles have
broad application to the field of computer science and should not consider them as relevant only

to the domains in which they were introduced.

Appreciation of the interplay between theory and practice
A fundamental aspect of computer science is understanding the interplay between theory and
practice and the essential links between them. Graduates of a computer science program need to

understand how theory and practice influence each other.

System-level perspective

Graduates of a computer science program need to think at multiple levels of detail and
abstraction. This understanding should transcend the implementation details of the various
components to encompass an appreciation for the structure of computer systems and the
processes involved in their construction and analysis. They need to recognize the context in
which a computer system may function, including its interactions with people and the physical

world.

Problem solving skills

Graduates need to understand how to apply the knowledge they have gained to solve real
problems, not just write code and move bits. They should to be able to design and improve a
system based on a quantitative and qualitative assessment of its functionality, usability and
performance. They should realize that there are multiple solutions to a given problem and that
selecting among them is not a purely technical activity, as these solutions will have a real impact
on people’s lives. Graduates also should be able to communicate their solution to others,

including why and how a solution solves the problem and what assumptions were made.

Project experience

To ensure that graduates can successfully apply the knowledge they have gained, all graduates of
computer science programs should have been involved in at least one substantial project. In most
cases, this experience will be a software development project, but other experiences are also
appropriate in particular circumstances. Such projects should challenge students by being
integrative, requiring evaluation of potential solutions, and requiring work on a larger scale than
typical course projects. Students should have opportunities to develop their interpersonal

communication skills as part of their project experience.

Commitment to life-long learning
Graduates should realize that the computing field advances at a rapid pace, and graduates must

possess a solid foundation that allows and encourages them to maintain relevant skills as the

-4 -

field evolves. Specific languages and technology platforms change over time. Therefore,
graduates need to realize that they must continue to learn and adapt their skills throughout their
careers. To develop this ability, students should be exposed to multiple programming languages,
tools, paradigms, and technologies as well as the fundamental underlying principles throughout
their education. In addition, graduates are now expected to manage their own career
development and advancement. Graduates seeking career advancement often engage in
professional development activities, such as certifications, management training, or obtaining

domain-specific knowledge.

Commitment to professional responsibility

Graduates should recognize the social, legal, ethical, and cultural issues inherent in the discipline
of computing. They must further recognize that social, legal, and ethical standards vary
internationally. They should be knowledgeable about the interplay of ethical issues, technical
problems, and aesthetic values that play an important part in the development of computing
systems. Practitioners must understand their individual and collective responsibility and the
possible consequences of failure. They must understand their own limitations as well as the

limitations of their tools.

Communication and organizational skills

Graduates should have the ability to make effective presentations to a range of audiences about
technical problems and their solutions. This may involve face-to-face, written, or electronic
communication. They should be prepared to work effectively as members of teams. Graduates
should be able to manage their own learning and development, including managing time,

priorities, and progress.

Awareness of the broad applicability of computing
Platforms range from embedded micro-sensors to high-performance clusters and distributed
clouds. Computer applications impact nearly every aspect of modern life. Graduates should

understand the full range of opportunities available in computing.

Appreciation of domain-specific knowledge
Graduates should understand that computing interacts with many different domains. Solutions to

many problems require both computing skills and domain knowledge. Therefore, graduates need

_25.-

to be able to communicate with, and learn from, experts from different domains throughout their

carcers.

-26 -

Chapter 4: Introduction to the Body of

Knowledge

This chapter provides an introduction to the structure and rationale for the Body of Knowledge.
It further describes the most substantial innovations in the Body of Knowledge. It does not
propose a particular set of courses or curriculum structure -- that is the role of the course and
curriculum exemplars. Rather, this chapter emphasizes the flexibility that the Body of
Knowledge allows in adapting curricula to institutional needs and the continual evolution of the
field. In Computer Science terms, one can view the Body of Knowledge as a specification of the
content to be covered and a curriculum as an implementation. A large variety of curricula can

meet the specification.
The following points are elaborated:

e Knowledge Areas are not intended to be in one-to-one correspondence with particular
courses in a curriculum: We expect curricula will have courses that incorporate topics

from multiple Knowledge Areas.

e Topics are identified as either “Core” or “Elective” with the core further subdivided into

“Tier-1” and “Tier-2.”

o A curriculum should include all topics in the Tier-1 core and ensure that all

students cover this material.

o A curriculum should include all or almost all topics in the Tier-2 core and ensure

that all students encounter the vast majority of this material.

o A curriculum should include significant elective material: Covering only “Core”

topics is insufficient for a complete curriculum.

e Because it is a hierarchical outline, the Body of Knowledge under-emphasizes some key
issues that must be considered when constructing a curriculum, such as the ways in which
a curriculum allows students to develop the characteristics outlined in Chapter 3:

Characteristics of Graduates.

e The learning outcomes and hour counts in the Body of Knowledge provide guidance on

the depth of coverage towards which curricula should aim.

e There are several new Knowledge Areas that reflect important changes in the field.

Knowledge Areas are Not Necessarily Courses (and Important

Examples Thereof)

It is naturally tempting to associate each Knowledge Area with a course. We explicitly
discourage this practice in general, even though many curricula will have some courses
containing material from only one Knowledge Area or, conversely, all the material from one
Knowledge Area in one course. We view the hierarchical structure of the Body of Knowledge as
a useful way to group related information, not as a stricture for organizing material into courses.
Beyond this general flexibility, in several places we expect many curricula to integrate material

from multiple Knowledge Areas, in particular:

® [ntroductory courses: There are diverse successful approaches to introductory courses in
computer science. Many focus on the topics in Software Development Fundamentals
together with a subset of the topics in Programming Languages or Software Engineering,
while leaving most of the topics in these other Knowledge Areas to advanced courses.
But which topics from other Knowledge Areas are covered in introductory courses can
vary. Some courses use object-oriented programming; others, functional programming;
and others, platform-based development (thereby covering topics in the Platform-Based
Development Knowledge Area). Conversely, there is no requirement that all Software
Development Fundamentals be covered in a first or second course, though in practice
most topics will usually be covered in these early courses. A separate chapter discusses

introductory courses more generally.

e Systems courses: The topics in the Systems Fundamentals Knowledge Area can be
presented in courses designed to cover general systems principles or in those devoted to
particular systems areas such as computer architecture, operating systems, networking, or
distributed systems. For example, an Operating Systems course might be designed to

cover more general systems principles, such as low-level programming, concurrency and

-28 -

synchronization, performance measurement, or computer security, in addition to topics
more specifically related to operating systems. Consequently, such courses will likely
draw on material in several Knowledge Areas. Certain fundamental systems topics like
latency or parallelism will likely arise in many places in a curriculum. While it is
important that such topics do arise, preferably in multiple settings, the Body of
Knowledge does not specify the particular settings in which to teach such topics. The
course exemplars in Appendix C show multiple ways that such material may be

organized into courses.

Parallel computing: Among the changes to the Body of Knowledge from previous
reports is a new Knowledge Area in Parallel and Distributed Computing. An alternative
structure for the Body of Knowledge would place relevant topics in other Knowledge
Areas: parallel algorithms with algorithms, programming constructs in software-
development focused areas, multi-core design with computer architecture, and so forth.
We chose instead to provide guidance on the essential parallelism topics in one place.
Some, but not all, curricula will likely have courses dedicated to parallelism, at least in

the near term.

Core Tier-1, Core Tier-2, Elective: What These Terms Mean, What is
Required

As described at the beginning of this chapter, computer-science curricula should cover all the
Core Tier-1 topics, all or almost all of the Core Tier-2 topics, and significant depth in many of
the Elective topics (i.e., the core is not sufficient for an undergraduate degree in computer
science). Here we provide additional perspective on what “Core Tier-1,” “Core Tier-2”, and

“Elective” mean, including motivation for these distinctions.

Motivation for subdividing the core: Earlier curricular guidelines had only “Core” and
“Elective” with every topic in the former being required. We departed from this strict

interpretation of “everything in the core must be taught to every student” for these reasons:

-29.

e Many strong computer-science curricula were missing at least one hour of core material.
It is misleading to suggest that such curricula are outside the definition of an

undergraduate degree in computer science.

e As the field has grown, there is ever-increasing pressure to grow the core and to allow
students to specialize in areas of interest. Doing so simply becomes impossible within
the short time-frame of an undergraduate degree. Providing some flexibility on coverage

of core topics enables curricula and students to specialize if they choose to do so.

Conversely, we could have allowed for any core topic to be skipped provided that the vast
majority was part of every student’s education. By retaining a smaller Core Tier-1 of required
material, we provide additional guidance and structure for curriculum designers. In the Core

Tier-1 are the topics that are fundamental to the structure of any computer-science program.

On the meaning of Core Tier-1: A Core Tier-1 topic should be a required part of every

Computer Science curriculum. While Core Tier-2 and Elective topics are important, the Core
Tier-1 topics are those with widespread consensus for inclusion in every program. While most
Core Tier-1 topics will typically be covered in introductory courses, others may be covered in

later courses.

On the meaning of Core Tier-2: Core Tier-2 topics are generally essential in an
undergraduate computer-science degree. Requiring the vast majority of them is a minimum
expectation, and if a program prefers to cover all of the Core Tier-2 topics, we encourage them to
do so. That said, Computer Science programs can allow students to focus in certain areas in
which some Core Tier-2 topics are not required. We also acknowledge that resource constraints,
such as a small number of faculty or institutional limits on degree requirements, may make it
prohibitively difficult to cover every topic in the core while still providing advanced elective
material. A computer-science curriculum should aim to cover 90-100% of the Core Tier-2

topics, with 80% considered a minimum.

There is no expectation that Core Tier-1 topics necessarily precede all Core Tier-2 topics in a

curriculum. In particular, we expect introductory courses will draw on both Core Tier-1 and

-30 -

Core Tier-2 (and possibly elective) material and that some core material will be delayed until

later courses.

On the meaning of Elective: A program covering only core material would provide
insufficient breadth and depth in computer science. Most programs will not cover all the elective
material in the Body of Knowledge and certainly few, if any, students will cover all of it within
an undergraduate program. Conversely, the Body of Knowledge is by no means exhaustive, and
advanced courses may often go beyond the topics and learning outcomes contained in it.
Nonetheless, the Body of Knowledge provides a useful guide on material appropriate for a
computer-science undergraduate degree, and all students of computer science should deepen

their understanding in multiple areas via the elective topics.

A curriculum may well require material designated elective in the Body of Knowledge. Many
curricula, especially those with a particular focus, will require some elective topics, by virtue of

them being covered in required courses.

The size of the core: The size of the core (Tier-1 plus Tier-2) is a few hours larger than in
previous curricular guidelines, but this is counterbalanced by our more flexible treatment of the
core. As aresult, we are not increasing the number of required courses a curriculum should
need. Indeed, a curriculum covering 90% of the Tier-2 hours would have the same number of
core hours as a curriculum covering the core in the CS2008 volume, and a curriculum covering
80% of the Tier-2 hours would have fewer core hours than even a curriculum covering the core
in the CC2001 volume (the core grew from 2001 to 2008). A more thorough quantitative

comparison is presented at the end of this chapter.

A note on balance: Computer Science is an elegant interplay of theory, software, hardware,
and applications. The core in general and Tier-1 in particular, when viewed in isolation, may
seem to focus on programming, discrete structures, and algorithms. This focus results from the
fact that these topics typically come early in a curriculum so that advanced courses can use them
as prerequisites. Essential experience with systems and applications can be achieved in more

disparate ways using elective material in the Body of Knowledge. Because all curricula will

-31 -

include appropriate elective material, an overall curriculum can and should achieve an

appropriate balance.

Further Considerations in Designing a Curriculum

As useful as the Body of Knowledge is, it is important to complement it with a thoughtful
understanding of cross-cutting themes in a curriculum, the “big ideas” of computer science. In
designing a curriculum, it is also valuable to identify curriculum-wide objectives, for which the

Principles and the Characteristics of Graduates chapters of this volume should prove useful.

In the last few years, two on-going trends have had deep effects on many curricula. First, the
continuing growth of computer science has led to many programs organizing their curricula to
allow for intradisciplinary specialization (using terms such as threads, tracks, and vectors).
Second, the importance of computing to almost every other field has increasingly led to the
creation of interdisciplinary programs (e.g., joint majors and double majors) and incorporating
interdisciplinary material into computer-science programs. We applaud both trends and believe
a flexible Body of Knowledge, including a flexible core, supports them. Conversely, such
specialization is not required: Many programs will continue to offer a broad yet thorough

coverage of computer science as a distinct and coherent discipline.

Organization of the Body of Knowledge

The CS2013 Body of Knowledge is presented as a set of Knowledge Areas (KAs), organized on
topical themes rather than by course boundaries. Each KA is further organized into a set of
Knowledge Units (KUs), which are summarized in a table at the head of each KA section. We
expect that the topics within the KAs will be organized into courses in different ways at different

institutions.

Curricular Hours

Continuing in the tradition of CC2001/CS2008, we define the unit of coverage in the Body of
Knowledge in terms of lecture hours, as being the sole unit that is understandable in (and

transferable to) cross-cultural contexts. An “hour” corresponds to the time required to present the

-32-

material in a traditional lecture-oriented format; the hour count does not include any additional
work that is associated with a lecture (e.g., in self-study, laboratory sessions, and assessments).
Indeed, we expect students to spend a significant amount of additional time outside of class
developing facility with the material presented in class. As with previous reports, we maintain
the principle that the use of a lecture-hour as the unit of measurement does not require or endorse

the use of traditional lectures for the presentation of material.

The specification of topic hours represents the minimum amount of time we expect such
coverage to take. Any institution may opt to cover the same material in a longer period of time as

warranted by the individual needs of that institution.

Courses

Throughout the Body of Knowledge, when we refer to a “course” we mean an institutionally-
recognized unit of study. Depending on local circumstance, full-time students will take several
“courses” at any one time, typically several per academic year. While “course” is a common

term at some institutions, others will use other names, for example “module” or “paper.”

Guidance on Learning Outcomes

Each KU within a KA lists both a set of topics and the learning outcomes students are expected
to achieve with respect to the topics specified. Learning outcomes are not of equal size and do
not have a uniform mapping to curriculum hours; topics with the same number of hours may
have quite different numbers of associated learning outcomes. Each learning outcome has an
associated level of mastery. In defining different levels we drew from other curriculum
approaches, especially Bloom’s Taxonomy, which has been well explored within computer
science. We did not directly apply Bloom’s levels in part because several of them are driven by
pedagogic context, which would introduce too much plurality in a document of this kind; in part
because we intend the mastery levels to be indicative and not to impose theoretical constraint on

users of this document.

-33 -

We use three levels of mastery, defined as:

e Familiarity: The student understands what a concept is or what it means. This level of
mastery concerns a basic awareness of a concept as opposed to expecting real facility
with its application. It provides an answer to the question “What do you know about
this?”

e Usage: The student is able to use or apply a concept in a concrete way. Using a concept
may include, for example, appropriately using a specific concept in a program, using a
particular proof technique, or performing a particular analysis. It provides an answer to
the question “What do you know how to do?”

e Assessment: The student is able to consider a concept from multiple viewpoints and/or
justify the selection of a particular approach to solve a problem. This level of mastery
implies more than using a concept; it involves the ability to select an appropriate
approach from understood alternatives. It provides an answer to the question “Why
would you do that?”

As a concrete, although admittedly simplistic, example of these levels of mastery, we consider
the notion of iteration in software development, for example for-loops, while-loops, and iterators.
At the level of “Familiarity,” a student would be expected to have a definition of the concept of
iteration in software development and know why it is a useful technique. In order to show
mastery at the “Usage” level, a student should be able to write a program properly using a form
of iteration. Understanding iteration at the “Assessment” level would require a student to
understand multiple methods for iteration and be able to appropriately select among them for

different applications.

The descriptions we have included for learning outcomes may not exactly match those used by
institutions, in either specifics or emphasis. Institutions may have different learning outcomes
that capture the same level of mastery and intent for a given topic. Nevertheless, we believe that
by giving descriptive learning outcomes, we both make our intention clear and facilitate

interpretation of what outcomes mean in the context of a particular curriculum.
Overview of New Knowledge Areas

While computer science encompasses technologies that change rapidly over time, it is defined by

essential concepts, perspectives, and methodologies that are constant. As a result, much of the

-34 -

core Body of Knowledge remains unchanged from earlier curricular volumes. However, new
developments in computing technology and pedagogy mean that some aspects of the core evolve
over time, and some of the previous structures and organization may no longer be appropriate for
describing the discipline. As a result, CS2013 has modified the organization of the Body of
Knowledge in various ways, adding some new KAs and restructuring others. We highlight these

changes in the remainder of this section.

Information Assurance and Security (I1AS)

IAS is a new KA in recognition of the world’s critical reliance on information technology and
computing. IAS as a domain is the set of controls and processes, both technical and policy,
intended to protect and defend information and information systems. IAS draws together topics
that are pervasive throughout other KAs. Topics germane to only IAS are presented in depth in
this KA, whereas other topics are noted and cross referenced to the KAs that contain them. As

such, this KA is prefaced with a detailed table of cross-references to other KAs.

Networking and Communication (NC)

CC2001 introduced a KA entitled “Net-Centric Computing”, which encompassed a combination
of topics including traditional networking, web development, and network security. Given the
growth and divergence in these topics since the last report, we renamed and re-factored this KA
to focus specifically on topics in networking and communication. Discussions of web
applications and mobile device development are now covered in the new Platform-Based

Development KA. Security is covered in the new Information Assurance and Security KA.

Platform-Based Development (PBD)

PBD is a new KA that recognizes the increasing use of platform-specific programming
environments, both at the introductory level and in upper-level electives. Platforms such as the
Web or mobile devices enable students to learn within and about environments constrained by
hardware, APIs, and special services (often in cross-disciplinary contexts). These environments
are sufficiently different from “general purpose” programming to warrant this new (wholly

elective) KA.

-35-

Parallel and Distributed Computing (PD)

Previous curricular volumes had parallelism topics distributed across disparate KAs as electives.
Given the vastly increased importance of parallel and distributed computing, it seemed crucial to
identify essential concepts in this area and to promote those topics to the core. To highlight and
coordinate this material, CS2013 dedicates a KA to this area. This new KA includes material on
programming models, programming pragmatics, algorithms, performance, computer architecture,

and distributed systems.

Software Development Fundamentals (SDF)

This new KA generalizes introductory programming to focus on more of the software
development process, identifying concepts and skills that should be mastered in the first year of a
computer-science program. As a result of its broad purpose, the SDF KA includes fundamental
concepts and skills that could appear in other software-oriented KAs (e.g., programming
constructs from Programming Languages, simple algorithm analysis from Algorithms and
Complexity, simple development methodologies from Software Engineering). Likewise, each of
those KAs will contain more advanced material that builds upon the fundamental concepts and
skills in SDF. Compared to previous volumes, key approaches to programming -- including
object-oriented programming, functional programming, and event-driven programming -- are
kept in one place, namely the Programming Languages KA, with an expectation that any

curriculum will cover some of these topics in introductory courses.

Systems Fundamentals (SF)

In previous curricular volumes, the interacting layers of a typical computing system, from
hardware building blocks, to architectural organization, to operating system services, to
application execution environments (particularly for parallel execution in a modern view of
applications), were presented in independent knowledge areas. The new Systems Fundamentals
KA presents a unified systems perspective and common conceptual foundation for other KAs
(notably Architecture and Organization, Network and Communications, Operating Systems, and
Parallel and Distributed Algorithms). An organizational principle is “programming for
performance”: what a programmer needs to understand about the underlying system to achieve

high performance, particularly in terms of exploiting parallelism.

-36 -

Core Hours in Knowledge Areas
An overview of the number of core hours (both Tier-1 and Tier-2) by KA in the CS2013 Body of

Knowledge is provided below. For comparison, the number of core hours from both the

previous CS2008 and CC2001 reports are provided as well.

CS2013 CS2008 | CC2001

Knowledge Area Tierl Tier2 | Core Core
AL-Algorithms and Complexity 19 9 31 31
AR-Architecture and Organization 0 16 36 36
CN-Computational Science 1 0 0 0
DS-Discrete Structures 37 4 43 43
GV-Graphics and Visualization 2 1 3 3
HCI-Human-Computer Interaction 4 4 8 8
IAS-Information Assurance and Security 3 6 -- --
IM-Information Management 1 9 11 10
IS-Intelligent Systems 0 10 10 10
NC-Networking and Communication 3 7 15 15
OS-Operating Systems 4 11 18 18
PBD-Platform-based Development 0 0 -- --
PD-Parallel and Distributed Computing 5 10 -- --
PL-Programming Languages 8 20 21 21
SDF-Software Development Fundamentals | 43 0 47 38
SE-Software Engineering 6 22 31 31
SF-Systems Fundamentals 18 9 -- --
SP-Social Issues and Professional Practice 11 5 16 16
Total Core Hours 165 143 290 280
All Tier1 + All Tier2 Total 308
All Tierl + 90% of Tier2 Total 293.7
All Tierl + 80% of Tier2 Total 279.4

As seen above, in CS2013 the total Tier-1 hours together with the entirety of Tier-2 hours
slightly exceeds the total core hours from previous reports. However, it is important to note that

the tiered structure of the core in CS2013 explicitly provides the flexibility for institutions to

-37-

select topics from Tier-2 (to include at least 80%). As a result, it is possible to implement the

CS2013 guidelines with comparable hours to previous curricular guidelines.

-38 -

Chapter 5: Introductory Courses

Computer science, unlike many technical disciplines, does not have a well-described list of
topics that appear in virtually all introductory courses. In considering the changing landscape of
introductory courses, we look at the evolution of such courses from CC2001 to CS2013.
CC2001 classified introductory course sequences into six general models: Imperative-first,
Objects-first, Functional-first, Breadth-first, Algorithms-first, and Hardware-first. While
introductory courses with these characteristic features certainly still exist today, we believe that
advances in the field have led to an even more diverse set of approaches in introductory courses
than the models set out in CC2001. Moreover, the approaches employed in introductory courses

are in a greater state of flux.

An important challenge for introductory courses, and a key reason the content of such courses
remains a vigorous discussion topic after decades of debate, is that not everything relevant to a
computer scientist (programming, software processes, algorithms, abstraction, performance,
security, professionalism, etc.) can be taught from day one. In other words, not everything can
come first and as a result some topics must be pushed further back in the curriculum, in some
cases significantly so. Many topics will not appear in a first course or even a second course,
meaning that students who do not continue further (for example, non-majors) will lose exposure
to these topics. Ultimately, choosing what to cover in introductory courses results in a set of
tradeoffs that must be considered when trying to decide what should be covered early in a

curriculum.

Design Dimensions

We structure this chapter as a set of design dimensions relevant to crafting introductory courses,
concluding each dimension with a summary of the trade-offs that are in tension along the
dimension. A given introductory course, or course sequence, in computer science will represent
a set of decisions within this multidimensional design space and achieve distinctive outcomes as
aresult. We note that our discussion here focuses on introductory courses meant as part of an

undergraduate program in computer science. Notably, we do not discuss the increasingly

common“CS0” courses: precursor courses often focusing on computer fluency or computational
thinking. Such courses may include some introductory computer science concepts or material,

but are not part of this Body of Knowledge and are outside the scope of our consideration.

Pathways Through Introductory Courses

We recognize that introductory courses are not constructed in the abstract, but rather are
designed for specific target audiences and contexts. Departments know their institutional
contexts best and must be sensitive to their own students and their needs. Introductory courses
differ across institutions, especially with regard to the nature and length of an introductory
sequence (that is, the number of courses that a student must take before any branching is
allowed). A sequence of courses may also have different entry points to accommodate students
with significant differences in previous computing experience and/or who come from a wide
diversity of backgrounds. Having multiple pathways into and through the introductory course
sequence can help to better align students’ abilities with the appropriate level of coursework. It
can also help create more flexibility with articulation between two-year and four-year
institutions, and smooth the transition for students transferring from other colleges/programs.
Increasingly, computing in general and programming in particular are essential to students in
other fields. Courses for these non-majors may or may not be distinct from courses that lead to
years of computer science study. Additionally, having multiple pathways through introductory
courses may provide greater options to students who choose to start take courses in computing

late in their college programs.

Building courses for diverse audiences — not just students who are already sure of a major in
computer science — is essential for making computing accessible to a wide range of students.
Given the importance of computation across many disciplines, the appeal of introductory
programming courses has significantly broadened beyond the traditionally accommodated
engineering fields. For target audiences with different backgrounds, and different expectations,
the practice of having thematically-focused introductory courses (e.g., computational biology,
robotics, digital media manipulation, etc.) has become popular. In this way, material is made

relevant to the expectations and aspirations of students with a variety of disciplinary orientations.

- 40 -

Tradeoffs:

e Providing multiple pathways into and through introductory course sequences can make
computer science more accessible to different audiences, but requires greater investment
(in work and resources) by a department to construct such pathways and/or provide
different themed options to students. Moreover, care must be taken to give students
guidance with regard to choosing an appropriate introductory course pathway. (This is as
true for those students with extensive prior computing experience as for those with none.)

e By having longer introductory course sequences (i.e., longer or more structured pre-
requisite chains), educators can assume more prior knowledge in each course, but such
lengthy sequences sacrifice flexibility and increase the time before students are able to

take advanced courses more focused on their areas of interest.

Programming Focus

The vast majority of introductory courses are programming-focused, in which students learn
about concepts in computer science (e.g., abstraction, decomposition, etc.) through the explicit
tasks of learning a given programming language and building software artifacts. A programming
focus can provide early training in this crucial skill for computer science majors and help elevate
students with different backgrounds in computing to a more equal footing. Even given a
programming focus, there is a further subdivision between having students write whole programs
— to ensure understanding how the pieces fit together and give the full experience of program
construction — versus having students complete or modify existing programs and skeletons,
which can be more like real-world experience and allow creating larger and more complex
programs. Moving away from emphasizing programming, some introductory courses are
designed to provide a broader introduction to concepts in computing without the constraints of
learning the syntax of a programming language. They are consciously programming de-focused.
Such a perspective is roughly analogous to the “Breadth-first” model in CC2001. Whether or not
programming is the primary focus of their first course, it is important that students do not
perceive computer science as only learning the specifics of particular programming languages.
Care must be taken to emphasize the more general concepts in computing within the context of

learning how to program.

-4] -

Tradeoffs: A programming-focused introductory course can help develop essential skills in
students early on and provide a /ingua franca in which other computer science concepts can be
described. This programming focus may also be useful for students from other areas of study
who wish to use programming as a tool in cross-disciplinary work. However, too narrow a
programming focus in an introductory class, while giving immediate facility in a programming
language, can also give students a too-narrow (and misleading) view of the place of
programming in the field. Such a narrow perspective may limit the appeal of computer science

for some students.

Programming Paradigm and Choice of Language

A defining factor for many introductory courses is the choice of programming paradigm, which
then drives the choice of programming language. Indeed, half of the six introductory course
models listed in CC2001 were described by programming paradigm (Imperative-first, Objects-
first, Functional-first). Such paradigm-based introductory courses still exist and their relative
merits continue to be debated. We note that rather than a particular paradigm or language
coming to be favored over time, the past decade has only broadened the list of programming
languages now successfully used in introductory courses. There does, however, appear to be a
growing trend toward “safer” or more managed languages (for example, moving from C to Java)
as well as the use of more dynamic languages, such as Python or JavaScript. Visual
programming languages, such as Alice and Scratch, have also become popular choices to provide
a “syntax-light” introduction to programming; these are often (although not exclusively) used
with non-majors or at the start of an introductory course. Some introductory course sequences
choose to provide a presentation of alternative programming paradigms, such as scripting vs.
procedural programming or functional vs. object-oriented programming, to give students a
greater appreciation of the diverse perspectives in programming, to avoid language-feature
fixation, and to disabuse them of the notion that there is a single “correct” or “best”

programming language.

-4 -

Tradeoffs: This is an area where there are numerous tradeoffs, including:

e The use of “safer” or more managed languages and environments can help scaffold
students’ learning. But, such languages may provide a level of abstraction that obscures
an understanding of actual machine execution and makes is difficult to evaluate
performance trade-offs. The decision as to whether to use a “lower-level” language to
promote a particular mental model of program execution that is closer to the actual
execution by the machine is often a matter of local audience needs.

e The use of a language or environment designed for introductory pedagogy can facilitate
student learning, but may be of limited use beyond CS1. Conversely, a language or
environment commonly used professionally may expose students to too much complexity

too soon.

Software Development Practices

While programming is the means by which software is constructed, an introductory course may
choose to present additional practices in software development to different extents. For example,
the use of software development best practices, such as unit testing, version control systems,
industrial integrated development environments (IDEs), and programming patterns may be
stressed to different extents in different introductory courses. The inclusion of such software
development practices can help students gain an early appreciation of some of the challenges in
developing real software projects. On the other hand, while all computer scientists should have
solid software development skills, those skills need not always be the primary focus of the first
introductory programming course, especially if the intended audience is not just computer
science majors. Care should be taken in introductory courses to balance the use of software
development best practices from the outset with making introductory courses accessible to a

broad population.

Tradeoffs: The inclusion of software development practices in introductory courses can help
students develop important aspects of real-world software development early on. The extent to
which such practices are included in introductory courses may impact and be impacted by the
target audience for the course, and the choice of programming language and development

environment.

- 43 -

Parallel Processing

Traditionally, introductory courses have assumed the availability of a single processor, a single
process, and a single thread, with the execution of the program being completely driven by the
programmer’s instructions and expectation of sequential execution. Recent hardware and
software developments have prompted educators to rethink these assumptions, even at the
introductory level — multicore processors are now ubiquitous, user interfaces lend themselves to
asynchronous event-driven processing, and “big data” requires parallel processing and
distributed storage. As a result, some introductory courses stress parallel processing from the
outset (with traditional single threaded execution models being considered a special case of the
more general parallel paradigm). While we believe this is an interesting model to consider in the
long-term, we anticipate that introductory courses will still be dominated by the “single thread of
execution” model (perhaps with the inclusion of GUI-based or robotic event-driven
programming) for the foreseeable future. As more successful pedagogical approaches are
developed to make parallel processing accessible to novice programmers, and paradigms for
parallel programming become more commonplace, we expect to see more elements of parallel

programming appearing in introductory courses.

Tradeoffs: Understanding parallel processing is becoming increasingly important for computer
science majors and learning such models early on can give students more practice in this arena.
On the other hand, parallel programming remains more difficult in most contemporary

programming environments.

Platform

While many introductory programming courses make use of traditional computing platforms
(e.g., desktop/laptop computers) and are, as a result, somewhat “hardware agnostic,” the past few
years have seen a growing diversity in the set of programmable devices that are employed in
such courses. For example, some introductory courses may choose to engage in web
development or mobile device (e.g., smartphone, tablet) programming. Others have examined

the use of specialty platforms, such as robots or game consoles, which may help generate more

-44 -

enthusiasm for the subject among novices as well as emphasizing interaction with the external
world as an essential and natural focus. Recent developments have led to physically-small,
feature-restricted computational devices constructed specifically for the purpose of facilitating
learning programming (e.g., raspberry-pi). In any of these cases, the use of a particular platform
brings with it attendant choices for programming paradigms, component libraries, APIs, and
security. Working within the software/hardware constraints of a given platform is a useful
software-engineering skill, but also comes at the cost that the topics covered in the course may

likewise be limited by the choice of platform.

Tradeoffs: The use of specific platforms can bring compelling real-world contexts into the
classroom and platforms designed for pedagogy can have beneficial focus. However, it requires
considerable care to ensure that platform-specific details do not swamp pedagogic objectives.
Moreover, the specificity of the platform may impact the transferability of course content to

downstream courses.

Mapping to the Body of Knowledge

Practically speaking, an introductory course sequence should not be construed as simply
containing only the topics from the Software Development Fundamentals (SDF) Knowledge
Area. Rather we encourage implementers of the CS2013 guidelines to think about the design
space dimensions outlined above to draw on materials from multiple KAs for inclusion in an
introductory course sequence. For example, even a fairly straightforward introductory course
sequence will likely augment material from SDF with topics from the Programming Languages
Knowledge Area related to the choice of language used in the course and potentially some
concepts from Software Engineering. More broadly, a course using non-traditional platforms
will draw from topics in Platform-Based Development and those emphasizing multi-processing
will naturally include material from Parallel and Distributed Computing. We encourage readers
to think of the CS2013 Body of Knowledge as an invitation for the construction of creative new

introductory course sequences that best fit the needs of students at one’s local institution.

- 45 -

Chapter 6: Institutional Challenges

While the Body of Knowledge provides a detailed specification of what content should be
included in an undergraduate computer science curriculum, it is not to be taken as the sum total
of what an undergraduate curriculum in computing should impart. In a rapidly moving field such
as Computer Science, the particulars of what is taught are complementary to promoting a sense
of on-going inquiry, helping students construct a framework for the assimilation of new
knowledge, and advancing students’ development as responsible professionals. Critical thinking,
problem solving, and a foundation for life-long learning are skills that students need to develop
throughout their undergraduate career. Education is not just the transmission of information, but
at its best inspires passion for a subject, gives students encouragement to experiment and allows
them to experience excitement in achievement. These things, too, need to be reflected in

computer science curriculum and pedagogy.

Localizing CS2013

Successfully deploying an updated computer science curriculum at any individual institution
requires sensitivity to local needs. CS2013 should not be read as a set of topical “check-boxes”
to tick off, in a one-to-one mapping of classes to Knowledge Areas. Rather, we encourage
institutions to think about ways in which the Body of Knowledge may be best integrated into a
unique set of courses that reflect an institution’s mission, faculty strength, student needs, and
employer demands. Indeed, we created the two-tier structure of the Core precisely to provide
such flexibility, keeping the Core Tier-1 material to an essential minimum to allow institutions

greater leeway in selecting Core Tier-2 material to best suit their needs.

Actively Promoting Computer Science

Beyond coursework, we also stress the importance of advising, mentoring, and fostering
relationships among faculty and students. Many students, perhaps especially those coming from
disadvantaged backgrounds, may not appreciate the full breadth of career options that a degree in

computer science can provide. Advertising and promoting the possibilities opened by studying

- 46 -

computer science, especially when customized to local employer needs, provides two benefits.
First, it serves students by giving them information regarding career options they may not have
considered. Second, it serves the department by helping to attract more students (potentially
from a broader variety of backgrounds) into computer science courses. Offering a healthy
computer science program over time requires maintaining a commitment to attracting students to
the field regardless of current enrollment trends (which have ebbed and flowed quite widely in

recent decades).

It is important to note also that many students still feel that studying computer science is equated
with working as a “programmer,” which in turn raises negative and incorrect stereotypes of
isolated and rote work. At the same time, some students believe that if they do not already have
significant prior programming experience, they will not be competitive in pursuing a degree in
computer science. We strongly encourage departments to challenge both these perceptions.
Extra-curricular activities aimed at showcasing potential career paths opened by a degree in
computer science (for example, by inviting alumni to talk to current students) can help to show
both that there are many possibilities beyond “being a programmer” as well as that software
development is a significantly creative and collaborative process. In these efforts, an accessible
curriculum with multiple entry points, allowing students with or without prior experience to

smoothly transfer into a computer science degree program, is an important desideratum.

Broadening Participation

There is no doubt that there is a tremendous demand for students with computing skills. Indeed,
vast shortfalls in information technology workers in the coming decade have been predicted [3].
As a result, there is a pressing need to broaden participation in the study of computer science and
attract the full range of talent to the field, regardless of ethnicity, gender, or economic status.
Institutions should make efforts to bring a wide range of students into the computer science

pipeline and provide support structures to help all students successfully complete their programs.

-47 -

Computer Science Across Campus

An argument can be made that computer science is becoming one of the core disciplines of a
21st century university education, that is, something that any educated individual must possess
some level of proficiency and understanding. This transcends its role as a tool and methodology
for research broadly across disciplines; it is likely that in the near future, at many universities,
every undergraduate student will take some instruction in computer science, in recognition of
computational thinking as being one of the fundamental skills desired of all graduates. There are
implications for institutional resources to support such a significant scaling up of the teaching

mission of computer science departments, particularly in terms of instructors and laboratories.

While CS2013 provides guidelines for undergraduate programs in computer science, we believe
it is important for departments to provide computing education across a broad range of subject
areas. To this end, computing departments may consider providing courses, especially at the
introductory level, which are accessible and attractive to students from many disciplines. This
also serves the dual purpose of attracting more students to the computing field who may not have

had an initial inclination otherwise.

More broadly, as computing becomes an essential tool in other disciplines, it benefits computer
science departments to be “outward facing,” building bridges to other departments and
curriculum areas, encouraging students to engage in multidisciplinary work, and promoting
programs that span computer science and other fields of study (for example, programs in

“Computational X,” where X represents other disciplines such as biology or economics).

Computer Science Minors

Further to positioning computer science as one of the core disciplines of the university,
departments may also consider providing minors in computer science. A minor should provide
flexible options for students to gain coherent knowledge of computer science beyond that
captured in one or two courses, yet encompass less than a full program. Indeed, the use of such
minors can provide yet another means to allow students majoring in other disciplines to gain a

solid foundation in computing for future work at the intersections of their fields.

- 48 -

It is well-known that students often make undergraduate major choices with highly varied levels
of actual knowledge about different programs. As a result some students choose to not pursue a
major in computer science simply as a result of knowing neither what computer science actually
entails nor whether they might like the discipline, due to lack of prior exposure. A minor in
computer science allows such students to still gain some credential in computing, if they
discover late in their academic career that they have an interest in computing and what it offers.
To give students the ability to major in computer science, “taster” courses should seek to reach

students as soon as possible in their undergraduate studies.

Mathematics Requirements in Computer Science

There is a deep and beautiful connection between mathematics and many areas of computer
science. While nearly all undergraduate programs in computer science include mathematics
courses in their curricula, the full set of such requirements varies broadly by institution due to a
number of factors. For example, whether or not a CS program is housed in a School of
Engineering can directly influence the requirements for courses on calculus and/or differential
equations, even if such courses include far more material in these areas than is generally needed
for most CS majors. Similarly, restrictions on the number of courses that may be included in a
major at some institutions—for example, at many liberal arts colleges—may lead to mathematics
requirements that are specially circumscribed for CS majors. As a result, CS2013 only specifies
mathematical requirements that we believe are directly relevant for the large majority of all CS
undergraduates (for example, elements of set theory, logic, and discrete probability, among
others). These mathematics requirements are specified in the Body of Knowledge primarily in

the Discrete Structures (DS) Knowledge Area.

We recognize that general facility with mathematics is an important requirement for all CS
students. Still, CS2013 distinguishes between the foundational mathematics that are likely to
impact many parts of computer science—and are included in the CS2013 Body of Knowledge—
from those that, while still important, may be most directly relevant to specific areas within
computing. For example, an understanding of linear algebra plays a critical role in some areas of
computing such as graphics and the analysis of graph algorithms. However, linear algebra would

not necessarily be a requirement for all areas of computing (indeed, many high quality CS

- 49 -

programs do not have an explicit linear algebra requirement). Similarly, while we do note a
growing trend in the use of probability and statistics in computing (reflected by the increased
number of core hours on these topics in the Body of Knowledge) and believe that this trend is
likely to continue in the future, we still believe it is not necessary for all CS programs to require

a full course in probability theory for all majors.

More generally, we believe that a CS program must provide students with a level of
“mathematical maturity.” For example, an understanding of arithmetic manipulations, including
simple summations and series is needed for analyzing algorithmic efficiency, but giving the
detailed specifications of the basic arithmetic necessary for college-level coursework in
computing is beyond the scope of CS2013. To wit, some programs use calculus requirements
not as a means for domain knowledge, but more as a method for helping develop such
mathematical maturity and clarity of mathematical thinking early in a college-level education.
Thus, while we do not specify such requirements, we note that undergraduate CS students need
enough mathematical maturity to have the basis on which to then build CS-specific mathematics
(for example, as specified in the Discrete Structures Knowledge Area), which, importantly, does
not explicitly require any significant college-level coursework in calculus, differential equations,

or linear algebra.

Students moving on to advanced coursework in specific areas of computing will likely need
focused mathematical coursework relevant to those areas. We believe that CS programs should
help facilitate options in mathematics beyond Discrete Structures, which allow CS students to get
the background needed for the specific areas in CS they choose to pursue. Such coursework
requirements are best left to the discretion of the individual programs and the areas of CS they

choose to emphasize.

Finally, we note that any mathematics requirements in a CS program must be mindful of the
length of pre-requisite course chains specified to complete such requirements. Indeed, the pre-
requisite structure of mathematics courses may not be in the purview of CS departments
themselves, but must still be considered when designing programs that allow students without
significant prior mathematics background to pursue a major in CS. Lengthy series of
mathematics classes needed as pre-requisites for coursework in CS will make it more difficult for

students to find CS accessible, to switch into a CS major at a later point in their college careers,

-50 -

and/or to take CS-specific coursework early in their studies, which may discourage students from

the field.

Computing Resources

Programs in computer science have a need for adequate computing resources, both for students
and faculty. The needs of computer science programs often extend beyond traditional
infrastructure (general campus computing labs) and may include specialized hardware and
software, and/or large-scale computing infrastructure. Having adequate access to such resources
is especially important for project and capstone courses. Moreover, institutions need to consider
the growing heterogeneity of computing devices (e.g., smartphones, tablets) that can be used as a

platform for coursework.

Maintaining a Flexible and Healthy Faculty

A strong program in computer science is founded on a sufficient number of (and sufficiently
experienced) faculty to keep the department healthy and vibrant. Departmental hiring should
provide not only sufficient capacity to keep a program viable, but also allow for existing faculty
to have time for professional development and exploration of new ideas. To respond to rapid
changes in the field, computer science faculty must have the opportunities to build new skills,
learn about new areas, and stay abreast of new technologies. While there can be tension between
teaching new technologies versus fundamental principles, focusing too far on either extreme will
be a disservice to students. Faculty need to be given the time to acquire new ideas and
technologies and bring them into courses and curricula. In this way, departments can model the

value of professional and lifelong learning, as faculty incorporate new materials and approaches.

In addition to professional development, it is especially important for computer science programs
to maintain a healthy capacity to respond to enrollment fluctuations. Indeed, computer science
as a discipline has gone through several boom-and-bust cycles in the past decades that have
resulted in significant enrollment changes in programs all over the world and across virtually all
types of institutions. A department should take care to create structures to help it maintain

resilience in the face of enrollment downturns, for example by making courses more broadly

-51 -

accessible, building interdisciplinary programs with other departments, and offering service

coursces.

In the face of large sustained enrollment increases (as has been witnessed in recent years), the
need for sufficient faculty hiring can become acute. Without sufficient capacity, faculty can be
strained by larger course enrollments (each course requiring more sections and more student
assessment) and more teaching obligations (more courses must be taught by each faculty
member), which can result in lower quality instruction and potential faculty burn-out. The
former issue causes students to abandon computer science. These outcomes are highly
detrimental given the need to produce more, and more skilled, computing graduates as discussed
above. Excellent arguments for the need to maintain strong faculty capacity in the face of
growing enrollment have been extended, both in relation to the most recent boom [5] and

extending back more than three decades [2].

Teaching Faculty

Permanent faculty, whose primary criteria for evaluation is based on teaching and educational
contributions (broadly defined), can be instrumental in helping to build accessible courses,
engage in curricular experimentation and revision, and provide outreach efforts to bring more
students into the discipline. As with all institutional challenges, such appointments represent a
balance of political and pragmatic issues. The value of this type of position was originally
observed in CC2001 and that value has not diminished in the intervening decades, more recently

receiving additional endorsement [7].

-52-

Undergraduate Teaching Assistants

While research universities have traditionally drawn on postgraduate students to serve as
teaching assistants in the undergraduate curriculum, over the past 20 years growing numbers of
departments have found it valuable to engage advanced undergraduates as teaching assistants in
introductory computing courses. The reported benefits to the undergraduate teaching assistants
include learning the material themselves when they are put in the role of helping teach it to
someone else, better time management, improved ability dealing with organizational
responsibilities, and presentation skills [4, 6]. Students in the introductory courses also benefit
by having a larger course staff available, more accessible staff, and getting assistance from a
“near-peer,” someone with a recent familiarity in the kind of questions and struggles the student

is likely facing.

Online Education

It has been suggested that there is a tsunami coming to higher education, brought on by online
learning, and lately, Massive Open Online Courses (MOOC:s) [1]. Discussing the full scope of
the potential and pitfalls of online education is well beyond the scope of this document. Rather,
we simply point out some aspects of online learning that may impact the ways in which

departments deploy these guidelines.

First, online educational materials need not be structured as just full term-long classes. As a
result, it may be possible to teach online mini-courses or modules (less than a term long,
somtimes significantly so), that nevertheless contain coherent portions of the CS2013 Body of
Knowledge. In this way, some departments, especially those with limited faculty resources, may
choose to seek out and leverage online materials offered elsewhere. Blended learning is another
model that has and can be pursued to accrue the benefits of both face-to-face and online learning

in the same course.

Part of the excitement that has been generated by MOOC:s is that they allow for ready scaling to
large numbers of students. There are technological challenges in assessing programming
assignments at scale, and there are those who believe that this represents a significant new

research opportunity for computer science. The quantitative ability that MOOC platforms

-53 -

provide for assessing the effectiveness of how students learn has the potential to transform the

teaching of computer science itself.

While we appreciate the value of scaling course availability, we also note that there are important

aspects of education that are not concerned with course content or the transmission of

information, e.g., pedagogy, scaffolding learning. Then again, while MOOCsS are a powerful

medium for content delivery, we note that it is important to make sure that characteristics of CS

graduates are still developed.

References

[1]
[2]
[3]

[4]

[3]

[6]

[7]

Auletta, K. April 30, 2012. “Get Rich U.”, The New Yorker.
Curtis, K. Computer manpower: Is there a crisis? National Science Foundation, 1982.

Microsoft Corporation. A4 National Talent Strategy: Ideas for Securing U.S.
Competitiveness and Economic Growth. 2012

Reges, S., McGrory, J., and Smith, J. “The effective use of undergraduates to staff large
introductory CS courses,” Proceedings of the Nineteenth SIGCSE Technical Symposium
on Computer Science Education, Atlanta, Georgia, February 1988.

Roberts, E., “Meeting the challenges of rising enrollments,” ACM Inroads, September
2011.

Roberts, E., Lilly, J., and Rollins, B. “Using undergraduates as teaching assistants in
introductory programming courses: an update on the Stanford experience,” Proceedings
of the Twenty-sixth SIGCSE Technical Symposium on Computer Science Education,
Nashville, Tennessee, March 1995.

Wolfman, S., Astrachan, O., Clancy, M., Eiselt, K., Forbes, J., Franklin, D., Kay, D.,
Scott, M., and Wayne, K. "Teaching-Oriented Faculty at Research Universities."
Communications of the ACM. November 2011, v. 54 (11), pp. 35-37.

-54 -

Appendix A: The Body of Knowledge

Algorithms and Complexity (AL)

Algorithms are fundamental to computer science and software engineering. The real-world
performance of any software system depends on: (1) the algorithms chosen and (2) the suitability
and efficiency of the various layers of implementation. Good algorithm design is therefore
crucial for the performance of all software systems. Moreover, the study of algorithms provides
insight into the intrinsic nature of the problem as well as possible solution techniques
independent of programming language, programming paradigm, computer hardware, or any

other implementation aspect.

An important part of computing is the ability to select algorithms appropriate to particular
purposes and to apply them, recognizing the possibility that no suitable algorithm may exist. This
facility relies on understanding the range of algorithms that address an important set of well-
defined problems, recognizing their strengths and weaknesses, and their suitability in particular

contexts. Efficiency is a pervasive theme throughout this area.

This knowledge area defines the central concepts and skills required to design, implement, and
analyze algorithms for solving problems. Algorithms are essential in all advanced areas of
computer science: artificial intelligence, databases, distributed computing, graphics, networking,
operating systems, programming languages, security, and so on. Algorithms that have specific
utility in each of these are listed in the relevant knowledge areas. Cryptography, for example,
appears in the new Knowledge Area on Information Assurance and Security (IAS), while parallel
and distributed algorithms appear the Knowledge Area in Parallel and Distributed Computing
(PD).

As with all knowledge areas, the order of topics and their groupings do not necessarily correlate
to a specific order of presentation. Different programs will teach the topics in different courses

and should do so in the order they believe is most appropriate for their students.

AL. Algorithms and Complexity (19 Core-Tier1 hours, 9 Core-Tier2 hours)

Core-Tier1 Core-Tier2 Includes
hours hours Electives
AL/Basic Analysis 2 2 N
AL/Algorithmic Strategies 5 1 N
AL/Fundamental Data Structures and 9 3 N
Algorithms
AL/Basic Automata, Computability and 3 3 N
Complexity
AL/Advanced Computational Complexity Y
AL/Advanced Automata Theory and Y
Computability
AL/Advanced Data Structures, Algorithms, and Y
Analysis
AL/Basic Analysis

[2 Core-Tier1 hours, 2 Core-Tier2 hours]
Topics:
[Core-Tierl]

Differences among best, expected, and worst case behaviors of an algorithm
Asymptotic analysis of upper and expected complexity bounds

Big O notation: formal definition

Complexity classes, such as constant, logarithmic, linear, quadratic, and exponential
Empirical measurements of performance

Time and space trade-offs in algorithms

[Core-Tier2]

Big O notation: use

Little o, big omega and big theta notation
Recurrence relations

Analysis of iterative and recursive algorithms
Some version of a Master Theorem

Learning Outcomes:

[Core-Tierl]

CEINT3

1. Explain what is meant by “best”, “expected”, and “worst” case behavior of an algorithm. [Familiarity]
In the context of specific algorithms, identify the characteristics of data and/or other conditions or
assumptions that lead to different behaviors. [Assessment]

3. Determine informally the time and space complexity of simple algorithms. [Usage]

- 56 -

4. State the formal definition of big O. [Familiarity]

List and contrast standard complexity classes. [Familiarity]

6. Perform empirical studies to validate hypotheses about runtime stemming from mathematical analysis.
Run algorithms on input of various sizes and compare performance. [Assessment]

7. Give examples that illustrate time-space trade-offs of algorithms. [Familiarity]

b

[Core-Tier2]

8. Use big O notation formally to give asymptotic upper bounds on time and space complexity of algorithms.
[Usage]
. Use big O notation formally to give expected case bounds on time complexity of algorithms. [Usage]
10. Explain the use of big omega, big theta, and little o notation to describe the amount of work done by an
algorithm. [Familiarity]
11. Use recurrence relations to determine the time complexity of recursively defined algorithms. [Usage]
12. Solve elementary recurrence relations, e.g., using some form of a Master Theorem. [Usage]

AL/Algorithmic Strategies
[6 Core-Tier1 hours, 1 Core-Tier2 hours]

An instructor might choose to cover these algorithmic strategies in the context of the algorithms
presented in “Fundamental Data Structures and Algorithms” below. While the total number of

hours for the two knowledge units (18) could be divided differently between them, our sense is

that the 1:2 ratio is reasonable.

Topics:
[Core-Tierl]

Brute-force algorithms

Greedy algorithms

Divide-and-conquer (cross-reference SDF/Algorithms and Design/Problem-solving strategies)
Recursive backtracking

Dynamic Programming

[Core-Tier2]

e Branch-and-bound
e Heuristics
e Reduction: transform-and-conquer

Learning Outcomes:
[Core-Tierl]

1. For each of the strategies (brute-force, greedy, divide-and-conquer, recursive backtracking, and dynamic
programming), identify a practical example to which it would apply. [Familiarity]

2. Use a greedy approach to solve an appropriate problem and determine if the greedy rule chosen leads to an
optimal solution. [Assessment]

3. Use a divide-and-conquer algorithm to solve an appropriate problem. [Usage]

4. Use recursive backtracking to solve a problem such as navigating a maze. [Usage]

5. Use dynamic programming to solve an appropriate problem. [Usage]

6. Determine an appropriate algorithmic approach to a problem. [Assessment]

-57 -

[Core-Tier2]

= 0 0=

Describe various heuristic problem-solving methods. [Familiarity]
Use a heuristic approach to solve an appropriate problem. [Usage]
Describe the trade-offs between brute force and heuristic strategies. [Assessment]

. Describe how a branch-and-bound approach may be used to improve the performance of a heuristic

method. [Familiarity]

AL/Fundamental Data Structures and Algorithms

[9 Core-Tier1 hours, 3 Core-Tier2 hours]

This knowledge unit builds directly on the foundation provided by Software Development
Fundamentals (SDF), particularly the material in SDF/Fundamental Data Structures and
SDF/Algorithms and Design.

Topics:

[Core-Tierl]

Simple numerical algorithms, such as computing the average of a list of numbers, finding the min, max,
and mode in a list, approximating the square root of a number, or finding the greatest common divisor
Sequential and binary search algorithms
Worst case quadratic sorting algorithms (selection, insertion)
Worst or average case O(N log N) sorting algorithms (quicksort, heapsort, mergesort)
Hash tables, including strategies for avoiding and resolving collisions
Binary search trees

o Common operations on binary search trees such as select min, max, insert, delete, iterate over tree
Graphs and graph algorithms

o Representations of graphs (e.g., adjacency list, adjacency matrix)

o Depth- and breadth-first traversals

[Core-Tier2]

Heaps
Graphs and graph algorithms
o Shortest-path algorithms (Dijkstra’s and Floyd’s algorithms)
o Minimum spanning tree (Prim’s and Kruskal’s algorithms)
Pattern matching and string/text algorithms (e.g., substring matching, regular expression matching, longest
common subsequence algorithms)

Learning Outcomes:

[Core-Tierl]

1.

hAlE e

Implement basic numerical algorithms. [Usage]

Implement simple search algorithms and explain the differences in their time complexities. [Assessment]
Be able to implement common quadratic and O(N log N) sorting algorithms. [Usage]

Describe the implementation of hash tables, including collision avoidance and resolution. [Familiarity]
Discuss the runtime and memory efficiency of principal algorithms for sorting, searching, and hashing.
[Familiarity]

Discuss factors other than computational efficiency that influence the choice of algorithms, such as
programming time, maintainability, and the use of application-specific patterns in the input data.
[Familiarity]

Explain how tree balance affects the efficiency of various binary search tree operations. [Familiarity]
Solve problems using fundamental graph algorithms, including depth-first and breadth-first search. [Usage]

- 58 -

9. Demonstrate the ability to evaluate algorithms, to select from a range of possible options, to provide
justification for that selection, and to implement the algorithm in a particular context. [Assessment]

[Core-Tier2]

10. Describe the heap property and the use of heaps as an implementation of priority queues. [Familiarity]

11. Solve problems using graph algorithms, including single-source and all-pairs shortest paths, and at least
one minimum spanning tree algorithm. [Usage]

12. Trace and/or implement a string-matching algorithm. [Usage]

AL/Basic Automata Computability and Complexity

[3 Core-Tier1 hours, 3 Core-Tier2 hours]
Topics:
[Core-Tierl]

¢ Finite-state machines
e Regular expressions
e The halting problem

[Core-Tier2]

e Context-free grammars (cross-reference PL/Syntax Analysis)
e Introduction to the P and NP classes and the P vs. NP problem
e Introduction to the NP-complete class and exemplary NP-complete problems (e.g., SAT, Knapsack)

Learning Outcomes:
[Core-Tierl]

Discuss the concept of finite state machines. [Familiarity]

Design a deterministic finite state machine to accept a specified language. [Usage]
Generate a regular expression to represent a specified language. [Usage]

Explain why the halting problem has no algorithmic solution. [Familiarity]

bl

[Core-Tier2]

5. Design a context-free grammar to represent a specified language. [Usage]
6. Define the classes P and NP. [Familiarity]
7. Explain the significance of NP-completeness. [Familiarity]

AL/Advanced Computational Complexity

[Elective]
Topics:

Review of the classes P and NP; introduce P-space and EXP
Polynomial hierarchy

NP-completeness (Cook’s theorem)

Classic NP-complete problems

Reduction Techniques

-59 -

Learning Outcomes:

1. Define the classes P and NP. (Also appears in AL/Basic Automata, Computability, and Complexity).
[Familiarity]

2. Define the P-space class and its relation to the EXP class. [Familiarity]

3. Explain the significance of NP-completeness. (Also appears in AL/Basic Automata, Computability, and
Complexity). [Familiarity]

4. Provide examples of classic NP-complete problems. [Familiarity]

5. Prove that a problem is NP-complete by reducing a classic known NP-complete problem to it. [Usage]

AL/Advanced Automata Theory and Computability
[Elective]

Topics:

e Sets and languages
o Regular languages
Review of deterministic finite automata (DFAs)
Nondeterministic finite automata (NFAs)
Equivalence of DFAs and NFAs
Review of regular expressions; their equivalence to finite automata
Closure properties
o Proving languages non-regular, via the pumping lemma or alternative means

o Context-free languages

o Push-down automata (PDAs)

o Relationship of PDAs and context-free grammars

o Properties of context-free languages
Turing machines, or an equivalent formal model of universal computation
Nondeterministic Turing machines
Chomsky hierarchy
The Church-Turing thesis
Computability
Rice’s Theorem
Examples of uncomputable functions
e Implications of uncomputability

o 0O O O O

Learning Outcomes:

1. Determine a language’s place in the Chomsky hierarchy (regular, context-free, recursively enumerable).
[Assessment]

2. Convert among equivalently powerful notations for a language, including among DFAs, NFAs, and regular
expressions, and between PDAs and CFGs. [Usage]

3. Explain the Church-Turing thesis and its significance. [Familiarity]

4. Explain Rice’s Theorem and its significance. [Familiarity]

5. Provide examples of uncomputable functions. [Familiarity]

6. Prove that a problem is uncomputable by reducing a classic known uncomputable problem to it. [Usage]

- 60 -

AL/Advanced Data Structures Algorithms and Analysis
[Elective]

Many programs will want their students to have exposure to more advanced algorithms or
methods of analysis. Below is a selection of possible advanced topics that are current and timely
but by no means exhaustive.

Topics:

Balanced trees (e.g., AVL trees, red-black trees, splay trees, treaps)

Graphs (e.g., topological sort, finding strongly connected components, matching)

Advanced data structures (e.g., B-trees, Fibonacci heaps)

String-based data structures and algorithms (e.g., suffix arrays, suffix trees, tries)

Network flows (e.g., max flow [Ford-Fulkerson algorithm], max flow — min cut, maximum bipartite
matching)

Linear Programming (e.g., duality, simplex method, interior point algorithms)

Number-theoretic algorithms (e.g., modular arithmetic, primality testing, integer factorization)
Geometric algorithms (e.g., points, line segments, polygons. [properties, intersections], finding convex hull,
spatial decomposition, collision detection, geometric search/proximity)

Randomized algorithms

Stochastic algorithms

Approximation algorithms

Amortized analysis

Probabilistic analysis

Online algorithms and competitive analysis

Learning Outcomes:

1.

2.

Understand the mapping of real-world problems to algorithmic solutions (e.g., as graph problems, linear
programs, etc.). [Assessment]

Select and apply advanced algorithmic techniques (e.g., randomization, approximation) to solve real
problems. [Assessment]

Select and apply advanced analysis techniques (e.g., amortized, probabilistic, etc.) to algorithms.
[Assessment]

-61 -

Architecture and Organization (AR)

Computing professionals should not regard the computer as just a black box that executes
programs by magic. The knowledge area Architecture and Organization builds on Systems
Fundamentals (SF) to develop a deeper understanding of the hardware environment upon which
all computing is based, and the interface it provides to higher software layers. Students should
acquire an understanding and appreciation of a computer system’s functional components, their
characteristics, performance, and interactions, and, in particular, the challenge of harnessing
parallelism to sustain performance improvements now and into the future. Students need to
understand computer architecture to develop programs that can achieve high performance
through a programmer’s awareness of parallelism and latency. In selecting a system to use,
students should be able to understand the tradeoff among various components, such as CPU

clock speed, cycles per instruction, memory size, and average memory access time.

The learning outcomes specified for these topics correspond primarily to the core and are
intended to support programs that elect to require only the minimum 16 hours of computer
architecture of their students. For programs that want to teach more than the minimum, the same
AR topics can be treated at a more advanced level by implementing a two-course sequence. For
programs that want to cover the elective topics, those topics can be introduced within a two-

course sequence and/or be treated in a more comprehensive way in a third course.

AR. Architecture and Organization (0 Core-Tier1 hours, 16 Core-Tier2 hours)

Core-Tier1 Core-Tier2 Includes
hours Hours Elective
AR/Digital Logic and Digital Systems 3 N
AR/Machine Level Representation of Data 3 N
AR/Assembly Level Machine Organization 6 N
AR/Memory System Organization and 3 N
Architecture
AR/Interfacing and Communication 1 N
AR/Functional Organization Y
AR/Multiprocessing and Alternative Y
Architectures
AR/Performance Enhancements Y

AR/Digital Logic and Digital Systems

[3 Core-Tier2 hours]
Topics:

e Overview and history of computer architecture

Combinational vs. sequential logic/Field programmable gate arrays as a fundamental combinational +
sequential logic building block

Multiple representations/layers of interpretation (hardware is just another layer)

Computer-aided design tools that process hardware and architectural representations

Register transfer notation/Hardware Description Language (Verilog/VHDL)

Physical constraints (gate delays, fan-in, fan-out, energy/power)

Learning outcomes:

1. Describe the progression of computer technology components from vacuum tubes to VLSI, from
mainframe computer architectures to the organization of warehouse-scale computers. [Familiarity]

2. Comprehend the trend of modern computer architectures towards multi-core and that parallelism is inherent
in all hardware systems. [Familiarity]

3. Explain the implications of the “power wall” in terms of further processor performance improvements and
the drive towards harnessing parallelism. [Familiarity]

4. Articulate that there are many equivalent representations of computer functionality, including logical
expressions and gates, and be able to use mathematical expressions to describe the functions of simple
combinational and sequential circuits. [Familiarity]

5. Design the basic building blocks of a computer: arithmetic-logic unit (gate-level), registers (gate-level),
central processing unit (register transfer-level), memory (register transfer-level). [Usage]

6. Use CAD tools for capture, synthesis, and simulation to evaluate simple building blocks (e.g., arithmetic-
logic unit, registers, movement between registers) of a simple computer design. [Usage]

-63 -

7. Evaluate the functional and timing diagram behavior of a simple processor implemented at the logic circuit
level. [Assessment]

AR/Machine Level Representation of Data
[3 Core-Tier2 hours]

Topics:

Bits, bytes, and words

Numeric data representation and number bases

Fixed- and floating-point systems

Signed and twos-complement representations

Representation of non-numeric data (character codes, graphical data)
Representation of records and arrays

Learning outcomes:

1. Explain why everything is data, including instructions, in computers. [Familiarity]
. Explain the reasons for using alternative formats to represent numerical data. [Familiarity]

3. Describe how negative integers are stored in sign-magnitude and twos-complement representations.
[Familiarity]

4. Explain how fixed-length number representations affect accuracy and precision. [Familiarity]

5. Describe the internal representation of non-numeric data, such as characters, strings, records, and arrays.
[Familiarity]

6. Convert numerical data from one format to another. [Usage]

7. Write simple programs at the assembly/machine level for string processing and manipulation. [Usage]

AR/Assembly Level Machine Organization
[6 Core-Tier2 hours]

Topics:

Basic organization of the von Neumann machine

Control unit; instruction fetch, decode, and execution
Instruction sets and types (data manipulation, control, I/0)
Assembly/machine language programming

Instruction formats

Addressing modes

Subroutine call and return mechanisms (cross-reference PL/Language Translation and Execution)
I/0 and interrupts

Heap vs. Static vs. Stack vs. Code segments

Shared memory multiprocessors/multicore organization
Introduction to SIMD vs. MIMD and the Flynn Taxonomy

Learning outcomes:
1. Explain the organization of the classical von Neumann machine and its major functional units. [Familiarity]

2. Describe how an instruction is executed in a classical von Neumann machine, with extensions for threads,
multiprocessor synchronization, and SIMD execution. [Familiarity]

- 64 -

Describe instruction level parallelism and hazards, and how they are managed in typical processor
pipelines. [Familiarity]

Summarize how instructions are represented at both the machine level and in the context of a symbolic
assembler. [Familiarity]

Demonstrate how to map between high-level language patterns into assembly/machine language notations.
[Familiarity]

Explain different instruction formats, such as addresses per instruction and variable length vs. fixed length
formats. [Familiarity]

Explain how subroutine calls are handled at the assembly level. [Familiarity]

Explain the basic concepts of interrupts and I/O operations. [Familiarity]

Write simple assembly language program segments. [Usage]

. Show how fundamental high-level programming constructs are implemented at the machine-language

level. [Usage]

AR/Memory System Organization and Architecture
[3 Core-Tier2 hours]

Cross-reference OS/Memory Management/Virtual Machines

Topics:

Storage systems and their technology

Memory hierarchy: importance of temporal and spatial locality

Main memory organization and operations

Latency, cycle time, bandwidth, and interleaving

Cache memories (address mapping, block size, replacement and store policy)

Multiprocessor cache consistency/Using the memory system for inter-core synchronization/atomic memory
operations

Virtual memory (page table, TLB)

Fault handling and reliability

Error coding, data compression, and data integrity (cross-reference SF/Reliability through Redundancy)

Learning outcomes:

1.

Identify the main types of memory technology (e.g., SRAM, DRAM, Flash, magnetic disk) and their
relative cost and performance. [Familiarity]

Explain the effect of memory latency on running time. [Familiarity]

Describe how the use of memory hierarchy (cache, virtual memory) is used to reduce the effective memory
latency. [Familiarity]

Describe the principles of memory management. [Familiarity]

Explain the workings of a system with virtual memory management. [Familiarity]

Compute Average Memory Access Time under a variety of cache and memory configurations and mixes of
instruction and data references. [Usage]

-65 -

AR/Interfacing and Communication
[1 Core-Tier2 hour]

Cross-reference Operating Systems (OS) Knowledge Area for a discussion of the operating
system view of input/output processing and management. The focus here is on the hardware
mechanisms for supporting device interfacing and processor-to-processor communications.

Topics:

I/O fundamentals: handshaking, buffering, programmed 1/O, interrupt-driven 1/O
Interrupt structures: vectored and prioritized, interrupt acknowledgment

External storage, physical organization, and drives

Buses: bus protocols, arbitration, direct-memory access (DMA)

Introduction to networks: communications networks as another layer of remote access
Multimedia support

RAID architectures

Learning outcomes:

SNk W=

Explain how interrupts are used to implement I/O control and data transfers. [Familiarity]

Identify various types of buses in a computer system. [Familiarity]

Describe data access from a magnetic disk drive. [Familiarity]

Compare common network organizations, such as ethernet/bus, ring, switched vs. routed. [Familiarity]
Identify the cross-layer interfaces needed for multimedia access and presentation, from image fetch from
remote storage, through transport over a communications network, to staging into local memory, and final
presentation to a graphical display. [Familiarity]

Describe the advantages and limitations of RAID architectures. [Familiarity]

AR/Functional Organization
[Elective]

Note: elective for computer scientist; would be core for computer engineering curriculum.

Topics:

Implementation of simple datapaths, including instruction pipelining, hazard detection and resolution
Control unit: hardwired realization vs. microprogrammed realization

Instruction pipelining

Introduction to instruction-level parallelism (ILP)

Learning outcomes:

1.

Compare alternative implementation of datapaths. [Familiarity]

Discuss the concept of control points and the generation of control signals using hardwired or
microprogrammed implementations. [Familiarity]

Explain basic instruction level parallelism using pipelining and the major hazards that may occur.
[Familiarity]

Design and implement a complete processor, including datapath and control. [Usage]

Determine, for a given processor and memory system implementation, the average cycles per instruction.
[Assessment]

- 66 -

AR/Multiprocessing and Alternative Architectures
[Elective]

The view here is on the hardware implementation of SIMD and MIMD architectures.

Cross-reference PD/Parallel Architecture.

Topics:
e Power Law
e Example SIMD and MIMD instruction sets and architectures
e Interconnection networks (hypercube, shuffle-exchange, mesh, crossbar)
e Shared multiprocessor memory systems and memory consistency
e Multiprocessor cache coherence

Learning outcomes:

Discuss the concept of parallel processing beyond the classical von Neumann model. [Familiarity]

Describe alternative parallel architectures such as SIMD and MIMD. [Familiarity]

Explain the concept of interconnection networks and characterize different approaches. [Familiarity]
Discuss the special concerns that multiprocessing systems present with respect to memory management and
describe how these are addressed. [Familiarity]

5. Describe the differences between memory backplane, processor memory interconnect, and remote memory
via networks, their implications for access latency and impact on program performance. [Familiarity]

el

AR/Performance Enhancements
[Elective]

Topics:

Superscalar architecture

Branch prediction, Speculative execution, Out-of-order execution

Prefetching

Vector processors and GPUs

Hardware support for multithreading

Scalability

Alternative architectures, such as VLIW/EPIC, and Accelerators and other kinds of Special-Purpose
Processors

Learning outcomes:

Describe superscalar architectures and their advantages. [Familiarity]

Explain the concept of branch prediction and its utility. [Familiarity]

Characterize the costs and benefits of prefetching. [Familiarity]

Explain speculative execution and identify the conditions that justify it. [Familiarity]

Discuss the performance advantages that multithreading offered in an architecture along with the factors
that make it difficult to derive maximum benefits from this approach. [Familiarity]

6. Describe the relevance of scalability to performance. [Familiarity]

A i e

-67 -

Computational Science (CN)

Computational Science is a field of applied computer science, that is, the application of computer
science to solve problems across a range of disciplines. In the book Introduction to
Computational Science [3], the authors offer the following definition: “the field of computational
science combines computer simulation, scientific visualization, mathematical modeling,
computer programming and data structures, networking, database design, symbolic computation,
and high performance computing with various disciplines.” Computer science, which largely
focuses on the theory, design, and implementation of algorithms for manipulating data and
information, can trace its roots to the earliest devices used to assist people in computation over
four thousand years ago. Various systems were created and used to calculate astronomical
positions. Ada Lovelace’s programming achievement was intended to calculate Bernoulli
numbers. In the late nineteenth century, mechanical calculators became available, and were
immediately put to use by scientists. The needs of scientists and engineers for computation have
long driven research and innovation in computing. As computers increase in their problem-
solving power, computational science has grown in both breadth and importance. It is a
discipline in its own right [2] and is considered to be “one of the five college majors on the rise
[1].” An amazing assortment of sub-fields have arisen under the umbrella of Computational
Science, including computational biology, computational chemistry, computational mechanics,
computational archeology, computational finance, computational sociology and computational

forensics.

Some fundamental concepts of computational science are germane to every computer scientist
(e.g., modeling and simulation), and computational science topics are extremely valuable
components of an undergraduate program in computer science. This area offers exposure to
many valuable ideas and techniques, including precision of numerical representation, error
analysis, numerical techniques, parallel architectures and algorithms, modeling and simulation,
information visualization, software engineering, and optimization. Topics relevant to
computational science include fundamental concepts in program construction (SDF/Fundamental
Programming Concepts), algorithm design (SDF/Algorithms and Design), program testing
(SDF/Development Methods), data representations (AR/Machine Representation of Data), and

basic computer architecture (AR/Memory System Organization and Architecture). At the same

time, students who take courses in this area have an opportunity to apply these techniques in a
wide range of application areas, such as molecular and fluid dynamics, celestial mechanics,
economics, biology, geology, medicine, and social network analysis. Many of the techniques
used in these areas require advanced mathematics such as calculus, differential equations, and
linear algebra. The descriptions here assume that students have acquired the needed

mathematical background elsewhere.

In the computational science community, the terms run, modify, and create are often used to
describe levels of understanding. This chapter follows the conventions of other chapters in this

volume and uses the terms familiarity, usage, and assessment.

References

[1] Fischer, K. and Glenn, D., “5 College Majors on the Rise,” The Chronicle of Higher
Education, August 31, 2009.

[2] President’s Information Technology Advisory Committee, 2005: p. 13.
http://www.nitrd.gov/pitac/reports/20050609 computational/computational.pdf

[3] Shiflet, A. B. and Shiflet, G. W. Introduction to Computational Science: Modeling and
Simulation for the Sciences, Princeton University Press, 2006: p. 3.

CN. Computational Science (1 Core-Tier1 hours, 0 Core-Tier2 hours)

Core-Tier1 hours Core-Tier2 hours | Includes
Electives
CN/Introduction to Modeling and 1 N
Simulation
CN/Modeling and Simulation Y
CN/Processing Y
CN/Interactive Visualization Y
CN/Data, Information, and Y
Knowledge
CN/Numerical Analysis Y

-69 -

CN/Introduction to Modeling and Simulation
[1 Core-Tier1 hours]

Abstraction is a fundamental concept in computer science. A principal approach to computing is
to abstract the real world, create a model that can be simulated on a machine. The roots of
computer science can be traced to this approach, modeling things such as trajectories of artillery
shells and the modeling cryptographic protocols, both of which pushed the development of early
computing systems in the early and mid-1940’s.

Modeling and simulation of real world systems represent essential knowledge for computer
scientists and provide a foundation for computational sciences. Any introduction to modeling
and simulation would either include or presume an introduction to computing. In addition, a
general set of modeling and simulation techniques, data visualization methods, and software
testing and evaluation mechanisms are also important.

Topics:

e Models as abstractions of situations

e Simulations as dynamic modeling

e Simulation techniques and tools, such as physical simulations, human-in-the-loop guided simulations, and
virtual reality

o Foundational approaches to validating models (e.g., comparing a simulation’s output to real data or the
output of another model)

e Presentation of results in a form relevant to the system being modeled

Learning Outcomes:

1. Explain the concept of modeling and the use of abstraction that allows the use of a machine to solve a
problem. [Familiarity]

2. Describe the relationship between modeling and simulation, i.e., thinking of simulation as dynamic
modeling. [Familiarity]

3. Create a simple, formal mathematical model of a real-world situation and use that model in a simulation.
[Usage]

4. Differentiate among the different types of simulations, including physical simulations, human-guided

simulations, and virtual reality. [Familiarity]

Describe several approaches to validating models. [Familiarity]

6. Create a simple display of the results of a simulation. [Usage]

hd

CN/Modeling and Simulation

[Elective]
Topics:

e Purpose of modeling and simulation including optimization; supporting decision making, forecasting,
safety considerations; for training and education

e Tradeoffs including performance, accuracy, validity, and complexity

e The simulation process; identification of key characteristics or behaviors, simplifying assumptions;
validation of outcomes

e Model building: use of mathematical formulas or equations, graphs, constraints; methodologies and
techniques; use of time stepping for dynamic systems

-70 -

Formal models and modeling techniques: mathematical descriptions involving simplifying assumptions
and avoiding detail. Examples of techniques include:
o Monte Carlo methods
Stochastic processes
Queuing theory
Petri nets and colored Petri nets
Graph structures such as directed graphs, trees, networks
Games, game theory, the modeling of things using game theory
Linear programming and its extensions
Dynamic programming
Differential equations: ODE, PDE
Non-linear techniques
o State spaces and transitions
Assessing and evaluating models and simulations in a variety of contexts; verification and validation of
models and simulations
Important application areas including health care and diagnostics, economics and finance, city and urban
planning, science, and engineering
Software in support of simulation and modeling; packages, languages

O O OO O O O OO0 O0

Learning Outcomes:

1.

»

SeeNon

Explain and give examples of the benefits of simulation and modeling in a range of important application
areas. [Familiarity]

Demonstrate the ability to apply the techniques of modeling and simulation to a range of problem areas.
[Usage]

Explain the constructs and concepts of a particular modeling approach. [Familiarity]

Explain the difference between validation and verification of a model; demonstrate the difference with
specific examples'. [Assessment]

Verify and validate the results of a simulation. [Assessment]

Evaluate a simulation, highlighting the benefits and the drawbacks. [Assessment]

Choose an appropriate modeling approach for a given problem or situation. [Assessment]

Compare results from different simulations of the same situation and explain any differences. [Assessment]
Infer the behavior of a system from the results of a simulation of the system. [Assessment]

O Extend or adapt an existing model to a new situation. [Assessment]

! Verification means that the computations of the model are correct. If we claim to compute total time, for example,

the computation actually does that. Validation asks whether the model matches the real situation.

-71 -

CN/Processing
[Elective]

The processing topic area includes numerous topics from other knowledge areas. Specifically,
coverage of processing should include a discussion of hardware architectures, including parallel
systems, memory hierarchies, and interconnections among processors. These are covered in
AR/Interfacing and Communication, AR/Multiprocessing and Alternative Architectures,
AR/Performance Enhancements.

Topics:

e Fundamental programming concepts:

o The concept of an algorithm consisting of a finite number of well-defined steps, each of which
completes in a finite amount of time, as does the entire process.

o Examples of well-known algorithms such as sorting and searching.

o The concept of analysis as understanding what the problem is really asking, how a problem can be
approached using an algorithm, and how information is represented so that a machine can process
it.

o The development or identification of a workflow.

The process of converting an algorithm to machine-executable code.

o Software processes including lifecycle models, requirements, design, implementation, verification
and maintenance.

o Machine representation of data computer arithmetic.

e Numerical methods
o Algorithms for numerically fitting data (e.g., Newton’s method)
o Architectures for numerical computation, including parallel architectures
e Fundamental properties of parallel and distributed computation:
o Bandwidth.
Latency.
Scalability.
Granularity.
Parallelism including task, data, and event parallelism.
Parallel architectures including processor architectures, memory and caching.
Parallel programming paradigms including threading, message passing, event driven techniques,
parallel software architectures, and MapReduce.

o Grid computing.

o The impact of architecture on computational time.

o Total time to science curve for parallelism: continuum of things.

e Computing costs, e.g., the cost of re-computing a value vs. the cost of storing and lookup.

o

O O 0 o0 0 O

Learning Outcomes:

1. Explain the characteristics and defining properties of algorithms and how they relate to machine
processing. [Familiarity]

2. Analyze simple problem statements to identify relevant information and select appropriate processing to
solve the problem. [Assessment]

3. Identify or sketch a workflow for an existing computational process such as the creation of a graph based
on experimental data. [Familiarity]

4. Describe the process of converting an algorithm to machine-executable code. [Familiarity]

5. Summarize the phases of software development and compare several common lifecycle models.
[Familiarity]

6. Explain how data is represented in a machine. Compare representations of integers to floating point
numbers. Describe underflow, overflow, round off, and truncation errors in data representations.
[Familiarity]

-T2 -

7. Apply standard numerical algorithms to solve ODEs and PDEs. Use computing systems to solve systems of

equations. [Usage]

Describe the basic properties of bandwidth, latency, scalability and granularity. [Familiarity]

. Describe the levels of parallelism including task, data, and event parallelism. [Familiarity]

10. Compare and contrast parallel programming paradigms recognizing the strengths and weaknesses of each.
[Assessment]

11. Identify the issues impacting correctness and efficiency of a computation. [Familiarity]

12. Design, code, test and debug programs for a parallel computation. [Usage]

\© %

CN/Interactive Visualization
[Elective]

This sub-area is related to modeling and simulation. Most topics are discussed in detail in other
knowledge areas in this document. There are many ways to present data and information,
including immersion, realism, variable perspectives; haptics and heads-up displays, sonification,
and gesture mapping.

Interactive visualization in general requires understanding of human perception (GV/Basics);
graphics pipelines, geometric representations and data structures (GV/Fundamental Concepts);
2D and 3D rendering, surface and volume rendering (GV/Rendering, GV/Modeling, and
GV/Advanced Rendering); and the use of APIs for developing user interfaces using standard
input components such as menus, sliders, and buttons; and standard output components for data
display, including charts, graphs, tables, and histograms (HCI/GUI Construction, HCI/GUI
Programming).

Topics:
e Principles of data visualization
e Graphing and visualization algorithms
e Image processing techniques
e Scalability concerns

Learning Outcomes:

1. Compare common computer interface mechanisms with respect to ease-of-use, learnability, and cost.
[Assessment]

2. Use standard APIs and tools to create visual displays of data, including graphs, charts, tables, and
histograms. [Usage]

3. Describe several approaches to using a computer as a means for interacting with and processing data.
[Familiarity]

4. Extract useful information from a dataset. [Assessment]

Analyze and select visualization techniques for specific problems. [Assessment]

6. Describe issues related to scaling data analysis from small to large data sets. [Familiarity]

()]

-73 -

CN/Data, Information, and Knowledge
[Elective]

Many topics are discussed in detail in other knowledge areas in this document, specifically
Information Management (IM/Information Management Concepts, IM/Database Systems, and
IM/Data Modeling), Algorithms and Complexity (AL/Basic Analysis, AL/Fundamental Data
Structures and Algorithms), and Software Development Fundamentals (SDF/Fundamental
Programming Concepts, SDF/Development Methods).

Topics:

Content management models, frameworks, systems, design methods (as in IM. Information Management)
Digital representations of content including numbers, text, images (e.g., raster and vector), video (e.g.,
QuickTime, MPEG2, MPEG4), audio (e.g., written score, MIDI, sampled digitized sound track) and
animations; complex/composite/aggregate objects; FRBR
Digital content creation/capture and preservation, including digitization, sampling, compression,
conversion, transformation/translation, migration/emulation, crawling, harvesting
Content structure / management, including digital libraries and static/dynamic/stream aspects for:

o Data: data structures, databases

o Information: document collections, multimedia pools, hyperbases (hypertext, hypermedia),

catalogs, repositories

o Knowledge: ontologies, triple stores, semantic networks, rules
Processing and pattern recognition, including indexing, searching (including: queries and query languages;
central / federated / P2P), retrieving, clustering, classifying/categorizing, analyzing/mining/extracting,
rendering, reporting, handling transactions
User / society support for presentation and interaction, including browse, search, filter, route, visualize,
share, collaborate, rate, annotate, personalize, recommend
Modeling, design, logical and physical implementation, using relevant systems/software

Learning Outcomes:

1.

W

Identify all of the data, information, and knowledge elements and related organizations, for a computational
science application. [Assessment]

Describe how to represent data and information for processing. [Familiarity]

Describe typical user requirements regarding that data, information, and knowledge. [Familiarity]

Select a suitable system or software implementation to manage data, information, and knowledge.
[Assessment]

List and describe the reports, transactions, and other processing needed for a computational science
application. [Familiarity]

Compare and contrast database management, information retrieval, and digital library systems with regard
to handling typical computational science applications. [Assessment]

Design a digital library for some computational science users/societies, with appropriate content and
services. [Usage]

CN/Numerical Analysis
[Elective]

Cross-reference AR/Machine Level Representation of Data

Topics:

Error, stability, convergence, including truncation and round-off
Function approximation including Taylor’s series, interpolation, extrapolation, and regression

-74 -

e Numerical differentiation and integration (Simpson’s Rule, explicit and implicit methods)
e Differential equations (Euler’s Method, finite differences)

Learning Outcomes:

1. Define error, stability, machine precision concepts and the inexactness of computational approximations.
[Familiarity]

2. Implement Taylor series, interpolation, extrapolation, and regression algorithms for approximating

functions. [Usage]

Implement algorithms for differentiation and integration. [Usage]

4. Implement algorithms for solving differential equations. [Usage]

W

=75 -

Discrete Structures (DS)

Discrete structures are foundational material for computer science. By foundational we mean that
relatively few computer scientists will be working primarily on discrete structures, but that many
other areas of computer science require the ability to work with concepts from discrete
structures. Discrete structures include important material from such areas as set theory, logic,

graph theory, and probability theory.

The material in discrete structures is pervasive in the areas of data structures and algorithms but
appears elsewhere in computer science as well. For example, an ability to create and understand
a proof—either a formal symbolic proof or a less formal but still mathematically rigorous
argument—is important in virtually every area of computer science, including (to name just a
few) formal specification, verification, databases, and cryptography. Graph theory concepts are
used in networks, operating systems, and compilers. Set theory concepts are used in software
engineering and in databases. Probability theory is used in intelligent systems, networking, and a

number of computing applications.

Given that discrete structures serves as a foundation for many other areas in computing, it is
worth noting that the boundary between discrete structures and other areas, particularly
Algorithms and Complexity, Software Development Fundamentals, Programming Languages,
and Intelligent Systems, may not always be crisp. Indeed, different institutions may choose to
organize the courses in which they cover this material in very different ways. Some institutions
may cover these topics in one or two focused courses with titles like "discrete structures" or
"discrete mathematics," whereas others may integrate these topics in courses on programming,
algorithms, and/or artificial intelligence. Combinations of these approaches are also prevalent
(e.g., covering many of these topics in a single focused introductory course and covering the

remaining topics in more advanced topical courses).

DS. Discrete Structures (37 Core-Tier1 hours, 4 Core-Tier2 hours)

Core-Tier1 hours | Core-Tier2 hours | Includes Electives
DS/Sets, Relations, and Functions 4 N
DS/Basic Logic 9 N
DS/Proof Techniques 10 1 N
DS/Basics of Counting 5 N
DS/Graphs and Trees 3 1 N
DS/Discrete Probability 6 2 N

DS/Sets, Relations, and Functions

[4 Core-Tier1 hours]
Topics:

e Sets
Venn diagrams
Union, intersection, complement
Cartesian product
Power sets
o Cardinality of finite sets
e Relations
o Reflexivity, symmetry, transitivity
o Equivalence relations, partial orders
e Functions
o Surjections, injections, bijections
o Inverses
o Composition

o O O O

Learning Outcomes:

1. Explain with examples the basic terminology of functions, relations, and sets. [Familiarity]
Perform the operations associated with sets, functions, and relations. [Usage]

3. Relate practical examples to the appropriate set, function, or relation model, and interpret the associated
operations and terminology in context. [Assessment]

=77 -

DS/Basic Logic
[9 Core-Tier1 hours]

Topics:

Propositional logic (cross-reference: Propositional logic is also reviewed in IS/Knowledge Based
Reasoning)
Logical connectives
Truth tables
Normal forms (conjunctive and disjunctive)
Validity of well-formed formula
Propositional inference rules (concepts of modus ponens and modus tollens)
Predicate logic
o Universal and existential quantification
Limitations of propositional and predicate logic (e.g., expressiveness issues)

Learning Outcomes:

1. Convert logical statements from informal language to propositional and predicate logic expressions.
[Usage]

2. Apply formal methods of symbolic propositional and predicate logic, such as calculating validity of
formulae and computing normal forms. [Usage]

3. Use the rules of inference to construct proofs in propositional and predicate logic. [Usage]

4. Describe how symbolic logic can be used to model real-life situations or applications, including those
arising in computing contexts such as software analysis (e.g., program correctness), database queries, and
algorithms. [Usage]

5. Apply formal logic proofs and/or informal, but rigorous, logical reasoning to real problems, such as
predicting the behavior of software or solving problems such as puzzles. [Usage]

6. Describe the strengths and limitations of propositional and predicate logic. [Familiarity]

DS/Proof Techniques

[10 Core-Tier1 hours, 1 Core-Tier2 hour]

Topics:

[Core-Tierl]

Notions of implication, equivalence, converse, inverse, contrapositive, negation, and contradiction
The structure of mathematical proofs

Direct proofs

Disproving by counterexample

Proof by contradiction

Induction over natural numbers

Structural induction

Weak and strong induction (i.e., First and Second Principle of Induction)

Recursive mathematical definitions

[Core-Tier2]

Well orderings

-78 -

Learning Outcomes:
[Core-Tierl]

1. Identify the proof technique used in a given proof. [Familiarity]
Outline the basic structure of each proof technique (direct proof, proof by contradiction, and induction)
described in this unit. [Usage]

3. Apply each of the proof techniques (direct proof, proof by contradiction, and induction) correctly in the
construction of a sound argument. [Usage]

4. Determine which type of proof is best for a given problem. [Assessment]

5. Explain the parallels between ideas of mathematical and/or structural induction to recursion and recursively
defined structures. [Assessment]

6. Explain the relationship between weak and strong induction and give examples of the appropriate use of
each. [Assessment]

[Core-Tier2]

7. State the well-ordering principle and its relationship to mathematical induction. [Familiarity]

DS/Basics of Counting
[6 Core-Tier1 hours]

Topics:

e Counting arguments
o Set cardinality and counting
o Sum and product rule
o Inclusion-exclusion principle
o Arithmetic and geometric progressions
e The pigeonhole principle
e Permutations and combinations
o Basic definitions
o Pascal’s identity
o The binomial theorem
e Solving recurrence relations (cross-reference: AL/Basic Analysis)
o An example of a simple recurrence relation, such as Fibonacci numbers
o Other examples, showing a variety of solutions
e Basic modular arithmetic

Learning Outcomes:

1. Apply counting arguments, including sum and product rules, inclusion-exclusion principle and
arithmetic/geometric progressions. [Usage]

2. Apply the pigeonhole principle in the context of a formal proof. [Usage]

3. Compute permutations and combinations of a set, and interpret the meaning in the context of the particular
application. [Usage]

4. Map real-world applications to appropriate counting formalisms, such as determining the number of ways

to arrange people around a table, subject to constraints on the seating arrangement, or the number of ways

to determine certain hands in cards (e.g., a full house). [Usage]

Solve a variety of basic recurrence relations. [Usage]

Analyze a problem to determine underlying recurrence relations. [Usage]

7. Perform computations involving modular arithmetic. [Usage]

ARG

-79 -

DS/Graphs and Trees
[3 Core-Tier1 hours, 1 Core-Tier2 hour]

Cross-reference: AL/Fundamental Data Structures and Algorithms, especially with relation to
graph traversal strategies.

Topics:
[Core-Tierl]

e Trees
o Properties
o Traversal strategies
e Undirected graphs
e Directed graphs
e Weighted graphs

[Core-Tier2]

e Spanning trees/forests
e Graph isomorphism

Learning Outcomes:
[Core-Tierl]

1. Illustrate by example the basic terminology of graph theory, as well as some of the properties and special
cases of each type of graph/tree. [Familiarity]

2. Demonstrate different traversal methods for trees and graphs, including pre-, post-, and in-order traversal of
trees. [Usage]

3. Model a variety of real-world problems in computer science using appropriate forms of graphs and trees,
such as representing a network topology or the organization of a hierarchical file system. [Usage]

4. Show how concepts from graphs and trees appear in data structures, algorithms, proof techniques
(structural induction), and counting. [Usage]

[Core-Tier2]

5. Explain how to construct a spanning tree of a graph. [Usage]
6. Determine if two graphs are isomorphic. [Usage]

- 80 -

DS/Discrete Probability
[6 Core-Tier1 hours, 2 Core-Tier2 hour]

Topics:

[Core-Tierl]

Finite probability space, events

Axioms of probability and probability measures
Conditional probability, Bayes’ theorem
Independence

Integer random variables (Bernoulli, binomial)
Expectation, including Linearity of Expectation

[Core-Tier2]

Variance
Conditional Independence

Learning Outcomes:

[Core-Tierl]

1.

wk e

Calculate probabilities of events and expectations of random variables for elementary problems such as
games of chance. [Usage]

Differentiate between dependent and independent events. [Usage]

Identify a case of the binomial distribution and compute a probability using that distribution. [Usage]
Apply Bayes theorem to determine conditional probabilities in a problem. [Usage]

Apply the tools of probability to solve problems such as the average case analysis of algorithms or
analyzing hashing. [Usage]

[Core-Tier2]

6.
7.

Compute the variance for a given probability distribution. [Usage]
Explain how events that are independent can be conditionally dependent (and vice-versa). Identify real-
world examples of such cases. [Usage]

-81 -

Graphics and Visualization (GV)

Computer graphics is the term commonly used to describe the computer generation and
manipulation of images. It is the science of enabling visual communication through computation.
Its uses include cartoons, film special effects, video games, medical imaging, engineering, as
well as scientific, information, and knowledge visualization. Traditionally, graphics at the
undergraduate level has focused on rendering, linear algebra, and phenomenological approaches.
More recently, the focus has begun to include physics, numerical integration, scalability, and
special-purpose hardware. In order for students to become adept at the use and generation of
computer graphics, many implementation-specific issues must be addressed, such as file formats,
hardware interfaces, and application program interfaces. These issues change rapidly, and the
description that follows attempts to avoid being overly prescriptive about them. The area

encompassed by Graphics and Visualization is divided into several interrelated fields:

e Fundamentals: Computer graphics depends on an understanding of how humans use
vision to perceive information and how information can be rendered on a display device.
Every computer scientist should have some understanding of where and how graphics can
be appropriately applied as well as the fundamental processes involved in display

rendering.

e Modeling: Information to be displayed must be encoded in computer memory in some

form, often in the form of a mathematical specification of shape and form.
e Rendering: Rendering is the process of displaying the information contained in a model.

e Animation: Animation is the rendering in a manner that makes images appear to move

and the synthesis or acquisition of the time variations of models.

e Visualization: The field of visualization seeks to determine and present underlying
correlated structures and relationships in data sets from a wide variety of application
areas. The prime objective of the presentation should be to communicate the information

in a dataset so as to enhance understanding

e Computational Geometry: Computational Geometry is the study of algorithms that are

stated in terms of geometry.

Graphics and Visualization is related to machine vision and image processing, which are found
in the Intelligent Systems (IS) KA, and algorithms such as computational geometry, which are
found in the Algorithms and Complexity (AL) KA. Topics in virtual reality are found in the
Human-Computer Interaction (HCI) KA.

This description assumes students are familiar with fundamental concepts of data representation,

abstraction, and program implementation.

GV. Graphics and Visualization (2 Core-Tier1 hours, 1 Core-Tier2 hours)

Core-Tier1 hours | Core-Tier2 hours | Includes

Electives
GV/Fundamental Concepts 2 1 Y
GV/Basic Rendering Y
GV/Geometric Modeling Y
GV/Advanced Rendering Y
GV/Computer Animation Y
GV/\Visualization Y

-83 -

GV/Fundamental Concepts
[2 Core-Tier1 and 1 Core-Tier2 hours]

For nearly every computer scientist and software developer, an understanding of how humans
interact with machines is essential. While these topics may be covered in a standard
undergraduate graphics course, they may also be covered in introductory computer science and
programming courses. Part of our motivation for including immediate and retained modes is that
these modes are analogous to polling vs. event driven programming. This is a fundamental
question in computer science: Is there a button object, or is there just the display of a button on
the screen? Note that most of the outcomes in this section are at the knowledge level, and many
of these topics are revisited in greater depth in later sections.

Topics:
[Core-Tierl]

e Media applications including user interfaces, audio and video editing, game engines, cad, visualization,
virtual reality

e Digitization of analog data, resolution, and the limits of human perception, e.g., pixels for visual display,
dots for laser printers, and samples for audio (HCI/Foundations)

e Use of standard APIs for the construction of Uls and display of standard media formats (see HCI/GUI
construction)

e Standard media formats, including lossless and lossy formats

[Core-Tier2]

e Additive and subtractive color models (CMYK and RGB) and why these provide a range of colors
Tradeoffs between storing data and re-computing data as embodied by vector and raster representations of
images

e Animation as a sequence of still images

[Elective]

e Double buffering

Learning Outcomes:
[Core-Tierl]

1. Identify common uses of digital presentation to humans (e.g., computer graphics, sound). [Familiarity]
Explain in general terms how analog signals can be reasonably represented by discrete samples, for
example, how images can be represented by pixels. [Familiarity]

3. Explain how the limits of human perception affect choices about the digital representation of analog
signals. [Familiarity]

4. Construct a simple user interface using a standard API. [Usage]

5. Describe the differences between lossy and lossless image compression techniques, for example as
reflected in common graphics image file formats such as JPG, PNG, MP3, MP4, and GIF. [Familiarity]

[Core-Tier2]

6. Describe color models and their use in graphics display devices. [Familiarity]
7. Describe the tradeoffs between storing information vs. storing enough information to reproduce the
information, as in the difference between vector and raster rendering. [Familiarity]

-84 -

[Elective]

8. Describe the basic process of producing continuous motion from a sequence of discrete frames (sometimes
called “flicker fusion”). [Familiarity]
9. Describe how double-buffering can remove flicker from animation. [Familiarity]

GV/Basic Rendering
[Elective]

This section describes basic rendering and fundamental graphics techniques that nearly every
undergraduate course in graphics will cover and that are essential for further study in graphics.
Sampling and anti-aliasing are related to the effect of digitization and appear in other areas of
computing, for example, in audio sampling.

Topics:

Rendering in nature, e.g., the emission and scattering of light and its relation to numerical integration
Forward and backward rendering (i.e., ray-casting and rasterization)

Polygonal representation

Basic radiometry, similar triangles, and projection model

Affine and coordinate system transformations

Ray tracing

Visibility and occlusion, including solutions to this problem such as depth buffering, Painter’s algorithm,
and ray tracing

The forward and backward rendering equation

Simple triangle rasterization

Rendering with a shader-based API

Texture mapping, including minification and magnification (e.g., trilinear MIP-mapping)
Application of spatial data structures to rendering

Sampling and anti-aliasing

Scene graphs and the graphics pipeline

Learning Outcomes:

1. Discuss the light transport problem and its relation to numerical integration i.e., light is emitted, scatters
around the scene, and is measured by the eye. [Familiarity]

2. Describe the basic graphics pipeline and how forward and backward rendering factor in this. [Familiarity]

3. Create a program to display 3D models of simple graphics images. [Usage]

4. Derive linear perspective from similar triangles by converting points (X, y, z) to points (x/z, y/z, 1). [Usage]

5. Obtain 2-dimensional and 3-dimensional points by applying affine transformations. [Usage]

6. Apply 3-dimensional coordinate system and the changes required to extend 2D transformation operations to
handle transformations in 3D. [Usage]

7. Contrast forward and backward rendering. [Assessment]

8. Explain the concept and applications of texture mapping, sampling, and anti-aliasing. [Familiarity]

9. Explain the ray tracing/rasterization duality for the visibility problem. [Familiarity]

10. Implement simple procedures that perform transformation and clipping operations on simple 2-dimensional

images. [Usage]

11. Implement a simple real-time renderer using a rasterization API (e.g., OpenGL) using vertex buffers and
shaders. [Usage]

12. Compare and contrast the different rendering techniques. [Assessment]

13. Compute space requirements based on resolution and color coding. [Assessment]

14. Compute time requirements based on refresh rates, rasterization techniques. [Assessment]

-85 -

GV/Geometric Modeling

[Elective]
Topics:
e Basic geometric operations such as intersection calculation and proximity tests
e Volumes, voxels, and point-based representations
e Parametric polynomial curves and surfaces
e Implicit representation of curves and surfaces
e Approximation techniques such as polynomial curves, Bezier curves, spline curves and surfaces, and non-

uniform rational basis (NURB) spines, and level set method

Surface representation techniques including tessellation, mesh representation, mesh fairing, and mesh
generation techniques such as Delaunay triangulation, marching cubes

Spatial subdivision techniques

Procedural models such as fractals, generative modeling, and L-systems

Graftals, cross referenced with programming languages (grammars to generated pictures)
Elastically deformable and freeform deformable models

Subdivision surfaces

Multiresolution modeling

Reconstruction

Constructive Solid Geometry (CSQG) representation

Learning Outcomes:

Novnhkwb e~

Represent curves and surfaces using both implicit and parametric forms. [Usage]

Create simple polyhedral models by surface tessellation. [Usage]

Generate a mesh representation from an implicit surface. [Usage]

Generate a fractal model or terrain using a procedural method. [Usage]

Generate a mesh from data points acquired with a laser scanner. [Usage]

Construct CSG models from simple primitives, such as cubes and quadric surfaces. [Usage]
Contrast modeling approaches with respect to space and time complexity and quality of image.
[Assessment]

GV/Advanced Rendering
[Elective]

Topics:

Solutions and approximations to the rendering equation, for example:
o Distribution ray tracing and path tracing
o Photon mapping
o Bidirectional path tracing
o Reyes (micropolygon) rendering
o Metropolis light transport
Time (motion blur), lens position (focus), and continuous frequency (color) and their impact on rendering
Shadow mapping
Occlusion culling
Bidirectional Scattering Distribution function (BSDF) theory and microfacets
Subsurface scattering
Area light sources
Hierarchical depth buffering
The Light Field, image-based rendering

- 86 -

Non-photorealistic rendering
GPU architecture
Human visual systems including adaptation to light, sensitivity to noise, and flicker fusion

Learning Outcomes:

bl e

SN

Demonstrate how an algorithm estimates a solution to the rendering equation. [Assessment]

Prove the properties of a rendering algorithm, e.g., complete, consistent, and unbiased. [Assessment]
Analyze the bandwidth and computation demands of a simple algorithm. [Assessment]

Implement a non-trivial shading algorithm (e.g., toon shading, cascaded shadow maps) under a rasterization
API. [Usage]

Discuss how a particular artistic technique might be implemented in a renderer. [Familiarity]

Explain how to recognize the graphics techniques used to create a particular image. [Familiarity]
Implement any of the specified graphics techniques using a primitive graphics system at the individual
pixel level. [Usage]

Implement a ray tracer for scenes using a simple (e.g., Phong model) BRDF plus reflection and refraction.
[Usage]

GV/Computer Animation

[Elective]
Topics:
e Forward and inverse kinematics
e Collision detection and response
e Procedural animation using noise, rules (boids/crowds), and particle systems
e Skinning algorithms
e Physics based motions including rigid body dynamics, physical particle systems, mass-spring networks for

cloth and flesh and hair

Key-frame animation

Splines

Data structures for rotations, such as quaternions
Camera animation

Motion capture

Learning Outcomes:

1.

&

Compute the location and orientation of model parts using a forward kinematic approach. [Usage]
Compute the orientation of articulated parts of a model from a location and orientation using an inverse
kinematic approach. [Usage]

Describe the tradeoffs in different representations of rotations. [Assessment]

Implement the spline interpolation method for producing in-between positions and orientations. [Usage]
Implement algorithms for physical modeling of particle dynamics using simple Newtonian mechanics, for
example Witkin & Kass, snakes and worms, symplectic Euler, Stormer/Verlet, or midpoint Euler methods.
[Usage]

Discuss the basic ideas behind some methods for fluid dynamics for modeling ballistic trajectories, for
example for splashes, dust, fire, or smoke. [Familiarity]

Use common animation software to construct simple organic forms using metaball and skeleton. [Usage]

-87 -

GV/Visualization
[Elective]

Visualization has strong ties to the Human-Computer Interaction (HCI) knowledge area as well
as Computational Science (CN). Readers should refer to the HCI and CN KAs for additional
topics related to user population and interface evaluations.

Topics:

e Visualization of 2D/3D scalar fields: color mapping, isosurfaces
e Direct volume data rendering: ray-casting, transfer functions, segmentation
e Visualization of:
o Vector fields and flow data
o Time-varying data
o High-dimensional data: dimension reduction, parallel coordinates,
o Non-spatial data: multi-variate, tree/graph structured, text
Perceptual and cognitive foundations that drive visual abstractions
Visualization design
Evaluation of visualization methods
Applications of visualization

Learning Outcomes:

1. Describe the basic algorithms for scalar and vector visualization. [Familiarity]
. Describe the tradeoffs of visualization algorithms in terms of accuracy and performance. [Assessment]

3. Propose a suitable visualization design for a particular combination of data characteristics and application
tasks. [Assessment]

4. Analyze the effectiveness of a given visualization for a particular task. [Assessment]

Design a process to evaluate the utility of a visualization algorithm or system. [Assessment]

6. Recognize a variety of applications of visualization including representations of scientific, medical, and
mathematical data; flow visualization; and spatial analysis. [Familiarity]

W

- 88 -

Human-Computer Interaction (HCI)

Human-computer interaction (HCI) is concerned with designing interactions between human
activities and the computational systems that support them, and with constructing interfaces to

afford those interactions.

Interaction between users and computational artefacts occurs at an interface that includes both
software and hardware. Thus interface design impacts the software life-cycle in that it should
occur early; the design and implementation of core functionality can influence the user interface

— for better or worse.

Because it deals with people as well as computational systems, as a knowledge area HCI
demands the consideration of cultural, social, organizational, cognitive and perceptual issues.
Consequently it draws on a variety of disciplinary traditions, including psychology, ergonomics,

computer science, graphic and product design, anthropology and engineering.

HCI: Human Computer Interaction (4 Core-Tier1 hours, 4 Core-Tier2 hours)

Core-Tier1 Core-Tier2 Includes
hours hours Electives

4

HCI/Foundations 4

HCI/Designing Interaction 4

HCIl/Programming Interactive Systems

HCIl/User-Centered Design & Testing

HCI/New Interactive Technologies

HCl/Collaboration & Communication

HCI/Statistical Methods for HCI

HCI/Human Factors & Security

HCI/Design-Oriented HCI

<|=<|=<|=<|[=<|=<|=<]|=<]|=z

HCI/Mixed, Augmented and Virtual
Reality

HCIl/Foundations
[4 Core-Tier1 hours]

Motivation: For end-users, the interface is the system. So design in this domain must be
interaction-focused and human-centered. Students need a different repertoire of techniques to
address this than is provided elsewhere in the curriculum.

Topics:

e Contexts for HCI (anything with a user interface, e.g., webpage, business applications, mobile applications,
and games)

Processes for user-centered development, e.g., early focus on users, empirical testing, iterative design
Different measures for evaluation, e.g., utility, efficiency, learnability, user satisfaction

Usability heuristics and the principles of usability testing

Physical capabilities that inform interaction design, e.g., color perception, ergonomics

Cognitive models that inform interaction design, e.g., attention, perception and recognition, movement, and
memory; gulfs of expectation and execution

Social models that inform interaction design, e.g., culture, communication, networks and organizations
Principles of good design and good designers; engineering tradeoffs

Accessibility, e.g., interfaces for differently-abled populations (e.g., blind, motion-impaired)

Interfaces for differently-aged population groups (e.g., children, 80+)

Learning Outcomes:

1. Discuss why human-centered software development is important. [Familiarity]
Summarize the basic precepts of psychological and social interaction. [Familiarity]

3. Develop and use a conceptual vocabulary for analyzing human interaction with software: affordance,
conceptual model, feedback, and so forth. [Usage]

4. Define a user-centered design process that explicitly takes account of the fact that the user is not like the
developer or their acquaintances. [Usage]

5. Create and conduct a simple usability test for an existing software application. [Assessment]

HCIl/Designing Interaction
[4 Core-Tier2 hours]

Motivation: CS students need a minimal set of well-established methods and tools to bring to
interface construction.

Topics:
e Principles of graphical user interfaces (GUIs)
e Elements of visual design (layout, color, fonts, labeling)
e Task analysis, including qualitative aspects of generating task analytic models
o Low-fidelity (paper) prototyping
e Quantitative evaluation techniques, e.g., keystroke-level evaluation
e Help and documentation
e Handling human/system failure
e User interface standards

-90 -

Learning Outcomes:

1. For an identified user group, undertake and document an analysis of their needs. [Assessment]
Create a simple application, together with help and documentation, that supports a graphical user
interface. [Usage]

3. Conduct a quantitative evaluation and discuss/report the results. [Usage]

4. Discuss at least one national or international user interface design standard. [Familiarity]

HCI/Programming Interactive Systems
[Elective]

Motivation: To take a user-experience-centered view of software development and then cover
approaches and technologies to make that happen.

Topics:

e Software Architecture Patterns, e.g., Model-View controller; command objects, online, offline (cross
reference PL/Event Driven and Reactive Programming, where MVC is used in the context of event-driven
programming)

Interaction Design Patterns: visual hierarchy, navigational distance

Event management and user interaction

Geometry management (cross-reference GV/Geometric Modelling)

Choosing interaction styles and interaction techniques

Presenting information: navigation, representation, manipulation

Interface animation techniques (e.g., scene graphs)

Widget classes and libraries

Modern GUI libraries (e.g. i0S, Android, JavaFX) GUI builders and UI programming environments (cross-
reference PBD/Mobile Platforms)

Declarative Interface Specification: Stylesheets and DOMs

Data-driven applications (database-backed web pages)

Cross-platform design

Design for resource-constrained devices (e.g. small, mobile devices)

Learning Outcomes:

Explain the importance of Model-View controller to interface programming. [Familiarity]

Create an application with a modern graphical user interface. [Usage]

Identify commonalities and differences in Uls across different platforms. [Familiarity]

Explain and use GUI programming concepts: event handling, constraint-based layout management, etc.
[Familiarity]

el

-91 -

HCIl/User-Centered Design and Testing
[Elective]

Motivation: An exploration of techniques to ensure that end-users are fully considered at all
stages of the design process, from inception to implementation.

Topics:

Approaches to, and characteristics of, the design process

Functionality and usability requirements (cross-reference to SE/Requirements Engineering)
Techniques for gathering requirements, e.g., interviews, surveys, ethnographic and contextual enquiry
Techniques and tools for the analysis and presentation of requirements, e.g., reports, personas
Prototyping techniques and tools, e.g., sketching, storyboards, low-fidelity prototyping, wireframes
Evaluation without users, using both qualitative and quantitative techniques, e.g., walkthroughs, GOMS,
expert-based analysis, heuristics, guidelines, and standards

Evaluation with users, e.g., observation, think-aloud, interview, survey, experiment

Challenges to effective evaluation, e.g., sampling, generalization

Reporting the results of evaluations

Internationalization, designing for users from other cultures, cross-cultural

Learning Outcomes:

MRS

Explain how user-centered design complements other software process models. [Familiarity]
Use lo-fi (low fidelity) prototyping techniques to gather, and report, user responses. [Usage]
Choose appropriate methods to support the development of a specific UIL. [Assessment]

Use a variety of techniques to evaluate a given Ul [Assessment]

Compare the constraints and benefits of different evaluative methods. [Assessment]

HCI/New Interactive Technologies
[Elective]

Motivation: As technologies evolve, new interaction styles are made possible. This knowledge
unit should be considered extensible, to track emergent technology.

Topics:

Choosing interaction styles and interaction techniques

Representing information to users: navigation, representation, manipulation

Approaches to design, implementation and evaluation of non-mouse interaction
o Touch and multi-touch interfaces

Shared, embodied, and large interfaces

New input modalities (such as sensor and location data)

New Windows, e.g., iPhone, Android

Speech recognition and natural language processing (cross reference IS/Natural Language

Processing)

Wearable and tangible interfaces

Persuasive interaction and emotion

Ubiquitous and context-aware interaction technologies (Ubicomp)

Bayesian inference (e.g. predictive text, guided pointing)

Ambient/peripheral display and interaction

o O O O

O O O O O

-9) -

Learning Outcomes:

1. Describe when non-mouse interfaces are appropriate. [Familiarity]
2. Understand the interaction possibilities beyond mouse-and-pointer interfaces. [Familiarity]
3. Discuss the advantages (and disadvantages) of non-mouse interfaces. [Assessment]

HCI/Collaboration and Communication
[Elective]

Motivation: Computer interfaces not only support users in achieving their individual goals but
also in their interaction with others, whether that is task-focused (work or gaming) or task-
unfocused (social networking).

Topics:

Asynchronous group communication, e.g., e-mail, forums, social networks

Synchronous group communication, e.g., chat rooms, conferencing, online games

Social media, social computing, and social network analysis

Online collaboration, 'smart' spaces, and social coordination aspects of workflow technologies
Online communities

Software characters and intelligent agents, virtual worlds and avatars (cross-reference IS/Agents)
Social psychology

Learning Outcomes:

Describe the difference between synchronous and asynchronous communication. [Familiarity]
Compare the HCI issues in individual interaction with group interaction. [Assessment]
Discuss several issues of social concern raised by collaborative software. [Familiarity]
Discuss the HCI issues in software that embodies human intention. [Familiarity]

bl

HCI/Statistical Methods for HCI
[Elective]

Motivation: Much HCI work depends on the proper use, understanding and application of
statistics. This knowledge is often held by students who join the field from psychology, but less
common in students with a CS background.

Topics:

t-tests

ANOVA

Randomization (non-parametric) testing, within vs. between-subjects design
Calculating effect size

Exploratory data analysis

Presenting statistical data

Combining qualitative and quantitative results

-03 .

Learning Outcomes:

1. Explain basic statistical concepts and their areas of application. [Familiarity]

Extract and articulate the statistical arguments used in papers that quantitatively report user studies.
[Usage]

Design a user study that will yield quantitative results. [Usage]

4. Conduct and report on a study that utilizes both qualitative and quantitative evaluation. [Usage]

W

HCI/Human Factors and Security
[Elective]

Motivation: Effective interface design requires basic knowledge of security psychology. Many
attacks do not have a technological basis, but exploit human propensities and vulnerabilities.
“Only amateurs attack machines; professionals target people” (Bruce Schneier,
https://www.schneier.com/blog/archives/2013/03/phishing_has_go.h.)

Topics:

Applied psychology and security policies

Security economics

Regulatory environments — responsibility, liability and self-determination

Organizational vulnerabilities and threats

Usability design and security

Pretext, impersonation and fraud, e.g., phishing and spear phishing (cross-reference IAS/Threats and
Attacks)

Trust, privacy and deception

e Biometric authentication (camera, voice)

e Identity management

Learning Outcomes:

1. Explain the concepts of phishing and spear phishing, and how to recognize them. [Familiarity]
Describe the issues of trust in interface design with an example of a high and low trust system.
[Assessment]

3. Design a user interface for a security mechanism. [Assessment]

Explain the concept of identity management and its importance. [Familiarity]

5. Analyze a security policy and/or procedures to show where they consider, or fail to consider, human
factors. [Usage]

&

-94 -

HCIl/Design-Oriented HCI
[Elective]

Motivation: Some curricula will want to emphasize an understanding of the norms and values of
HCI work itself as emerging from, and deployed within specific historical, disciplinary and
cultural contexts.

Topics:

o Intellectual styles and perspectives to technology and its interfaces
e Consideration of HCI as a design discipline

o Sketching

o Participatory design
e C(ritically reflective HCI

o Critical technical practice

o Technologies for political activism

o Philosophy of user experience

o Ethnography and ethnomethodology
e Indicative domains of application

o Sustainability

o Arts-informed computing

Learning Outcomes:

1. Explain what is meant by “HCI is a design-oriented discipline”. [Familiarity]
2. Detail the processes of design appropriate to specific design orientations. [Familiarity]
3. Apply a variety of design methods to a given problem. [Usage]

HCI/Mixed, Augmented and Virtual Reality
[Elective]

Motivation: A detailed consideration of the interface components required for the creation and
development of immersive environments, especially games.

Topics:

e Output
o Sound
o Stereoscopic display
o Force feedback simulation, haptic devices
e User input
o Viewer and object tracking
o Pose and gesture recognition
o Accelerometers
o Fiducial markers
o User interface issues
e Physical modelling and rendering
o Physical simulation: collision detection & response, animation
o Visibility computation
o Time-critical rendering, multiple levels of details (LOD)
e System architectures

-905 -

Game engines

Mobile augmented reality

Flight simulators

CAVEs

Medical imaging

Networking
o p2p, client-server, dead reckoning, encryption, synchronization
o Distributed collaboration

o 0 O O O

Learning Outcomes:

1.

w

Describe the optical model realized by a computer graphics system to synthesize stereoscopic view.
[Familiarity]

Describe the principles of different viewer tracking technologies. [Familiarity]

Describe the differences between geometry- and image-based virtual reality. [Familiarity]

Describe the issues of user action synchronization and data consistency in a networked environment.
[Familiarity]

Determine the basic requirements on interface, hardware, and software configurations of a VR system for a
specified application. [Usage]

Describe several possible uses for games engines, including their potential and their limitations.
[Familiarity]

-906 -

Information Assurance and Security (IAS)

In CS2013, the Information Assurance and Security KA is added to the Body of Knowledge in
recognition of the world’s reliance on information technology and its critical role in computer
science education. Information assurance and security as a domain is the set of controls and
processes both technical and policy intended to protect and defend information and information
systems by ensuring their confidentiality, integrity, and availability, and by providing for
authentication and non-repudiation. The concept of assurance also carries an attestation that
current and past processes and data are valid. Both assurance and security concepts are needed
to ensure a complete perspective. Information assurance and security education, then, includes
all efforts to prepare a workforce with the needed knowledge, skills, and abilities to protect our
information systems and attest to the assurance of the past and current state of processes and
data. The importance of security concepts and topics has emerged as a core requirement in the
Computer Science discipline, much like the importance of performance concepts has been for

many years.

The Information Assurance and Security KA is unique among the set of KAs presented here
given the manner in which the topics are pervasive throughout other Knowledge Areas. The
topics germane to only IAS are presented in the IAS section; other topics are noted and cross-
referenced in the IAS KA. In the IAS KA the many topics are represented with only 9 hours of
Core-Tierl and Tier2 coverage. This is balanced with the level of mastery primarily at the
familiarity level and the more indepth coverage distributed in the referenced KAs where they are
applied. The broad application of the IAS KA concepts (63.5 hours) across all other KAs

provides the depth of coverage and mastery for an undergraduate computer science student.

The IAS KA is shown in two groups: (1) concepts where the depth is unique to Information
Assurance and Security and (2) IAS topics that are integrated into other KAs that reflect
naturally implied or specified topics with a strong role in security concepts and topics. For

completeness, the total distribution of hours is summarized in the table below.

IAS. Information Assurance and Security “Core” and Distributed

Core-Tier1 hours Core-Tier2 hours | Elective Topics
IAS 3 6 Y
IAS distributed in other KA’s 32 31.5 Y

IAS. Information Assurance and Security (3 Core-Tier1 hours, 6 Core-Tier2 hours)

Core-Tier1 hours Core-Tier2 hours Includes Electives
IAS/Foundational 1 N
Concepts in Security
IAS/Principles of Secure | 1 1 N
Design
IAS/Defensive 1 1 Y
Programming
IAS/Threats and Attacks 1 N
IAS/Network Security 2 Y
IAS/Cryptography 1 N
IAS/Web Security Y
IAS/Platform Security Y
IAS/Security Policy and Y
Governance
IAS/Digital Forensics Y
IAS/Secure Software Y
Engineering

The following table shows the distribution of hours throughout all other KA’s in CS2013 where
security is appropriately addressed either as fundamental to the KU topics (for example,
OS/Security or Protection or SE/Software Construction) or as a supportive use case for the topic
(for example, HCI/Foundations or NC/Routing and Forwarding or SP/Intellectual Property). The
hours represent the set of hours in that KA/KU where the topics are particularly relevant to

Information Assurance and Security.

-08 -

IAS. Information Assurance and Security (distributed) (32 Core-Tier1 hours, 31.5
Core-Tier2 hours)

Knowledge Area and Core-Tier1 hours Core-Tier2 hours Includes Electives
Topic
AR/Assembly Level 1

Machine Organization

AR/Memory System 0.5
Organization and
Architecture

AR/Multiprocessing and Y
Alternative
Architectures

HCI/Foundations 1

HCIl/Human Factors and Y
Security

IM/Information 0.5 0.5
Management Concepts

IM/Transaction Y
Processing

IM/Distributed Y
Databases

IS/Reasoning Under Y
Uncertainty

NC/Introduction 1

NC/Networked 0.5
Applications

NC/Reliable Data 1.5
Delivery

NC/Routing and 1
Forwarding

NC/Local Area Networks 1

NC/Resource Allocation 0.5

NC/Mobility 1

0OS/Overview of OS 2

OS/0S Principles 1

-99 .

OS/Concurrency

1.5

0S/Scheduling and
Dispatch

OS/Memory
Management

OS/Security and
Protection

OS/Virtual Machines

OS/Device Management

OS/File Systems

OS/Real Time and
Embedded Systems

OS/Fault Tolerance

OS/System
Performance Evaluation

PBD/Web Platforms

PBD/Mobile Platforms

PBD/Industrial
Platforms

PD/Parallelism
Fundamentals

PD/Parallel
Decomposition

0.5

PD/Communication and
Coordination

PD/Parallel Architecture

0.5

PD/Distributed Systems

PD/Cloud Computing

PL/Object-Oriented
Programming

PL/Functional
Programming

- 100 -

PL/Basic Type Systems

0.5

PL/Language
Translation and
Execution

PL/Runtime Systems

PL/Static Analysis

PL/Concurrency and
Parallelism

PL/Type Systems

SDF/Fundamental
Programming Concepts

SDF/Development
Methods

SE/Software Processes

SE/Software Project
Management

SE/Tools and
Environments

SE/Software
Construction

SE/Software Verification
and Validation

SE/Software Evolution

1.5

SE/Software Reliability

SF/Cross-Layer
Communications

SF/Parallelism

SF/Resource Allocation
and Scheduling

0.5

SF/Virtualization and
Isolation

SF/Reliability through
Redundancy

- 101 -

SP/Social Context 0.5

SP/Analytical Tools 1

SP/Professional Ethics 1 0.5

SP/Intellectual Property | 2 Y
SP/Privacy and Civil 0.5

Liberties

SP/Security Policies, Y
Laws and Computer

Crimes

IAS/Foundational Concepts in Security
[1 Core-Tier1 hour]

Topics:

CIA (Confidentiality, Integrity, Availability)

Concepts of risk, threats, vulnerabilities, and attack vectors (cros- reference SE/Software Project
Management/Risk)

Authentication and authorization, access control (mandatory vs. discretionary)

Concept of trust and trustworthiness

Ethics (responsible disclosure). (cross-reference SP/Professional Ethics/Accountability, responsibility and
liability)

Learning outcomes:

1.

bl

Analyze the tradeoffs of balancing key security properties (Confidentiality, Integrity, and Availability).
[Usage]

Describe the concepts of risk, threats, vulnerabilities and attack vectors (including the fact that there is no
such thing as perfect security). [Familiarity]

Explain the concepts of authentication, authorization, access control. [Familiarity]

Explain the concept of trust and trustworthiness. [Familiarity]

Describe important ethical issues to consider in computer security, including ethical issues associated with
fixing or not fixing vulnerabilities and disclosing or not disclosing vulnerabilities. [Familiarity]

-102 -

IAS/Principles of Secure Design
[1 Core-Tier1 hour, 1 Core-Tier2 hour]

Topics:

. [Core-Tierl]

Least privilege and isolation (cross-reference OS/Security and Protection/Policy/mechanism separation
and SF/Virtualization and Isolation/Rationale for protection and predictable performance and PL/Language
Translation and Execution/Memory management)

Fail-safe defaults (cross-reference SE/Software Construction/ Coding practices: techniques,
idioms/patterns, mechanisms for building quality programs and SDF/Development Methods/Programming
correctness)

Open design (cross-reference SE/Software Evolution/ Software development in the context of large, pre-
existing code bases)

End-to-end security (cross-reference SF/Reliability through Redundancy/ How errors increase the longer
the distance between the communicating entities; the end-to-end principle)

Defense in depth (e.g., defensive programming, layered defense)

Security by design (cross-reference SE/Software Design/System design principles)

Tensions between security and other design goals

[Core-Tier2]

Complete mediation

Use of vetted security components

Economy of mechanism (reducing trusted computing base, minimize attack surface) (cross-reference
SE/Software Design/System design principles and SE/Software Construction/Development context: “green
field” vs. existing code base)

Usable security (cross-reference HCI/Foundations/Cognitive models that inform interaction design)
Security composability

Prevention, detection, and deterrence (cross-reference SF/Reliability through Redundancy/Distinction
between bugs and faults and NC/Reliable Data Delivery/Error control and NC/Reliable Data Delivery/Flow
control)

Learning outcomes:

[Core-Tierl]

Sk W=

Describe the principle of least privilege and isolation as applied to system design. [Familiarity]
Summarize the principle of fail-safe and deny-by-default. [Familiarity]

Discuss the implications of relying on open design or the secrecy of design for security. [Familiarity]
Explain the goals of end-to-end data security. [Familiarity]

Discuss the benefits of having multiple layers of defenses. [Familiarity]

For each stage in the lifecycle of a product, describe what security considerations should be evaluated.
[Familiarity]

Describe the cost and tradeoffs associated with designing security into a product. [Familiarity]

[Core-Tier2]

8.
9.

10.

Describe the concept of mediation and the principle of complete mediation. [Familiarity]

Describe standard components for security operations, and explain the benefits of their use instead of re-
inventing fundamentals operations. [Familiarity]

Explain the concept of trusted computing including trusted computing base and attack surface and the
principle of minimizing trusted computing base. [Familiarity]

- 103 -

11. Discuss the importance of usability in security mechanism design. [Familiarity]
12. Describe security issues that arise at boundaries between multiple components. [Familiarity]
13. Identify the different roles of prevention mechanisms and detection/deterrence mechanisms. [Familiarity]

IAS/Defensive Programming
[1 Core-Tier1 hour, 1 Core-Tier2 hour]

Topics in defensive programming are generally not thought about in isolation, but applied to
other topics particularly in SDF, SE and PD Knowledge Areas.

Topics:

[Core-Tierl]

Input validation and data sanitization (cross-reference SDF/Development Methods/Program Correctness)
Choice of programming language and type-safe languages
Examples of input validation and data sanitization errors (cross-reference SDF/Development
Methods/Program Correctness and SE/Software Construction/Coding Practices)

o Buffer overflows

o Integer errors

o SQL injection

o XSS vulnerability
Race conditions (cross-reference SF/Parallelism/Parallel programming and PD/Parallel Architecture/Shared
vs. distributed memory and PD/Communication and Coordination/Shared Memory and PD/Parallelism
Fundamentals/Programming errors not found in sequential programming)
Correct handling of exceptions and unexpected behaviors (cross-reference SDF/Development
Methods/program correctness)

[Core-Tier2]

Correct usage of third-party components (cross-reference SDF/Development Methods/program correctness
and Operating System Principles/Concepts of application program interfaces (APIs)

Effectively deploying security updates (cross-reference OS/Security and Protection/Security methods and
devices)

[Electives]
e Information flow control
e Correctly generating randomness for security purposes
e Mechanisms for detecting and mitigating input and data sanitization errors
e Fuzzing
e Static analysis and dynamic analysis
e Program verification
e Operating system support (e.g., address space randomization, canaries)
e Hardware support (e.g., DEP, TPM)

_ 104 -

Learning outcomes:

[Core-Tierl]

1.

W

5.

Explain why input validation and data sanitization is necessary in the face of adversarial control of the
input channel. [Familiarity]

Explain why you might choose to develop a program in a type-safe language like Java, in contrast to an
unsafe programming language like C/C++. [Familiarity]

Classify common input validation errors, and write correct input validation code. [Usage]

Demonstrate using a high-level programming language how to prevent a race condition from occurring and
how to handle an exception. [Usage]

Demonstrate the identification and graceful handling of error conditions. [Usage]

[Core-Tier2]

6. Explain the risks with misusing interfaces with third-party code and how to correctly use third-party code.
[Familiarity]

7. Discuss the need to update software to fix security vulnerabilities and the lifecycle management of the fix.
[Familiarity]

[Elective]

8. List examples of direct and indirect information flows. [Familiarity]

9. Explain the role of random numbers in security, beyond just cryptography (e.g. password generation,
randomized algorithms to avoid algorithmic denial of service attacks). [Familiarity]

10. Explain the different types of mechanisms for detecting and mitigating data sanitization errors.
[Familiarity]

11. Demonstrate how programs are tested for input handling errors. [Usage]

12. Use static and dynamic tools to identify programming faults. [Usage]

13. Describe how memory architecture is used to protect runtime attacks. [Familiarity]

IAS/Threats and Attacks
[1 Core-Tier2 hour]

Topics:

[Core-Tier2]

Attacker goals, capabilities, and motivations (such as underground economy, digital espionage,
cyberwarfare, insider threats, hacktivism, advanced persistent threats)

Examples of malware (e.g., viruses, worms, spyware, botnets, Trojan horses or rootkits)

Denial of Service (DoS) and Distributed Denial of Service (DDoS)

Social engineering (e.g., phishing) (cross-reference SP/Social Context/Social implications of computing in
a networked world and HCI/Designing Interaction/Handling human/system failure)

[Elective]

Attacks on privacy and anonymity (cross-reference HCI/Foundations/Social models that inform interaction
design: culture, communication, networks and organizations (cross-reference SP/Privacy and Civil
Liberties/technology-based solutions for privacy protection)

Malware/unwanted communication such as covert channels and steganography

- 105 -

Learning outcomes:
[Core-Tier2]

1. Describe likely attacker types against a particular system. [Familiarity]
Discuss the limitations of malware countermeasures (e.g., signature-based detection, behavioral detection).
[Familiarity]

3. Identify instances of social engineering attacks and Denial of Service attacks. [Familiarity]

4. Discuss how Denial of Service attacks can be identified and mitigated. [Familiarity]

[Elective]

5. Describe risks to privacy and anonymity in commonly used applications. [Familiarity]
6. Discuss the concepts of covert channels and other data leakage procedures. [Familiarity]

IAS/Network Security
[2 Core-Tier2 hours]

Discussion of network security relies on previous understanding on fundamental concepts of
networking, including protocols, such as TCP/IP, and network architecture/organization (cross-
reference NC/Network Communication).

Topics:
[Core-Tier2]

e Network specific threats and attack types (e.g., denial of service, spoofing, sniffing and traffic redirection,
man-in-the-middle, message integrity attacks, routing attacks, and traffic analysis)

e Use of cryptography for data and network security

e Architectures for secure networks (e.g., secure channels, secure routing protocols, secure DNS, VPN,
anonymous communication protocols, isolation)

e Defense mechanisms and countermeasures (e.g., network monitoring, intrusion detection, firewalls,
spoofing and DoS protection, honeypots, tracebacks)

. [Elective]

e Security for wireless, cellular networks (cross-reference NC/Mobility/Principles of cellular networks;
cross-reference NC/Mobility/802.11)

e Other non-wired networks (e.g., ad hoc, sensor, and vehicular networks)

e Censorship resistance

e Operational network security management (e.g., configure network access control)

Learning outcomes:
[Core-Tier2]

1. Describe the different categories of network threats and attacks. [Familiarity]
Describe the architecture for public and private key cryptography and how public key infrastructure (PKI)
supports network security. [Familiarity]
3. Describe virtues and limitations of security technologies at each layer of the network stack. [Familiarity]
4. Identify the appropriate defense mechanism(s) and its limitations given a network threat. [Familiarity]

[Elective]

5. Discuss security properties and limitations of other non-wired networks. [Familiarity]
6. Identify the additional threats faced by non-wired networks. [Familiarity]

- 106 -

®

Describe threats that can and cannot be protected against using secure communication channels.
[Familiarity]

Summarize defenses against network censorship. [Familiarity]

Diagram a network for security. [Familiarity]

IAS/Cryptography
[1 Core-Tier2 hour]

Topics:

[Core-Tier2]

Basic Cryptography Terminology covering notions pertaining to the different (communication) partners,
secure/unsecure channel, attackers and their capabilities, encryption, decryption, keys and their
characteristics, signatures

Cipher types (e.g., Caesar cipher, affine cipher) together with typical attack methods such as frequency
analysis

Public Key Infrastructure support for digital signature and encryption and its challenges

[Elective]

Mathematical Preliminaries essential for cryptography, including topics in linear algebra, number theory,
probability theory, and statistics
Cryptographic primitives:

o pseudo-random generators and stream ciphers

o block ciphers (pseudo-random permutations), e.g., AES
o pseudo-random functions

o hash functions, e.g., SHA2, collision resistance

o message authentication codes

o key derivations functions

Symmetric key cryptography
o Perfect secrecy and the one time pad
o Modes of operation for semantic security and authenticated encryption (e.g., encrypt-then-MAC,
OCB, GCM)
o Message integrity (e.g., CMAC, HMAC)
Public key cryptography:
o Trapdoor permutation, e.g., RSA
o Public key encryption, e.g., RSA encryption, EI Gamal encryption
o Digital signatures
o Public-key infrastructure (PKI) and certificates
o Hardness assumptions, e.g., Diffie-Hellman, integer factoring
Authenticated key exchange protocols, e.g., TLS
Cryptographic protocols: challenge-response authentication, zero-knowledge protocols, commitment,
oblivious transfer, secure 2-party or multi-party computation, secret sharing, and applications
Motivate concepts using real-world applications, e.g., electronic cash, secure channels between clients and
servers, secure electronic mail, entity authentication, device pairing, voting systems.
Security definitions and attacks on cryptographic primitives:
o Goals: indistinguishability, unforgeability, collision-resistance
o Attacker capabilities: chosen-message attack (for signatures), birthday attacks, side channel
attacks, fault injection attacks.
Cryptographic standards and references implementations
Quantum cryptography

- 107 -

Learning outcomes:

[Core-Tier2]

1. Describe the purpose of cryptography and list ways it is used in data communications. [Familiarity]
Define the following terms: cipher, cryptanalysis, cryptographic algorithm, and cryptology, and describe
the two basic methods (ciphers) for transforming plain text in cipher text. [Familiarity]

3. Discuss the importance of prime numbers in cryptography and explain their use in cryptographic
algorithms. [Familiarity]

4. Explain how public key infrastructure supports digital signing and encryption and discuss the
limitations/vulnerabilities. [Familiarity]

[Elective]

5. Use cryptographic primitives and describe their basic properties. [Usage]

6. Illustrate how to measure entropy and how to generate cryptographic randomness. [Usage]

7. Use public-key primitives and their applications. [Usage]

8. Explain how key exchange protocols work and how they fail. [Familiarity]

9. Discuss cryptographic protocols and their properties. [Familiarity]

10. Describe real-world applications of cryptographic primitives and protocols. [Familiarity]

11. Summarize security definitions related to attacks on cryptographic primitives, including attacker
capabilities and goals.[Familiarity]

12. Apply appropriate known cryptographic techniques for a given scenario. [Usage]

13. Appreciate the dangers of inventing one’s own cryptographic methods. [Familiarity]

14. Describe quantum cryptography and the impact of quantum computing on cryptographic algorithms.

[Familiarity]

IAS/Web Security
[Elective]

Topics:

Web security model
o Browser security model including same-origin policy
o Client-server trust boundaries, e.g., cannot rely on secure execution in the client
Session management, authentication
o Single sign-on
o HTTPS and certificates
Application vulnerabilities and defenses
o SQL injection
o XSS
o CSRF
Client-side security
o Cookies security policy
o HTTP security extensions, e.g. HSTS
o Plugins, extensions, and web apps
o Web user tracking
Server-side security tools, e.g. Web Application Firewalls (WAFs) and fuzzers

Learning outcomes:

1.

Describe the browser security model including same-origin policy and threat models in web security.
[Familiarity]

- 108 -

2. Discuss the concept of web sessions, secure communication channels such as TLS and importance of
secure certificates, authentication including single sign-on such as OAuth and SAML. [Familiarity]

3. Describe common types of vulnerabilities and attacks in web applications, and defenses against them.
[Familiarity]

4. Use client-side security capabilities in an application. [Usage]

IAS/Platform Security

[Elective]
Topics:

Code integrity and code signing

Secure boot, measured boot, and root of trust

Attestation

TPM and secure co-processors

Security threats from peripherals, e.g., DMA, IOMMU

Physical attacks: hardware Trojans, memory probes, cold boot attacks
Security of embedded devices, e.g., medical devices, cars

Trusted path

Learning outcomes:

Explain the concept of code integrity and code signing and the scope it applies to. [Familiarity]
Discuss the concept of root of trust and the process of secure boot and secure loading. [Familiarity]
Describe the mechanism of remote attestation of system integrity. [Familiarity]

Summarize the goals and key primitives of TPM. [Familiarity]

Identify the threats of plugging peripherals into a device. [Familiarity]

Identify physical attacks and countermeasures. [Familiarity]

Identify attacks on non-PC hardware platforms. [Familiarity]

Discuss the concept and importance of trusted path. [Familiarity]

PRANE DD

IAS/Security Policy and Governance
[Elective]

See general cross-referencing with the SP/Security Policies, Laws and Computer Crimes.
Topics:

e Privacy policy (cross-reference SP/Social Context/Social implications of computing in a networked world;
cross-reference SP/Professional Ethics/Accountability, responsibility and liability; cross-reference
SP/Privacy and Civil Liberties/Legal foundations of privacy protection)

Inference controls/statistical disclosure limitation

Backup policy, password refresh policy

Breach disclosure policy

Data collection and retention policies

Supply chain policy

Cloud security tradeoffs

- 109 -

Learning outcomes:

1.

Nk wd

Describe the concept of privacy including personally private information, potential violations of privacy
due to security mechanisms, and describe how privacy protection mechanisms run in conflict with security
mechanisms. [Familiarity]

Describe how an attacker can infer a secret by interacting with a database. [Familiarity]

Explain how to set a data backup policy or password refresh policy. [Familiarity]

Discuss how to set a breach disclosure policy. [Familiarity]

Describe the consequences of data retention policies. [Familiarity]

Identify the risks of relying on outsourced manufacturing. [Familiarity]

Identify the risks and benefits of outsourcing to the cloud. [Familiarity]

IAS/Digital Forensics
[Elective]

Topics:

Basic Principles and methodologies for digital forensics

Design systems with forensic needs in mind

Rules of Evidence — general concepts and differences between jurisdictions and Chain of Custody
Search and Seizure of evidence: legal and procedural requirements
Digital Evidence methods and standards

Techniques and standards for Preservation of Data

Legal and Reporting Issues including working as an expert witness
OS/File System Forensics

Application Forensics

Web Forensics

Network Forensics

Mobile Device Forensics

Computer/network/system attacks

Attack detection and investigation

Anti-forensics

Learning outcomes:

1.

W

Describe what a digital investigation is, the sources of digital evidence, and the limitations of forensics.
[Familiarity]

Explain how to design software to support forensics. [Familiarity]

Describe the legal requirements for use of seized data. [Familiarity]

Describe the process of evidence seizure from the time when the requirement was identified to the
disposition of the data. [Familiarity]

Describe how data collection is accomplished and the proper storage of the original and forensics copy.
[Familiarity]

Conduct data collection on a hard drive. [Usage]

Describe a person’s responsibility and liability while testifying as a forensics examiner. [Familiarity]
Recover data based on a given search term from an imaged system. [Usage]

Reconstruct application history from application artifacts. [Usage]

. Reconstruct web browsing history from web artifacts. [Usage]

. Capture and interpret network traffic. [Usage]

. Discuss the challenges associated with mobile device forensics. [Familiarity]

. Inspect a system (network, computer, or application) for the presence of malware or malicious activity.

[Usage]

. Apply forensics tools to investigate security breaches. [Usage]
. Identify anti-forensic methods. [Familiarity]

- 110 -

IAS/Secure Software Engineering
[Elective]

Fundamentals of secure coding practices covered in other knowledge areas, including SDF and
SE. For example, see SE/Software Construction; Software Verification and Validation.

Topics:
e Building security into the software development lifecycle (cross-reference SE/Software Processes)
e Secure design principles and patterns
e Secure software specifications and requirements
e Secure software development practices (cross-reference SE/Software Construction)
e Secure testing - the process of testing that security requirements are met (including static and dynamic

analysis).
e Software quality assurance and benchmarking measurements

Learning outcomes:

1. Describe the requirements for integrating security into the software development lifecycle. [Familiarity]
Apply the concepts of the Design Principles for Protection Mechanisms, the Principles for Software
Security [2], and the Principles for Secure Design [1] on a software development project. [Usage]

3. Develop specifications for a software development effort that fully specify functional requirements and
identifies the expected execution paths. [Usage]

4. Describe software development best practices for minimizing vulnerabilities in programming code.
[Familiarity]

5. Conduct a security verification and assessment (static and dynamic) of a software application. [Usage]

References

[1] Gasser, M. Building a Secure Computer System, Van Nostrand Reinhold, 1988.

[2] Viega, J. and McGraw, G. Building Secure Software: How to Avoid Security Problems
the Right Way, Addison-Wesley, 2002.

-111-

Information Management (IM)

Information Management is primarily concerned with the capture, digitization, representation,
organization, transformation, and presentation of information; algorithms for efficient and
effective access and updating of stored information; data modeling and abstraction; and physical
file storage techniques. The student needs to be able to develop conceptual and physical data
models, determine which IM methods and techniques are appropriate for a given problem, and be
able to select and implement an appropriate IM solution that addresses relevant design concerns

including scalability, accessibility and usability.

We also note that IM is related to fundamental information security concepts that are described

in the Information Assurance and Security (IAS) topic area, IAS/Fundamental Concepts.

IM. Information Management (1 Core-Tier1 hour; 9 Core-Tier2 hours)

Core-Tier1 hours | Core-Tier2 hours | Includes Electives

IM/Information Management Concepts | 1 2 N

IM/Database Systems 3

IM/Data Modeling 4

IM/Indexing

IM/Relational Databases

IM/Query Languages

IM/Transaction Processing

IM/Distributed Databases

IM/Physical Database Design

IM/Data Mining

IM/Information Storage And Retrieval

<|[=<|=<|=<|=<|=<|[=<|=<|=<|=z]|=

IM/MultiMedia Systems

IM. Information Management-related topics (distributed) (1 Core-Tier1 hour, 2
Core-Tier2 hours)

Core-Tier1 hours Core-Tier2 hours Includes Electives

IAS/Fundamental Concepts* 1 2 N

* See Information Assurance and Security Knowledge Area for a description of this topic area.

IM/Information Management Concepts

[1 Core-Tier1 hour; 2 Core-Tier2 hours]
Topics:

[Core-Tierl]

Information systems as socio-technical systems

Basic information storage and retrieval (IS&R) concepts

Information capture and representation
Supporting human needs: searching, retrieving, linking, browsing, navigating

[Core-Tier2]

Information management applications

Declarative and navigational queries, use of links

Analysis and indexing

Quality issues: reliability, scalability, efficiency, and effectiveness

Learning Outcomes:
[Core-Tierl]

1. Describe how humans gain access to information and data to support their needs. [Familiarity]
. Describe the advantages and disadvantages of central organizational control over data. [Assessment]
3. Identify the careers/roles associated with information management (e.g., database administrator, data
modeler, application developer, end-user). [Familiarity]
4. Compare and contrast information with data and knowledge. [Assessment]
Demonstrate uses of explicitly stored metadata/schema associated with data. [Usage]
6. Identify issues of data persistence for an organization. [Familiarity]

b

[Core-Tier2]

Critique an information application with regard to satisfying user information needs. [Assessment]

Explain uses of declarative queries. [Familiarity]

Give a declarative version for a navigational query. [Familiarity]

0. Describe several technical solutions to the problems related to information privacy, integrity, security, and
preservation. [Familiarity]

11. Explain measures of efficiency (throughput, response time) and effectiveness (recall, precision).

[Familiarity]
12. Describe approaches to scale up information systems. [Familiarity]
13. Identify vulnerabilities and failure scenarios in common forms of information systems. [Usage]

= 0 %=

IM/Database Systems

[3 Core-Tier2 hours]
Topics:

[Core-Tier2]

e Approaches to and evolution of database systems
e Components of database systems

-113 -

Design of core DBMS functions (e.g., query mechanisms, transaction management, buffer management,
access methods)

Database architecture and data independence

Use of a declarative query language

Systems supporting structured and/or stream content

[Elective]

Approaches for managing large volumes of data (e.g., noSQL database systems, use of MapReduce).

Learning Outcomes:

[Core-Tier2]

1.

N

XN AW

Explain the characteristics that distinguish the database approach from the approach of programming with
data files. [Familiarity]

Describe the most common designs for core database system components including the query optimizer,
query executor, storage manager, access methods, and transaction processor. [Familiarity]

Cite the basic goals, functions, and models of database systems. [Familiarity]

Describe the components of a database system and give examples of their use. [Familiarity]

Identify major DBMS functions and describe their role in a database system. [Familiarity]

Explain the concept of data independence and its importance in a database system. [Familiarity]

Use a declarative query language to elicit information from a database. [Usage]

Describe facilities that datatbases provide supporting structures and/or stream (sequence) data, e.g., text.
[Familiarity]

[Elective]

9.

Describe major approaches to storing and processing large volumes of data. [Familiarity]

IM/Data Modeling
[4 Core-Tier2 hours]

Topics:

Data modeling

Conceptual models (e.g., entity-relationship, UML diagrams)

Spreadsheet models

Relational data models

Object-oriented models (cross-reference PL/Object-Oriented Programming)
Semi-structured data model (expressed using DTD or XML Schema, for example)

Learning Outcomes:

1.

i

S kW

Compare and contrast appropriate data models, including internal structures, for different types of data.
[Assessment]

Describe concepts in modeling notation (e.g., Entity-Relation Diagrams or UML) and how they would be
used. [Familiarity]

Define the fundamental terminology used in the relational data model. [Familiarity]

Describe the basic principles of the relational data model. [Familiarity]

Apply the modeling concepts and notation of the relational data model. [Usage]

Describe the main concepts of the OO model such as object identity, type constructors, encapsulation,
inheritance, polymorphism, and versioning. [Familiarity]

_114-

7. Describe the differences between relational and semi-structured data models. [Assessment]
8. Give a semi-structured equivalent (e.g., in DTD or XML Schema) for a given relational schema. [Usage]

IM/Indexing
[Elective]
Topics:
e The impact of indices on query performance
e The basic structure of an index
e Keeping a buffer of data in memory
e Creating indexes with SQL
e Indexing text
e Indexing the web (e.g., web crawling)

Learning Outcomes:

Generate an index file for a collection of resources. [Usage]

Explain the role of an inverted index in locating a document in a collection. [Familiarity]

Explain how stemming and stop words affect indexing. [Familiarity]

Identify appropriate indices for given relational schema and query set. [Usage]

Estimate time to retrieve information, when indices are used compared to when they are not used. [Usage]
Describe key challenges in web crawling, e.g., detecting duplicate documents, determining the crawling
frontier. [Familiarity]

A e

IM/Relational Databases
[Elective]

Topics:

Mapping conceptual schema to a relational schema

Entity and referential integrity

Relational algebra and relational calculus

Relational Database design

Functional dependency

Decomposition of a schema; lossless-join and dependency-preservation properties of a decomposition
Candidate keys, superkeys, and closure of a set of attributes
Normal forms (BCNF)

Multi-valued dependency (4NF)

Join dependency (PJNF, 5NF)

Representation theory

Learning Outcomes:

1. Prepare a relational schema from a conceptual model developed using the entity- relationship model.
[Usage]

2. Explain and demonstrate the concepts of entity integrity constraint and referential integrity constraint
(including definition of the concept of a foreign key). [Usage]

- 115 -

w

*®

10.

11.
12.

13.

Demonstrate use of the relational algebra operations from mathematical set theory (union, intersection,
difference, and Cartesian product) and the relational algebra operations developed specifically for relational
databases (select (restrict), project, join, and division). [Usage]

Write queries in the relational algebra. [Usage]

Write queries in the tuple relational calculus. [Usage]

Determine the functional dependency between two or more attributes that are a subset of a relation.
[Assessment]

Connect constraints expressed as primary key and foreign key, with functional dependencies. [Usage]
Compute the closure of a set of attributes under given functional dependencies. [Usage]

Determine whether a set of attributes form a superkey and/or candidate key for a relation with given
functional dependencies. [Assessment]

Evaluate a proposed decomposition, to say whether it has lossless-join and dependency-preservation.
[Assessment]

Describe the properties of BCNF, PIJNF, SNF. [Familiarity]

Explain the impact of normalization on the efficiency of database operations especially query optimization.
[Familiarity]

Describe what is a multi-valued dependency and what type of constraints it specifies. [Familiarity]

IM/Query Languages

[Elective]
Topics:
e Overview of database languages
e SQL (data definition, query formulation, update sublanguage, constraints, integrity)
e Selections
e Projections
e Select-project-join
e Aggregates and group-by
e Subqueries
e QBE and 4th-generation environments
o Different ways to invoke non-procedural queries in conventional languages
e Introduction to other major query languages (e.g., XPATH, SPARQL)
e Stored procedures

Learning Outcomes:

1.

W

Create a relational database schema in SQL that incorporates key, entity integrity, and referential integrity
constraints. [Usage]

Use SQL to create tables and retrieve (SELECT) information from a database. [Usage]

Evaluate a set of query processing strategies and select the optimal strategy. [Assessment]

Create a non-procedural query by filling in templates of relations to construct an example of the desired
query result. [Usage]

Embed object-oriented queries into a stand-alone language such as C++ or Java (e.g., SELECT
Col.Method() FROM Object). [Usage]

Write a stored procedure that deals with parameters and has some control flow, to provide a given
functionality. [Usage]

-116 -

IM/Transaction Processing
[Elective]

Topics:
e Transactions
e Failure and recovery
e Concurrency control
e Interaction of transaction management with storage, especially buffering

Learning Outcomes:

Create a transaction by embedding SQL into an application program. [Usage]

Explain the concept of implicit commits. [Familiarity]

Describe the issues specific to efficient transaction execution. [Familiarity]

Explain when and why rollback is needed and how logging assures proper rollback. [Assessment]
Explain the effect of different isolation levels on the concurrency control mechanisms. [Assessment]
Choose the proper isolation level for implementing a specified transaction protocol. [Assessment]
Identify appropriate transaction boundaries in application programs. [Assessment]

Nk —

IM/Distributed Databases
[Elective]

Topics:

e Distributed DBMS

o Distributed data storage

o Distributed query processing

o Distributed transaction model

o Homogeneous and heterogeneous solutions

o Client-server distributed databases (cross-reference SF/Computational Paradigms)
e Parallel DBMS

o Parallel DBMS architectures: shared memory, shared disk, shared nothing;

o Speedup and scale-up, e.g., use of the MapReduce processing model (cross-reference

CN/Processing, PD/Parallel Decomposition)
o Data replication and weak consistency models

Learning Outcomes:

1. Explain the techniques used for data fragmentation, replication, and allocation during the distributed
database design process. [Familiarity]

2. Evaluate simple strategies for executing a distributed query to select the strategy that minimizes the amount
of data transfer. [Assessment]

3. Explain how the two-phase commit protocol is used to deal with committing a transaction that accesses
databases stored on multiple nodes. [Familiarity]

4. Describe distributed concurrency control based on the distinguished copy techniques and the voting
method. [Familiarity]

5. Describe the three levels of software in the client-server model. [Familiarity]

-117 -

IM/Physical Database Design
[Elective]

Topics:

Storage and file structure
Indexed files

Hashed files

Signature files

B-trees

Files with dense index

Files with variable length records
Database efficiency and tuning

Learning Outcomes:

1.

XNk W

Explain the concepts of records, record types, and files, as well as the different techniques for placing file
records on disk. [Familiarity]

Give examples of the application of primary, secondary, and clustering indexes. [Familiarity]

Distinguish between a non-dense index and a dense index. [Assessment]

Implement dynamic multilevel indexes using B-trees. [Usage]

Explain the theory and application of internal and external hashing techniques. [Familiarity]

Use hashing to facilitate dynamic file expansion. [Usage]

Describe the relationships among hashing, compression, and efficient database searches. [Familiarity]
Evaluate costs and benefits of various hashing schemes. [Assessment]

Explain how physical database design affects database transaction efficiency. [Familiarity]

IM/Data Mining
[Elective]

Topics:

Uses of data mining

Data mining algorithms

Associative and sequential patterns

Data clustering

Market basket analysis

Data cleaning

Data visualization (cross-reference GV/Visualization and CN/Interactive Visualization)

Learning Outcomes:

1.

Nownkwb

Compare and contrast different uses of data mining as evidenced in both research and application.
[Assessment]

Explain the value of finding associations in market basket data. [Familiarity]

Characterize the kinds of patterns that can be discovered by association rule mining. [Assessment]
Describe how to extend a relational system to find patterns using association rules. [Familiarity]

Evaluate different methodologies for effective application of data mining. [Assessment]

Identify and characterize sources of noise, redundancy, and outliers in presented data. [Assessment]
Identify mechanisms (on-line aggregation, anytime behavior, interactive visualization) to close the loop in
the data mining process. [Familiarity]

Describe why the various close-the-loop processes improve the effectiveness of data mining. [Familiarity]

- 118 -

IM/Information Storage and Retrieval
[Elective]

Topics:

Documents, electronic publishing, markup, and markup languages

Tries, inverted files, PAT trees, signature files, indexing

Morphological analysis, stemming, phrases, stop lists

Term frequency distributions, uncertainty, fuzziness, weighting

Vector space, probabilistic, logical, and advanced models

Information needs, relevance, evaluation, effectiveness

Thesauri, ontologies, classification and categorization, metadata
Bibliographic information, bibliometrics, citations

Routing and (community) filtering

Multimedia search, information seeking behavior, user modeling, feedback
Information summarization and visualization

Faceted search (e.g., using citations, keywords, classification schemes)
Digital libraries

Digitization, storage, interchange, digital objects, composites, and packages
Metadata and cataloging

Naming, repositories, archives

Archiving and preservation, integrity

Spaces (conceptual, geographical, 2/3D, VR)

Architectures (agents, buses, wrappers/mediators), interoperability
Services (searching, linking, browsing, and so forth)

Intellectual property rights management, privacy, and protection (watermarking)

Learning Outcomes:

1.

3.

Explain basic information storage and retrieval concepts. [Familiarity]

Describe what issues are specific to efficient information retrieval. [Familiarity]

Give applications of alternative search strategies and explain why the particular search strategy is
appropriate for the application. [Assessment]

Design and implement a small to medium size information storage and retrieval system, or digital library.
[Usage]

Describe some of the technical solutions to the problems related to archiving and preserving information in
a digital library. [Familiarity]

IM/Multimedia Systems
[Elective]

Topics:

Input and output devices, device drivers, control signals and protocols, DSPs
Standards (e.g., audio, graphics, video)

Applications, media editors, authoring systems, and authoring

Streams/structures, capture/represent/transform, spaces/domains, compression/coding
Content-based analysis, indexing, and retrieval of audio, images, animation, and video

-119 -

Presentation, rendering, synchronization, multi-modal integration/interfaces
Real-time delivery, quality of service (including performance), capacity planning, audio/video
conferencing, video-on-demand

Learning Outcomes:

1.

Describe the media and supporting devices commonly associated with multimedia information and
systems. [Familiarity]

Demonstrate the use of content-based information analysis in a multimedia information system. [Usage]
Critique multimedia presentations in terms of their appropriate use of audio, video, graphics, color, and
other information presentation concepts. [Assessment]

Implement a multimedia application using an authoring system. [Usage]

For each of several media or multimedia standards, describe in non-technical language what the standard
calls for, and explain how aspects of human perception might be sensitive to the limitations of that
standard. [Familiarity]

Describe the characteristics of a computer system (including identification of support tools and appropriate
standards) that has to host the implementation of one of a range of possible multimedia applications.
[Familiarity]

- 120 -

Intelligent Systems (IS)

Artificial intelligence (Al) is the study of solutions for problems that are difficult or impractical
to solve with traditional methods. It is used pervasively in support of everyday applications such
as email, word-processing and search, as well as in the design and analysis of autonomous agents
that perceive their environment and interact rationally with the environment.

The solutions rely on a broad set of general and specialized knowledge representation schemes,
problem solving mechanisms and learning techniques. They deal with sensing (e.g., speech
recognition, natural language understanding, computer vision), problem-solving (e.g., search,
planning), and acting (e.g., robotics) and the architectures needed to support them (e.g., agents,
multi-agents). The study of Artificial Intelligence prepares the student to determine when an Al
approach is appropriate for a given problem, identify the appropriate representation and

reasoning mechanism, and implement and evaluate it.

IS. Intelligent Systems (10 Core-Tier2 hours)

Core-Tier1 Core-Tier2 Includes

hours hours Electives
IS/Fundamental Issues 1 Y
IS/Basic Search Strategies 4 N
IS/Basic Knowledge Representation and 3 N
Reasoning
IS/Basic Machine Learning 2 N
IS/Advanced Search Y
IS/Advanced Representation and Reasoning Y
IS/Reasoning Under Uncertainty Y
IS/Agents Y
IS/Natural Language Processing Y
IS/Advanced Machine Learning Y
IS/Robotics Y
IS/Perception and Computer Vision Y

IS/IFundamental Issues
[1 Core-Tier2 hours]

Topics:

Overview of Al problems, examples of successful recent Al applications
What is intelligent behavior?

o The Turing test

o Rational versus non-rational reasoning
Problem characteristics

o Fully versus partially observable

o Single versus multi-agent

o Deterministic versus stochastic

o Static versus dynamic

o Discrete versus continuous
Nature of agents

o Autonomous versus semi-autonomous

o Reflexive, goal-based, and utility-based

o The importance of perception and environmental interactions
Philosophical and ethical issues. [elective]

Learning Outcomes:

1.

Describe Turing test and the “Chinese Room” thought experiment. [Familiarity]

Differentiate between the concepts of optimal reasoning/behavior and human-like reasoning/behavior.
[Familiarity]

Determine the characteristics of a given problem that an intelligent system must solve. [Assessment]

IS/Basic Search Strategies

[4 Core-Tier2 hours]

Cross-reference AL/Basic Analysis, AL/Algorithmic Strategies, AL/Fundamental Data
Structures and Algorithms

Topics:

Problem spaces (states, goals and operators), problem solving by search
Factored representation (factoring state into variables)

Uninformed search (breadth-first, depth-first, depth-first with iterative deepening)
Heuristics and informed search (hill-climbing, generic best-first, A*)

Space and time efficiency of search

Two-player games (introduction to minimax search)

Constraint satisfaction (backtracking and local search methods)

-122 -

Learning Outcomes:

1.

W

Formulate an efficient problem space for a problem expressed in natural language (e.g., English) in terms
of initial and goal states, and operators. [Usage]

Describe the role of heuristics and describe the trade-offs among completeness, optimality, time
complexity, and space complexity. [Familiarity]

Describe the problem of combinatorial explosion of search space and its consequences. [Familiarity]
Select and implement an appropriate uninformed search algorithm for a problem, and characterize its time
and space complexities. [Usage]

Select and implement an appropriate informed search algorithm for a problem by designing the necessary
heuristic evaluation function. [Usage]

Evaluate whether a heuristic for a given problem is admissible/can guarantee optimal solution.
[Assessment]

Formulate a problem specified in natural language (e.g., English) as a constraint satisfaction problem and
implement it using a chronological backtracking algorithm or stochastic local search. [Usage]

Compare and contrast basic search issues with game playing issues. [Familiarity]

IS/Basic Knowledge Representation and Reasoning
[3 Core-Tier2 hours]

Topics:

Review of propositional and predicate logic (cross-reference DS/Basic Logic)

Resolution and theorem proving (propositional logic only)

Forward chaining, backward chaining

Review of probabilistic reasoning, Bayes theorem (cross-reference with DS/Discrete Probability)

Learning Outcomes:

el e

Translate a natural language (e.g., English) sentence into predicate logic statement. [Usage]

Convert a logic statement into clause form. [Usage]

Apply resolution to a set of logic statements to answer a query. [Usage]

Make a probabilistic inference in a real-world problem using Bayes’ theorem to determine the probability
of a hypothesis given evidence. [Usage]

IS/Basic Machine Learning
[2 Core-Tier2 hours]

Topics:

Definition and examples of broad variety of machine learning tasks, including classification
Inductive learning

Simple statistical-based learning, such as Naive Bayesian Classifier, decision trees

The over-fitting problem

Measuring classifier accuracy

Learning Outcomes:

1.

2.

List the differences among the three main styles of learning: supervised, reinforcement, and unsupervised.
[Familiarity]

Identify examples of classification tasks, including the available input features and output to be predicted.
[Familiarity]

Explain the difference between inductive and deductive learning. [Familiarity]

-123 -

4. Describe over-fitting in the context of a problem. [Familiarity]
5. Apply the simple statistical learning algorithm such as Naive Bayesian Classifier to a classification task and
measure the classifier's accuracy. [Usage]

IS/Advanced Search
[Elective]

Note that the general topics of Branch-and-bound and Dynamic Programing are listed in
AL/Algorithmic Strategies.

Topics:

e Constructing search trees, dynamic search space, combinatorial explosion of search space
e Stochastic search
o Simulated annealing
o Genetic algorithms
o Monte-Carlo tree search
e Implementation of A* search, beam search
e Minimax search, alpha-beta pruning
e Expectimax search (MDP-solving) and chance nodes

Learning Outcomes:

Design and implement a genetic algorithm solution to a problem. [Usage]

Design and implement a simulated annealing schedule to avoid local minima in a problem. [Usage]
Design and implement A*/beam search to solve a problem. [Usage]

Apply minimax search with alpha-beta pruning to prune search space in a two-player game. [Usage]
Compare and contrast genetic algorithms with classic search techniques. [Assessment]

Compare and contrast various heuristic searches vis-a-vis applicability to a given problem. [Assessment]

Sk W=

IS/Advanced Representation and Reasoning
[Elective]

Topics:

e Knowledge representation issues
o Description logics
o Ontology engineering
Non-monotonic reasoning (e.g., non-classical logics, default reasoning)
Argumentation
Reasoning about action and change (e.g., situation and event calculus)
Temporal and spatial reasoning
Rule-based Expert Systems
Semantic networks
Model-based and Case-based reasoning
Planning:
o Partial and totally ordered planning
Plan graphs
Hierarchical planning
Planning and execution including conditional planning and continuous planning
Mobile agent/Multi-agent planning

o O O O

_ 124 -

Learning Outcomes:

1. Compare and contrast the most common models used for structured knowledge representation, highlighting
their strengths and weaknesses. [Assessment]

2. Identify the components of non-monotonic reasoning and its usefulness as a representational mechanism

for belief systems. [Familiarity]

Compare and contrast the basic techniques for representing uncertainty. [Assessment]

Compare and contrast the basic techniques for qualitative representation. [Assessment]

Apply situation and event calculus to problems of action and change. [Usage]

Explain the distinction between temporal and spatial reasoning, and how they interrelate. [Familiarity]

Explain the difference between rule-based, case-based and model-based reasoning techniques. [Familiarity]

Define the concept of a planning system and how it differs from classical search techniques. [Familiarity]

Describe the differences between planning as search, operator-based planning, and propositional planning,

providing examples of domains where each is most applicable. [Familiarity]

10. Explain the distinction between monotonic and non-monotonic inference. [Familiarity]

O XN W

IS/Reasoning Under Uncertainty

[Elective]
Topics:

e Review of basic probability (cross-reference DS/Discrete Probability)
e Random variables and probability distributions
o Axioms of probability
o Probabilistic inference
o Bayes’ Rule
e Conditional Independence
e Knowledge representations
o Bayesian Networks
= Exact inference and its complexity
= Randomized sampling (Monte Carlo) methods (e.g. Gibbs sampling)
o Markov Networks
o Relational probability models
o Hidden Markov Models
e Decision Theory
o Preferences and utility functions
o Maximizing expected utility

Learning Outcomes:

—_

Apply Bayes’ rule to determine the probability of a hypothesis given evidence. [Usage]

Explain how conditional independence assertions allow for greater efficiency of probabilistic systems.
[Assessment]

Identify examples of knowledge representations for reasoning under uncertainty. [Familiarity]

State the complexity of exact inference. Identify methods for approximate inference. [Familiarity]
Design and implement at least one knowledge representation for reasoning under uncertainty. [Usage]
Describe the complexities of temporal probabilistic reasoning. [Familiarity]

Design and implement an HMM as one example of a temporal probabilistic system. [Usage]

Describe the relationship between preferences and utility functions. [Familiarity]

Explain how utility functions and probabilistic reasoning can be combined to make rational decisions.
[Assessment]

N

VXA nhw

- 125 -

IS/Agents
[Elective]

Cross-reference HCI/Collaboration and Communication

Topics:
e Definitions of agents
e Agent architectures (e.g., reactive, layered, cognitive)
e Agent theory
e Rationality, game theory

o Decision-theoretic agents
o Markov decision processes (MDP)
e Software agents, personal assistants, and information access
o Collaborative agents
o Information-gathering agents
o Believable agents (synthetic characters, modeling emotions in agents)
e Learning agents
e Multi-agent systems
o Collaborating agents
o Agent teams
o Competitive agents (e.g., auctions, voting)
o Swarm systems and biologically inspired models

Learning Outcomes:

1. List the defining characteristics of an intelligent agent. [Familiarity]
Characterize and contrast the standard agent architectures. [Assessment]

3. Describe the applications of agent theory to domains such as software agents, personal assistants, and
believable agents. [Familiarity]

4. Describe the primary paradigms used by learning agents. [Familiarity]

5. Demonstrate using appropriate examples how multi-agent systems support agent interaction. [Usage]

IS/Natural Language Processing
[Elective]

Cross-reference HCI/New Interactive Technologies
Topics:

e Deterministic and stochastic grammars
e Parsing algorithms
o CFGs and chart parsers (e.g. CYK)
o Probabilistic CFGs and weighted CYK
e Representing meaning / Semantics
o Logic-based knowledge representations
o Semantic roles
o Temporal representations
o Beliefs, desires, and intentions
e Corpus-based methods
e N-grams and HMMs
e Smoothing and backoff

- 126 -

e Examples of use: POS tagging and morphology
e Information retrieval (Cross-reference IM/Information Storage and Retrieval)
o Vector space model
= TF & IDF
o Precision and recall
e Information extraction
e Language translation
e Text classification, categorization
o Bag of words model

Learning Outcomes:

1. Define and contrast deterministic and stochastic grammars, providing examples to show the adequacy of
each. [Assessment]

2. Simulate, apply, or implement classic and stochastic algorithms for parsing natural language. [Usage]

Identify the challenges of representing meaning. [Familiarity]

4. List the advantages of using standard corpora. Identify examples of current corpora for a variety of NLP
tasks. [Familiarity]

5. Identify techniques for information retrieval, language translation, and text classification. [Familiarity]

W

IS/Advanced Machine Learning
[Elective]

Topics:

Definition and examples of broad variety of machine learning tasks
General statistical-based learning, parameter estimation (maximum likelihood)
Inductive logic programming (ILP)
Supervised learning
o Learning decision trees
o Learning neural networks
o Support vector machines (SVMs)
e Ensembles
e Nearest-neighbor algorithms
e Unsupervised Learning and clustering
o EM
o K-means
o Self-organizing maps
e Semi-supervised learning
e Learning graphical models (Cross-reference IS/Reasoning under Uncertainty)
e Performance evaluation (such as cross-validation, area under ROC curve)
e Learning theory
e The problem of overfitting, the curse of dimensionality
e Reinforcement learning
o Exploration vs. exploitation trade-off
o Markov decision processes
o Value and policy iteration
e Application of Machine Learning algorithms to Data Mining (cross-reference IM/Data Mining)

- 127 -

Learning Outcomes:

1. Explain the differences among the three main styles of learning: supervised, reinforcement, and
unsupervised. [Familiarity]
2. Implement simple algorithms for supervised learning, reinforcement learning, and unsupervised learning.
[Usage]
3. Determine which of the three learning styles is appropriate to a particular problem domain. [Usage]
4. Compare and contrast each of the following techniques, providing examples of when each strategy is
superior: decision trees, neural networks, and belief networks. [Assessment]
5. Evaluate the performance of a simple learning system on a real-world dataset. [Assessment]
6. Characterize the state of the art in learning theory, including its achievements and its shortcomings.
[Familiarity]
7. Explain the problem of overfitting, along with techniques for detecting and managing the problem. [Usage]
IS/Robotics
[Elective]
Topics:
e Overview: problems and progress
o State-of-the-art robot systems, including their sensors and an overview of their sensor processing
o Robot control architectures, e.g., deliberative vs. reactive control and Braitenberg vehicles
o World modeling and world models
o Inherent uncertainty in sensing and in control
e Configuration space and environmental maps
e Interpreting uncertain sensor data
e Localizing and mapping
e Navigation and control
e Motion planning
e Multiple-robot coordination

Learning Outcomes:

1.

List capabilities and limitations of today's state-of-the-art robot systems, including their sensors and the
crucial sensor processing that informs those systems. [Familiarity]

Integrate sensors, actuators, and software into a robot designed to undertake some task. [Usage]

Program a robot to accomplish simple tasks using deliberative, reactive, and/or hybrid control architectures.
[Usage]

Implement fundamental motion planning algorithms within a robot configuration space. [Usage]
Characterize the uncertainties associated with common robot sensors and actuators; articulate strategies for
mitigating these uncertainties. [Familiarity]

List the differences among robots' representations of their external environment, including their strengths
and shortcomings. [Familiarity]

Compare and contrast at least three strategies for robot navigation within known and/or unknown
environments, including their strengths and shortcomings. [Assessment]

Describe at least one approach for coordinating the actions and sensing of several robots to accomplish a
single task. [Familiarity]

- 128 -

IS/Perception and Computer Vision

[Elective]
Topics:

e Computer vision
o Image acquisition, representation, processing and properties
o Shape representation, object recognition and segmentation
o Motion analysis
e Audio and speech recognition
e Modularity in recognition
e Approaches to pattern recognition (cross-reference IS/Advanced Machine Learning)
o Classification algorithms and measures of classification quality
o Statistical techniques

Learning Outcomes:

1. Summarize the importance of image and object recognition in Al and indicate several significant
applications of this technology. [Familiarity]

2. List at least three image-segmentation approaches, such as thresholding, edge-based and region-based
algorithms, along with their defining characteristics, strengths, and weaknesses. [Familiarity]

3. Implement 2d object recognition based on contour- and/or region-based shape representations. [Usage]

4. Distinguish the goals of sound-recognition, speech-recognition, and speaker-recognition and identify how
the raw audio signal will be handled differently in each of these cases. [Familiarity]

5. Provide at least two examples of a transformation of a data source from one sensory domain to another,
e.g., tactile data interpreted as single-band 2d images. [Familiarity]

6. Implement a feature-extraction algorithm on real data, e.g., an edge or corner detector for images or vectors
of Fourier coefficients describing a short slice of audio signal. [Usage]

7. Implement an algorithm combining features into higher-level percepts, e.g., a contour or polygon from
visual primitives or phoneme hypotheses from an audio signal. [Usage]

8. Implement a classification algorithm that segments input percepts into output categories and quantitatively
evaluates the resulting classification. [Usage]

9. Evaluate the performance of the underlying feature-extraction, relative to at least one alternative possible
approach (whether implemented or not) in its contribution to the classification task (8), above.
[Assessment]

10. Describe at least three classification approaches, their prerequisites for applicability, their strengths, and
their shortcomings. [Familiarity]

- 129 -

Networking and Communication (NC)

The Internet and computer networks are now ubiquitous and a growing number of computing
activities strongly depend on the correct operation of the underlying network. Networks, both
fixed and mobile, are a key part of the computing environment of today and tomorrow. Many
computing applications that are used today would not be possible without networks. This

dependency on the underlying network is likely to increase in the future.
The high-level learning objective of this module can be summarized as follows:

e Thinking in a networked world. The world is more and more interconnected and the use
of networks will continue to increase. Students must understand how the networks

behave and the key principles behind the organization and operation of the networks.

e Continued study. The networking domain is rapidly evolving and a first networking
course should be a starting point to other more advanced courses on network design,

network management, sensor networks, etc.

e Principles and practice interact. Networking is real and many of the design choices that
involve networks also depend on practical constraints. Students should be exposed to
these practical constraints by experimenting with networking, using tools, and writing

networked software.

There are different ways of organizing a networking course. Some educators prefer a top-down
approach, i.e., the course starts from the applications and then explains reliable delivery, routing
and forwarding. Other educators prefer a bottom-up approach where the students start with the

lower layers and build their understanding of the network, transport and application layers later.

NC. Networking and Communication (3 Core-Tier1 hours, 7 Core-Tier2 hours)

Core-Tier1 hours

Core-Tier2 hours

Includes Electives

NC/Introduction 1.5 N
NC/Networked Applications 1.5 N
NC/Reliable Data Delivery 2 N
NC/Routing And Forwarding 1.5 N
NC/Local Area Networks 1.5 N
NC/Resource Allocation 1 N
NC/Mobility 1 N
NC/Social Networking Y

NC/Introduction
[1.5 Core-Tier1 hours]

Cross-reference IAS/Network Security, which discusses network security and its applications.

Topics:

e Organization of the Internet (Internet Service Providers, Content Providers, etc.)

e Switching techniques (e.g., circuit, packet)
e Physical pieces of a network, including hosts, routers, switches, ISPs, wireless, LAN, access point, and

firewalls

e Layering principles (encapsulation, multiplexing)

e Roles of the different layers (application, transport, network, datalink, physical)

Learning Outcomes:

halh o e

Articulate the organization of the Internet. [Familiarity]

List and define the appropriate network terminology. [Familiarity]

Describe the layered structure of a typical networked architecture. [Familiarity]
Identify the different types of complexity in a network (edges, core, etc.). [Familiarity]

-131-

NC/Networked Applications
[1.5 Core-Tier1 hours]

Topics:
e Naming and address schemes (DNS, IP addresses, Uniform Resource Identifiers, etc.)
o Distributed applications (client/server, peer-to-peer, cloud, etc.)
e HTTP as an application layer protocol
e Multiplexing with TCP and UDP
e Socket APIs

Learning Outcomes:

1. List the differences and the relations between names and addresses in a network. [Familiarity]
2. Define the principles behind naming schemes and resource location. [Familiarity]
3. Implement a simple client-server socket-based application. [Usage]

NC/Reliable Data Delivery

[2 Core-Tier2 hours]

This knowledge unit is related to Systems Fundamentals (SF). Cross-reference SF/State and
State Machines and SF/Reliability through Redundancy.

Topics:
e Error control (retransmission techniques, timers)
e Flow control (acknowledgements, sliding window)
e Performance issues (pipelining)
e TCP

Learning Outcomes:

1. Describe the operation of reliable delivery protocols. [Familiarity]
2. List the factors that affect the performance of reliable delivery protocols. [Familiarity]
3. Design and implement a simple reliable protocol. [Usage]

NC/Routing and Forwarding

[1.5 Core-Tier2 hours]
Topics:

Routing versus forwarding

Static routing

Internet Protocol (IP)

Scalability issues (hierarchical addressing)

Learning Outcomes:

1. Describe the organization of the network layer. [Familiarity]
2. Describe how packets are forwarded in an IP network. [Familiarity]
3. List the scalability benefits of hierarchical addressing. [Familiarity]

-132 -

NC/Local Area Networks
[1.5 Core-Tier2 hours]

Topics:
e Multiple Access Problem
e Common approaches to multiple access (exponential-backoff, time division multiplexing, etc)
e Local Area Networks
e Ethernet
e Switching

Learning Outcomes:

Describe how frames are forwarded in an Ethernet network. [Familiarity]

Describe the differences between IP and Ethernet. [Familiarity]

Describe the interrelations between IP and Ethernet. [Familiarity]

Describe the steps used in one common approach to the multiple access problem. [Familiarity]

bl ol e

NC/Resource Allocation

[1 Core-Tier2 hours]
Topics:

Need for resource allocation

Fixed allocation (TDM, FDM, WDM) versus dynamic allocation
End-to-end versus network assisted approaches

Fairness

Principles of congestion control

Approaches to Congestion (e.g., Content Distribution Networks)

Learning Outcomes:

1. Describe how resources can be allocated in a network. [Familiarity]

2. Describe the congestion problem in a large network. [Familiarity]

3. Compare and contrast fixed and dynamic allocation techniques. [Assessment]
4. Compare and contrast current approaches to congestion. [Assessment]

NC/Mobility

[1 Core-Tier2 hours]
Topics:

e Principles of cellular networks
e 802.11 networks
e Issues in supporting mobile nodes (home agents)

Learning Outcomes:

1. Describe the organization of a wireless network. [Familiarity]
2. Describe how wireless networks support mobile users. [Familiarity]

- 133 -

NC/Social Networking

[Elective]
Topics:

Social networks overview
Example social network platforms
Structure of social network graphs
Social network analysis

Learning Outcomes:

Discuss the key principles (such as membership, trust) of social networking. [Familiarity]
Describe how existing social networks operate. [Familiarity]

Construct a social network graph from network data. [Usage]

Analyze a social network to determine who the key people are. [Usage]

Evaluate a given interpretation of a social network question with associated data. [Assessment]

MRS

_134 -

Operating Systems (OS)

An operating system defines an abstraction of hardware and manages resource sharing among
the computer’s users. The topics in this area explain the most basic knowledge of operating
systems in the sense of interfacing an operating system to networks, teaching the difference
between the kernel and user modes, and developing key approaches to operating system design
and implementation. This knowledge area is structured to be complementary to the Systems
Fundamentals (SF), Networking and Communication (NC), Information Assurance and Security
(IAS), and the Parallel and Distributed Computing (PD) knowledge areas. The Systems
Fundamentals and Information Assurance and Security knowledge areas are the new ones to
include contemporary issues. For example, Systems Fundamentals includes topics such as
performance, virtualization and isolation, and resource allocation and scheduling; Parallel and
Distributed Systems includes parallelism fundamentals; and and Information Assurance and
Security includes forensics and security issues in depth. Many courses in Operating Systems

will draw material from across these knowledge areas.

OS. Operating Systems (4 Core-Tier1 hours; 11 Core Tier2 hours)

Core-Tier1 hours | Core-Tier2 hours | Includes Electives
OS/Overview of Operating Systems 2 N
0OS/Operating System Principles 2 N
OS/Concurrency 3 N
0OS/Scheduling and Dispatch 3 N
OS/Memory Management 3 N
OS/Security and Protection 2 N
OS/Virtual Machines Y
OS/Device Management Y
OS/File Systems Y
OS/Real Time and Embedded Systems Y
OS/Fault Tolerance Y
0OS/System Performance Evaluation Y

OS/Overview of Operating Systems
[2 Core-Tier1 hours]

Topics:

Role and purpose of the operating system

Functionality of a typical operating system

Mechanisms to support client-server models, hand-held devices

Design issues (efficiency, robustness, flexibility, portability, security, compatibility)
Influences of security, networking, multimedia, windowing systems

Learning Outcomes:

1. Explain the objectives and functions of modern operating systems. [Familiarity]
. Analyze the tradeoffs inherent in operating system design. [Usage]

3. Describe the functions of a contemporary operating system with respect to convenience, efficiency, and the
ability to evolve. [Familiarity]

4. Discuss networked, client-server, distributed operating systems and how they differ from single user
operating systems. [Familiarity]

5. Identify potential threats to operating systems and the security features design to guard against them.
[Familiarity]

OS/Operating System Principles
[2 Core-Tier1 hours]

Topics:

Structuring methods (monolithic, layered, modular, micro-kernel models)
Abstractions, processes, and resources

Concepts of application program interfaces (APIs)

The evolution of hardware/software techniques and application needs
Device organization

Interrupts: methods and implementations

Concept of user/system state and protection, transition to kernel mode

Learning Outcomes:

1. Explain the concept of a logical layer. [Familiarity]

2. Explain the benefits of building abstract layers in hierarchical fashion. [Familiarity]

3. Describe the value of APIs and middleware. [Assessment]

4. Describe how computing resources are used by application software and managed by system software.
[Familiarity]

5. Contrast kernel and user mode in an operating system. [Usage]

6. Discuss the advantages and disadvantages of using interrupt processing. [Familiarity]

7. Explain the use of a device list and driver I/O queue. [Familiarity]

- 136 -

OS/Concurrency

[3 Core-Tier2 hours]
Topics:

States and state diagrams (cross-reference SF/State and State Machines)
Structures (ready list, process control blocks, and so forth)

Dispatching and context switching

The role of interrupts

Managing atomic access to OS objects

Implementing synchronization primitives

Multiprocessor issues (spin-locks, reentrancy) (cross-reference SF/Parallelism)

Learning Outcomes:

1. Describe the need for concurrency within the framework of an operating system. [Familiarity]
Demonstrate the potential run-time problems arising from the concurrent operation of many separate tasks.
[Usage]

3. Summarize the range of mechanisms that can be employed at the operating system level to realize
concurrent systems and describe the benefits of each. [Familiarity]

4. Explain the different states that a task may pass through and the data structures needed to support the
management of many tasks. [Familiarity]

5. Summarize techniques for achieving synchronization in an operating system (e.g., describe how to
implement a semaphore using OS primitives). [Familiarity]

6. Describe reasons for using interrupts, dispatching, and context switching to support concurrency in an
operating system. [Familiarity]

7. Create state and transition diagrams for simple problem domains. [Usage]

OS/Scheduling and Dispatch
[3 Core-Tier2 hours]

Topics:

e Preemptive and non-preemptive scheduling (cross-reference SF/Resource Allocation and Scheduling,
PD/Parallel Performance)

e Schedulers and policies (cross-reference SF/Resource Allocation and Scheduling, PD/Parallel
Performance)

e Processes and threads (cross-reference SF/Computational paradigms)

e Deadlines and real-time issues

Learning Outcomes:

1. Compare and contrast the common algorithms used for both preemptive and non-preemptive scheduling of
tasks in operating systems, such as priority, performance comparison, and fair-share schemes. [Usage]
2. Describe relationships between scheduling algorithms and application domains. [Familiarity]

3. Discuss the types of processor scheduling such as short-term, medium-term, long-term, and 1/O.
[Familiarity]

4. Describe the difference between processes and threads. [Usage]

5. Compare and contrast static and dynamic approaches to real-time scheduling. [Usage]

6. Discuss the need for preemption and deadline scheduling. [Familiarity]

7. Identify ways that the logic embodied in scheduling algorithms are applicable to other domains, such as

disk I/O, network scheduling, project scheduling, and problems beyond computing. [Usage]

- 137 -

OS/Memory Management

[3 Core-Tier2 hours]
Topics:

e Review of physical memory and memory management hardware
e Working sets and thrashing
e Caching (cross-reference AR/Memory System Organization and Architecture)

Learning Outcomes:

1. Explain memory hierarchy and cost-performance trade-offs. [Familiarity]
Summarize the principles of virtual memory as applied to caching and paging. [Familiarity]

3. Evaluate the trade-offs in terms of memory size (main memory, cache memory, auxiliary memory) and
processor speed. [Assessment]

4. Defend the different ways of allocating memory to tasks, citing the relative merits of each. [Assessment]

5. Describe the reason for and use of cache memory (performance and proximity, different dimension of how
caches complicate isolation and VM abstraction). [Familiarity]

6. Discuss the concept of thrashing, both in terms of the reasons it occurs and the techniques used to recognize
and manage the problem. [Familiarity]

OS/Security and Protection
[2 Core-Tier2 hours]

Topics:
e Overview of system security
e Policy/mechanism separation
e Security methods and devices
e Protection, access control, and authentication
e Backups

Learning Outcomes:

1. Articulate the need for protection and security in an OS (cross-reference IAS/Security Architecture and
Systems Administration/Investigating Operating Systems Security for various systems). [Assessment]

2. Summarize the features and limitations of an operating system used to provide protection and security
(cross-reference IAS/Security Architecture and Systems Administration). [Familiarity]

3. Explain the mechanisms available in an OS to control access to resources (cross-reference IAS/Security
Architecture and Systems Administration/Access Control/Configuring systems to operate securely as an IT
system). [Familiarity]

4. Carry out simple system administration tasks according to a security policy, for example creating accounts,
setting permissions, applying patches, and arranging for regular backups (cross-reference IAS/Security
Architecture and Systems Administration). [Usage]

- 138 -

OS/Virtual Machines
[Elective]

Topics:

Types of virtualization (including Hardware/Software, OS, Server, Service, Network)
Paging and virtual memory

Virtual file systems

Hypervisors

Portable virtualization; emulation vs. isolation

Cost of virtualization

Learning Outcomes:

Do =

Explain the concept of virtual memory and how it is realized in hardware and software. [Familiarity]
Differentiate emulation and isolation. [Familiarity]

Evaluate virtualization trade-offs. [Assessment]

Discuss hypervisors and the need for them in conjunction with different types of hypervisors. [Usage]

OS/Device Management
[Elective]

Topics:

Characteristics of serial and parallel devices
Abstracting device differences

Buffering strategies

Direct memory access

Recovery from failures

Learning Outcomes:

1.

W

Explain the key difference between serial and parallel devices and identify the conditions in which each is
appropriate. [Familiarity]

Identify the relationship between the physical hardware and the virtual devices maintained by the operating
system. [Usage]

Explain buffering and describe strategies for implementing it. [Familiarity]

Differentiate the mechanisms used in interfacing a range of devices (including hand-held devices,
networks, multimedia) to a computer and explain the implications of these for the design of an operating
system. [Usage]

Describe the advantages and disadvantages of direct memory access and discuss the circumstances in
which its use is warranted. [Usage]

Identify the requirements for failure recovery. [Familiarity]

Implement a simple device driver for a range of possible devices. [Usage]

- 139 -

OS/File Systems

[Elective]
Topics:

Files: data, metadata, operations, organization, buffering, sequential, nonsequential
Directories: contents and structure

File systems: partitioning, mount/unmount, virtual file systems

Standard implementation techniques

Memory-mapped files

Special-purpose file systems

Naming, searching, access, backups

Journaling and log-structured file systems

Learning Outcomes:

1. Describe the choices to be made in designing file systems. [Familiarity]
Compare and contrast different approaches to file organization, recognizing the strengths and weaknesses
of each. [Usage]

3. Summarize how hardware developments have led to changes in the priorities for the design and the
management of file systems. [Familiarity]

4. Summarize the use of journaling and how log-structured file systems enhance fault tolerance. [Familiarity]

OS/Real Time and Embedded Systems
[Elective]

Topics:

Process and task scheduling

Memory/disk management requirements in a real-time environment
Failures, risks, and recovery

Special concerns in real-time systems

Learning Outcomes:

1. Describe what makes a system a real-time system. [Familiarity]
Explain the presence of and describe the characteristics of latency in real-time systems. [Familiarity]
3. Summarize special concerns that real-time systems present, including risk, and how these concerns are
addressed. [Familiarity]

OS/Fault Tolerance
[Elective]

Topics:

Fundamental concepts: reliable and available systems (cross-reference SF/Reliability through Redundancy)
Spatial and temporal redundancy (cross-reference SF/Reliability through Redundancy)

Methods used to implement fault tolerance

Examples of OS mechanisms for detection, recovery, restart to implement fault tolerance, use of these
techniques for the OS’s own services

~ 140 -

Learning Outcomes:

1.

Explain the relevance of the terms fault tolerance, reliability, and availability. [Familiarity]

2. Outline the range of methods for implementing fault tolerance in an operating system. [Familiarity]

3.

Explain how an operating system can continue functioning after a fault occurs. [Familiarity]

OS/System Performance Evaluation
[Elective]

Topics:

Why system performance needs to be evaluated (cross-reference SF/Performance/Figures of performance
merit)

What is to be evaluated (cross-reference SF/Performance/Figures of performance merit)

Systems performance policies, e.g., caching, paging, scheduling, memory management, and security
Evaluation models: deterministic, analytic, simulation, or implementation-specific

How to collect evaluation data (profiling and tracing mechanisms)

Learning Outcomes:

1.
2.

Describe the performance measurements used to determine how a system performs. [Familiarity]
Explain the main evaluation models used to evaluate a system. [Familiarity]

_ 141 -

Platform-Based Development (PBD)

Platform-based development is concerned with the design and development of software
applications that reside on specific software platforms. In contrast to general purpose
programming, platform-based development takes into account platform-specific constraints. For
instance web programming, multimedia development, mobile computing, app development, and
robotics are examples of relevant platforms that provide specific services/APIs/hardware that
constrain development. Such platforms are characterized by the use of specialized APIs, distinct
delivery/update mechanisms, and being abstracted away from the machine level. Platform-based

development may be applied over a wide breadth of ecosystems.

While we recognize that some platforms (e.g., web development) are prominent, we are also
cognizant of the fact that no particular platform should be specified as a requirement in the
CS2013 curricular guidelines. Consequently, this Knowledge Area highlights many of the
platforms that have become popular, without including any such platform in the core curriculum.
We note that the general skill of developing with respect to an API or a constrained environment
is covered in other Knowledge Areas, such as Software Development Fundamentals (SDF).
Platform-based development further emphasizes such general skills within the context of

particular platforms.

PBD. Platform-Based Development (Elective)

Core-Tier1 hours Core-Tier2 hours Includes Electives
PBD/Introduction Y
PBD/Web Platforms Y
PBD/Mobile Platforms Y
PBD/Industrial Platforms Y
PBD/Game Platforms Y

PBD/Introduction
[Elective]

This knowledge unit describes the fundamental differences that Platform-Based Development
has over traditional software development.

Topics:

Overview of platforms (e.g., Web, Mobile, Game, Industrial)
Programming via platform-specific APIs

Overview of Platform Languages (e.g., Objective C, HTMLYS)
Programming under platform constraints

Learning Outcomes:

L=

Describe how platform-based development differs from general purpose programming. [Familiarity]
List characteristics of platform languages. [Familiarity]

Write and execute a simple platform-based program. [Usage]

List the advantages and disadvantages of programming with platform constraints. [Familiarity]

PBD/Web Platforms
[Elective]

Topics:

Web programming languages (e.g., HTMLS, Java Script, PHP, CSS)
Web platform constraints

Software as a Service (SaaS)

Web standards

Learning Outcomes:

Sk WD

Design and Implement a simple web application. [Usage]

Describe the constraints that the web puts on developers. [Familiarity]

Compare and contrast web programming with general purpose programming. [Assessment]

Describe the differences between Software-as-a-Service and traditional software products. [Familiarity]
Discuss how web standards impact software development. [Familiarity]

Review an existing web application against a current web standard. [Assessment]

PBD/Mobile Platforms
[Elective]

Topics:

Mobile programming languages

Challenges with mobility and wireless communication
Location-aware applications

Performance / power tradeoffs

Mobile platform constraints

Emerging technologies

_ 143 -

Learning Outcomes:

L=

Design and implement a mobile application for a given mobile platform. [Usage]

Discuss the constraints that mobile platforms put on developers. [Familiarity]

Discuss the performance vs. power tradeoff. [Familiarity]

Compare and contrast mobile programming with general purpose programming. [Assessment]

PBD/Industrial Platforms

[Elective]
This knowledge unit is related to IS/Robotics.

Topics:

Types of Industrial Platforms (e.g., Mathematic, Robotic, Industrial Control)
Robotic software and its architecture

Domain-specific languages

Industrial platform constraints

Learning Outcomes:

1.

2.

3.

Design and implement an industrial application on a given platform (e.g., using Lego Mindstorms or
Matlab). [Usage]

Compare and contrast domain specific languages with general purpose programming languages.
[Assessment]

Discuss the constraints that a given industrial platforms impose on developers. [Familiarity]

PBD/Game Platforms
[Elective]

Topics:

Types of game platforms (e.g., XBox, Wii, PlayStation)
Game platform languages (e.g., C++, Java, Lua, Python)
Game platform constraints

Learning Outcomes:

1.
2.
3.

Design and implement a simple application on a game platform. [Usage]
Describe the constraints that game platforms impose on developers. [Familiarity]
Compare and contrast game programming with general purpose programming. [Assessment]

_ 144 -

Parallel and Distributed Computing (PD)

The past decade has brought explosive growth in multiprocessor computing, including multi-core
processors and distributed data centers. As a result, parallel and distributed computing has
moved from a largely elective topic to become more of a core component of undergraduate
computing curricula. Both parallel and distributed computing entail the logically simultaneous
execution of multiple processes, whose operations have the potential to interleave in complex
ways. Parallel and distributed computing builds on foundations in many areas, including an
understanding of fundamental systems concepts such as concurrency and parallel execution,
consistency in state/memory manipulation, and latency. Communication and coordination
among processes is rooted in the message-passing and shared-memory models of computing and
such algorithmic concepts as atomicity, consensus, and conditional waiting. Achieving speedup
in practice requires an understanding of parallel algorithms, strategies for problem
decomposition, system architecture, detailed implementation strategies, and performance
analysis and tuning. Distributed systems highlight the problems of security and fault tolerance,
emphasize the maintenance of replicated state, and introduce additional issues that bridge to

computer networking.

Because parallelism interacts with so many areas of computing, including at least algorithms,
languages, systems, networking, and hardware, many curricula will put different parts of the
knowledge area in different courses, rather than in a dedicated course. While we acknowledge
that computer science is moving in this direction and may reach that point, in 2013 this process is
still in flux and we feel it provides more useful guidance to curriculum designers to aggregate the
fundamental parallelism topics in one place. Note, however, that the fundamentals of
concurrency and mutual exclusion appear in the Systems Fundamentals (SF) Knowledge Area.
Many curricula may choose to introduce parallelism and concurrency in the same course (see
below for the distinction intended by these terms). Further, we note that the topics and learning
outcomes listed below include only brief mentions of purely elective coverage. At the present
time, there is too much diversity in topics that share little in common (including for example,
parallel scientific computing, process calculi, and non-blocking data structures) to recommend

particular topics be covered in elective courses.

Because the terminology of parallel and distributed computing varies among communities, we
provide here brief descriptions of the intended senses of a few terms. This list is not exhaustive

or definitive, but is provided for the sake of clarity.

e Parallelism: Using additional computational resources simultaneously, usually for

speedup.
e Concurrency: Efficiently and correctly managing concurrent access to resources.

e Activity: A computation that may proceed concurrently with others; for example a

program, process, thread, or active parallel hardware component.

e Atomicity: Rules and properties governing whether an action is observationally
indivisible; for example, setting all of the bits in a word, transmitting a single packet, or

completing a transaction.

o Consensus: Agreement among two or more activities about a given predicate; for

example, the value of a counter, the owner of a lock, or the termination of a thread.

e Consistency: Rules and properties governing agreement about the values of variables
written, or messages produced, by some activities and used by others (thus possibly
exhibiting a data race); for example, sequential consistency, stating that the values of all
variables in a shared memory parallel program are equivalent to that of a single program

performing some interleaving of the memory accesses of these activities.

e Multicast: A message sent to possibly many recipients, generally without any constraints
about whether some recipients receive the message before others. An event is a multicast

message sent to a designated set of listeners or subscribers.

As multi-processor computing continues to grow in the coming years, so too will the role of
parallel and distributed computing in undergraduate computing curricula. In addition to the
guidelines presented here, we also direct the interested reader to the document entitled
"NSF/TCPP Curriculum Initiative on Parallel and Distributed Computing - Core Topics for

Undergraduates", available from the website: http://www.cs.gsu.edu/~tcpp/curriculum/.

General cross-referencing note: Systems Fundamentals also contains an introduction to

parallelism (SF/Computational Paradigms, SF/System Support for Parallelism, SF/Performance).

_ 146 -

http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�

The introduction to parallelism in SF complements the one here and there is no ordering

constraint between them. In SF, the idea is to provide a unified view of the system support for

simultaneous execution at multiple levels of abstraction (parallelism is inherent in gates,

processors, operating systems, and servers), whereas here the focus is on a preliminary

understanding of parallelism as a computing primitive and the complications that arise in parallel

and concurrent programming. Given these different perspectives, the hours assigned to each are

not redundant: the layered systems view and the high-level computing concepts are accounted

for separately in terms of the core hours.

PD. Parallel and Distributed Computing (5 Core-Tier1 hours, 10 Core-Tier2 hours)

Core-Tier1 hours

Core-Tier2 hours

Includes Electives

PD/Parallelism Fundamentals 2 N
PD/Parallel Decomposition 1 3 N
PD/Communication and Coordination | 1 3 Y
PD/Parallel Algorithms, Analysis, and 3 Y
Programming

PD/Parallel Architecture 1 1 Y
PD/Parallel Performance Y
PD/Distributed Systems Y
PD/Cloud Computing Y
PD/Formal Models and Semantics Y

_ 147 -

PD/Parallelism Fundamentals
[2 Core-Tier1 hours]

Build upon students’ familiarity with the notion of basic parallel execution—a concept addressed
in Systems Fundamentals—to delve into the complicating issues that stem from this notion, such
as race conditions and liveness.

Cross-reference SF/Computational Paradigms and SF/System Support for Parallelism.

Topics:

e Multiple simultaneous computations
e QGoals of parallelism (e.g., throughput) versus concurrency (e.g., controlling access to shared resources)
e Parallelism, communication, and coordination
o Programming constructs for coordinating multiple simultaneous computations
o Need for synchronization
e Programming errors not found in sequential programming
o Data races (simultaneous read/write or write/write of shared state)
o Higher-level races (interleavings violating program intention, undesired non-determinism)
o Lack of liveness/progress (deadlock, starvation)

Learning outcomes:

1. Distinguish using computational resources for a faster answer from managing efficient access to a shared
resource. (Cross-reference GV/Fundamental Concepts, outcome 5.) [Familiarity]

2. Distinguish multiple sufficient programming constructs for synchronization that may be inter-
implementable but have complementary advantages. [Familiarity]

3. Distinguish data races from higher level races. [Familiarity]

PD/Parallel Decomposition

[1 Core-Tier1 hour, 3 Core-Tier2 hours]
(Cross-reference SF/System Support for Parallelism)
Topics:

[Core-Tierl]

e Need for communication and coordination/synchronization
e Independence and partitioning

[Core-Tier2]

Basic knowledge of parallel decomposition concepts (cross-reference SF/System Support for Parallelism)
Task-based decomposition
o Implementation strategies such as threads
e Data-parallel decomposition
o Strategies such as SIMD and MapReduce
Actors and reactive processes (e.g., request handlers)

_ 148 -

Learning outcomes:
[Core-Tierl]

1. Explain why synchronization is necessary in a specific parallel program. [Usage]
2. Identify opportunities to partition a serial program into independent parallel modules. [Familiarity]

[Core-Tier2]

Write a correct and scalable parallel algorithm. [Usage]

Parallelize an algorithm by applying task-based decomposition. [Usage]
Parallelize an algorithm by applying data-parallel decomposition. [Usage]
Write a program using actors and/or reactive processes. [Usage]

ANl

PD/Communication and Coordination
[1 Core-Tier1 hour, 3 Core-Tier2 hours]

Cross-reference OS/Concurrency for mechanism implementation issues.

Topics:
[Core-Tierl]

e Shared Memory
e Consistency, and its role in programming language guarantees for data-race-free programs

[Core-Tier2]

e Message passing
o Point-to-point versus multicast (or event-based) messages
o Blocking versus non-blocking styles for sending and receiving messages
o Message buffering (cross-reference PF/Fundamental Data Structures/Queues)
e Atomicity
o Specifying and testing atomicity and safety requirements
o Granularity of atomic accesses and updates, and the use of constructs such as critical sections or
transactions to describe them
o Mutual Exclusion using locks, semaphores, monitors, or related constructs
= Potential for liveness failures and deadlock (causes, conditions, prevention)
o Composition
= Composing larger granularity atomic actions using synchronization
= Transactions, including optimistic and conservative approaches

[Elective]

e Consensus
o (Cyclic) barriers, counters, or related constructs
e Conditional actions
o Conditional waiting (e.g., using condition variables)

_ 149 -

Learning outcomes:

[Core-Tierl]

1.
2.

Use mutual exclusion to avoid a given race condition. [Usage]
Give an example of an ordering of accesses among concurrent activities (e.g., program with a data race)
that is not sequentially consistent. [Familiarity]

[Core-Tier2]

3. Give an example of a scenario in which blocking message sends can deadlock. [Usage]

4. Explain when and why multicast or event-based messaging can be preferable to alternatives. [Familiarity]

5. Write a program that correctly terminates when all of a set of concurrent tasks have completed. [Usage]

6. Use a properly synchronized queue to buffer data passed among activities. [Usage]

7. Explain why checks for preconditions, and actions based on these checks, must share the same unit of
atomicity to be effective. [Familiarity]

8. Write a test program that can reveal a concurrent programming error; for example, missing an update when
two activities both try to increment a variable. [Usage]

9. Describe at least one design technique for avoiding liveness failures in programs using multiple locks or
semaphores. [Familiarity]

10. Describe the relative merits of optimistic versus conservative concurrency control under different rates of
contention among updates. [Familiarity]

11. Give an example of a scenario in which an attempted optimistic update may never complete. [Familiarity]

[Elective]
12. Use semaphores or condition variables to block threads until a necessary precondition holds. [Usage]

PD/Parallel Algorithms, Analysis, and Programming
[3 Core-Tier2 hours]

Topics:

[Core-Tier2]

e Critical paths, work and span, and the relation to Amdahl’s law (cross-reference SF/Performance)
e Speed-up and scalability
e Naturally (embarrassingly) parallel algorithms
e Parallel algorithmic patterns (divide-and-conquer, map and reduce, master-workers, others)
o Specific algorithms (e.g., parallel MergeSort)
[Elective]

Parallel graph algorithms (e.g., parallel shortest path, parallel spanning tree) (cross-reference
AL/Algorithmic Strategies/Divide-and-conquer)

Parallel matrix computations

Producer-consumer and pipelined algorithms

Examples of non-scalable parallel algorithms

- 150 -

Learning outcomes:

[Core-Tier2]

1. Define “critical path”, “work”, and “span”. [Familiarity]

2. Compute the work and span, and determine the critical path with respect to a parallel execution diagram.
[Usage]

3. Define “speed-up” and explain the notion of an algorithm’s scalability in this regard. [Familiarity]

4. Identify independent tasks in a program that may be parallelized. [Usage]

5. Characterize features of a workload that allow or prevent it from being naturally parallelized. [Familiarity]

6. Implement a parallel divide-and-conquer (and/or graph algorithm) and empirically measure its performance
relative to its sequential analog. [Usage]

7. Decompose a problem (e.g., counting the number of occurrences of some word in a document) via map and
reduce operations. [Usage]

[Elective]

8. Provide an example of a problem that fits the producer-consumer paradigm. [Familiarity]

9. Give examples of problems where pipelining would be an effective means of parallelization. [Familiarity]

10. Implement a parallel matrix algorithm. [Usage]

11. Identify issues that arise in producer-consumer algorithms and mechanisms that may be used for addressing

them. [Familiarity]

PD/Parallel Architecture

[1 Core-Tier1 hour, 1 Core-Tier2 hour]

The topics listed here are related to knowledge units in the Architecture and Organization (AR)
knowledge area (AR/Assembly Level Machine Organization and AR/Multiprocessing and
Alternative Architectures). Here, we focus on parallel architecture from the standpoint of
applications, whereas the Architecture and Organization knowledge area presents the topic from
the hardware perspective.

[Core-Tierl]

Multicore processors
Shared vs. distributed memory

[Core-Tier2]

Symmetric multiprocessing (SMP)
SIMD, vector processing

[Elective]

GPU, co-processing
Flynn’s taxonomy
Instruction level support for parallel programming
o Atomic instructions such as Compare and Set
Memory issues
o Multiprocessor caches and cache coherence
o Non-uniform memory access (NUMA)

-151-

e Topologies
o Interconnects
o Clusters
o Resource sharing (e.g., buses and interconnects)

Learning outcomes:
[Core-Tierl]
1. Explain the differences between shared and distributed memory. [Familiarity]

[Core-Tier2]

2. Describe the SMP architecture and note its key features. [Familiarity]
3. Characterize the kinds of tasks that are a natural match for SIMD machines. [Familiarity]

[Elective]
4. Describe the advantages and limitations of GPUs vs. CPUs. [Familiarity]
5. Explain the features of each classification in Flynn’s taxonomy. [Familiarity]
6. Describe assembly-level support for atomic operations. [Familiarity]
7. Describe the challenges in maintaining cache coherence. [Familiarity]
8. Describe the key performance challenges in different memory and distributed system topologies.

[Familiarity]

PD/Parallel Performance
[Elective]

Topics:

Load balancing

Performance measurement

Scheduling and contention (cross-reference OS/Scheduling and Dispatch)

Evaluating communication overhead

Data management
o Non-uniform communication costs due to proximity (cross-reference SF/Proximity)
o Cache effects (e.g., false sharing)
o Maintaining spatial locality

e Power usage and management

Learning outcomes:

—_—

Detect and correct a load imbalance. [Usage]

Calculate the implications of Amdahl’s law for a particular parallel algorithm (cross-reference
SF/Evaluation for Amdahl’s Law). [Usage]

Describe how data distribution/layout can affect an algorithm’s communication costs. [Familiarity]
Detect and correct an instance of false sharing. [Usage]

Explain the impact of scheduling on parallel performance. [Familiarity]

Explain performance impacts of data locality. [Familiarity]

Explain the impact and trade-off related to power usage on parallel performance. [Familiarity]

N

Nankw

- 152 -

PD/Distributed Systems
[Elective]

Topics:

Faults (cross-reference OS/Fault Tolerance)

o Network-based (including partitions) and node-based failures

o Impact on system-wide guarantees (e.g., availability)
Distributed message sending

o Data conversion and transmission

o Sockets

o Message sequencing

o Buffering, retrying, and dropping messages
Distributed system design tradeoffs

o Latency versus throughput

o Consistency, availability, partition tolerance
Distributed service design

o Stateful versus stateless protocols and services

o Session (connection-based) designs

o Reactive (I0-triggered) and multithreaded designs
Core distributed algorithms

o Election, discovery

Learning outcomes:

1.

Distinguish network faults from other kinds of failures. [Familiarity]

Explain why synchronization constructs such as simple locks are not useful in the presence of distributed
faults. [Familiarity]

Write a program that performs any required marshaling and conversion into message units, such as packets,
to communicate interesting data between two hosts. [Usage]

Measure the observed throughput and response latency across hosts in a given network. [Usage]

Explain why no distributed system can be simultaneously consistent, available, and partition tolerant.
[Familiarity]

Implement a simple server -- for example, a spell checking service. [Usage]

Explain the tradeoffs among overhead, scalability, and fault tolerance when choosing a stateful v. stateless
design for a given service. [Familiarity]

Describe the scalability challenges associated with a service growing to accommodate many clients, as well
as those associated with a service only transiently having many clients. [Familiarity]

Give examples of problems for which consensus algorithms such as leader election are required. [Usage]

PD/Cloud Computing
[Elective]

Topics:

Internet-Scale computing
o Task partitioning (cross-reference PD/Parallel Algorithms, Analysis, and Programming)
o Data access
o Clusters, grids, and meshes
Cloud services
o Infrastructure as a service
= Elasticity of resources
= Platform APIs

- 153 -

o Software as a service
o Security
o Cost management
e Virtualization (cross-reference SF/Virtualization and Isolation and OS/Virtual Machines)
o Shared resource management
o Migration of processes
e Cloud-based data storage
o Shared access to weakly consistent data stores
Data synchronization
Data partitioning
Distributed file systems (cross-reference IM/Distributed Databases)
Replication

O O O O

Learning outcomes:

1. Discuss the importance of elasticity and resource management in cloud computing. [Familiarity]
Explain strategies to synchronize a common view of shared data across a collection of devices.
[Familiarity]

Explain the advantages and disadvantages of using virtualized infrastructure. [Familiarity]
Deploy an application that uses cloud infrastructure for computing and/or data resources. [Usage]
5. Appropriately partition an application between a client and resources. [Usage]

>

PD/Formal Models and Semantics
[Elective]

Topics:

e Formal models of processes and message passing, including algebras such as Communicating Sequential
Processes (CSP) and pi-calculus

e Formal models of parallel computation, including the Parallel Random Access Machine (PRAM) and

alternatives such as Bulk Synchronous Parallel (BSP)

Formal models of computational dependencies

Models of (relaxed) shared memory consistency and their relation to programming language specifications

Algorithmic correctness criteria including linearizability

Models of algorithmic progress, including non-blocking guarantees and fairness

Techniques for specifying and checking correctness properties such as atomicity and freedom from data

races

Learning outcomes:

Model a concurrent process using a formal model, such as pi-calculus. [Usage]

Explain the characteristics of a particular formal parallel model. [Familiarity]

Formally model a shared memory system to show if it is consistent. [Usage]

Use a model to show progress guarantees in a parallel algorithm. [Usage]

Use formal techniques to show that a parallel algorithm is correct with respect to a safety or liveness
property. [Usage]

Decide if a specific execution is linearizable or not. [Usage]

Dk WD =

o

_ 154 -

Programming Languages (PL)

Programming languages are the medium through which programmers precisely describe
concepts, formulate algorithms, and reason about solutions. In the course of a career, a computer
scientist will work with many different languages, separately or together. Software developers
must understand the programming models underlying different languages and make informed
design choices in languages supporting multiple complementary approaches. Computer
scientists will often need to learn new languages and programming constructs, and must
understand the principles underlying how programming language features are defined,
composed, and implemented. The effective use of programming languages, and appreciation of
their limitations, also requires a basic knowledge of programming language translation and static

program analysis, as well as run-time components such as memory management.

PL. Programming Languages (8 Core-Tier1 hours, 20 Core-Tier2 hours)

Core-Tier1 hours | Core-Tier2 hours | Includes Electives

PL/Object-Oriented Programming 4 6 N

PL/Functional Programming 3 4 N

PL/Event-Driven and Reactive 2 N
Programming

PL/Basic Type Systems 1 4 N

PL/Program Representation 1 N

4

PL/Language Translation and 3
Execution

PL/Syntax Analysis

PL/Compiler Semantic Analysis

PL/Code Generation

PL/Runtime Systems

PL/Static Analysis

<|=<|=<|=<|=<]|=

PL/Advanced Programming
Constructs

PL/Concurrency and Parallelism

PL/Type Systems

PL/Formal Semantics

PL/Language Pragmatics

<|=<|=<|=<|=

PL/Logic Programming

Note:

e Some topics from one or more of the first three Knowledge Units (Object-Oriented
Programming, Functional Programming, Event-Driven and Reactive Programming) are
likely to be integrated with topics in the SF-Software Development Fundamentals
Knowledge Area in a curriculum’s introductory courses. Curricula will differ on which
topics are integrated in this fashion and which are delayed until later courses on software
development and programming languages.

e Some of the most important core learning outcomes are relevant to object-oriented
programming, functional programming, and, in fact, all programming. These learning
outcomes are repeated in the Object-Oriented Programming and Functional
Programming Knowledge Units, with a note to this effect. We do not intend that a

- 156 -

curriculum necessarily needs to cover them multiple times, though some will. We repeat
them only because they do not naturally fit in only one Knowledge Unit.

PL/Object-Oriented Programming

[4 Core-Tier1 hours, 6 Core-Tier2 hours]
Topics:

[Core-Tierl]

e Object-oriented design
o Decomposition into objects carrying state and having behavior
o Class-hierarchy design for modeling

e Definition of classes: fields, methods, and constructors

e Subclasses, inheritance, and method overriding

e Dynamic dispatch: definition of method-call

[Core-Tier2]

o Subtyping (cross-reference PL/Type Systems)
o Subtype polymorphism; implicit upcasts in typed languages
o Notion of behavioral replacement: subtypes acting like supertypes
o Relationship between subtyping and inheritance
e Object-oriented idioms for encapsulation
o Privacy and visibility of class members
o Interfaces revealing only method signatures
o Abstract base classes
e Using collection classes, iterators, and other common library components

Learning outcomes:
[Core-Tierl]

1. Design and implement a class. [Usage]

Use subclassing to design simple class hierarchies that allow code to be reused for distinct subclasses.

[Usage]

Correctly reason about control flow in a program using dynamic dispatch. [Usage]

4. Compare and contrast (1) the procedural/functional approach (defining a function for each operation with
the function body providing a case for each data variant) and (2) the object-oriented approach (defining a
class for each data variant with the class definition providing a method for each operation). Understand
both as defining a matrix of operations and variants. [Assessment] This outcome also appears in
PL/Functional Programming.

W

[Core-Tier2]

5. Explain the relationship between object-oriented inheritance (code-sharing and overriding) and subtyping
(the idea of a subtype being usable in a context that expects the supertype). [Familiarity]

6. Use object-oriented encapsulation mechanisms such as interfaces and private members. [Usage]

7. Define and use iterators and other operations on aggregates, including operations that take functions as
arguments, in multiple programming languages, selecting the most natural idioms for each language.
[Usage] This outcome also appears in PL/Functional Programming.

- 157 -

PL/Functional Programming

[3 Core-Tier1 hours, 4 Core-Tier2 hours]
Topics:

[Core-Tierl]

e Effect-free programming
o Function calls have no side effects, facilitating compositional reasoning
o Variables are immutable, preventing unexpected changes to program data by other code
o Data can be freely aliased or copied without introducing unintended effects from mutation
e Processing structured data (e.g., trees) via functions with cases for each data variant
o Associated language constructs such as discriminated unions and pattern-matching over them
o Functions defined over compound data in terms of functions applied to the constituent pieces
o First-class functions (taking, returning, and storing functions)

[Core-Tier2]

e Function closures (functions using variables in the enclosing lexical environment)
o Basic meaning and definition -- creating closures at run-time by capturing the environment
o Canonical idioms: call-backs, arguments to iterators, reusable code via function arguments
o Using a closure to encapsulate data in its environment
o Currying and partial application

e Defining higher-order operations on aggregates, especially map, reduce/fold, and filter

Learning outcomes:
[Core-Tierl]

1. Write basic algorithms that avoid assigning to mutable state or considering reference equality. [Usage]
. Write useful functions that take and return other functions. [Usage]

3. Compare and contrast (1) the procedural/functional approach (defining a function for each operation with
the function body providing a case for each data variant) and (2) the object-oriented approach (defining a
class for each data variant with the class definition providing a method for each operation). Understand
both as defining a matrix of operations and variants. [Assessment] This outcome also appears in
PL/Object-Oriented Programming.

[Core-Tier2]

4. Correctly reason about variables and lexical scope in a program using function closures. [Usage]

5. Use functional encapsulation mechanisms such as closures and modular interfaces. [Usage]

6. Define and use iterators and other operations on aggregates, including operations that take functions as
arguments, in multiple programming languages, selecting the most natural idioms for each language.
[Usage] This outcome also appears in PL/Object-Oriented Programming.

- 158 -

PL/Event-Driven and Reactive Programming
[2 Core-Tier2 hours]

This material can stand alone or be integrated with other knowledge units on concurrency,
asynchrony, and threading to allow contrasting events with threads.

Topics:

e Events and event handlers
e Canonical uses such as GUIs, mobile devices, robots, servers
e Using a reactive framework
o Defining event handlers/listeners
o Main event loop not under event-handler-writer’s control
e Externally-generated events and program-generated events
e Separation of model, view, and controller

Learning outcomes:

1. Write event handlers for use in reactive systems, such as GUIs. [Usage]
Explain why an event-driven programming style is natural in domains where programs react to external
events. [Familiarity]

3. Describe an interactive system in terms of a model, a view, and a controller. [Familiarity]

PL/Basic Type Systems
[1 Core-Tier1 hour, 4 Core-Tier2 hours]

The core-tier2 hours would be profitably spent both on the core-tier2 topics and on a less shallow
treatment of the core-tierl topics and learning outcomes.

Topics:
[Core-Tierl]

e A type as a set of values together with a set of operations
o Primitive types (e.g., numbers, Booleans)
o Compound types built from other types (e.g., records, unions, arrays, lists, functions, references)
e Association of types to variables, arguments, results, and fields
e Type safety and errors caused by using values inconsistently given their intended types
e Goals and limitations of static typing
o Eliminating some classes of errors without running the program
o Undecidability means static analysis must conservatively approximate program behavior

[Core-Tier2]

e Generic types (parametric polymorphism)

o Definition

o Use for generic libraries such as collections

o Comparison with ad hoc polymorphism (overloading) and subtype polymorphism
e Complementary benefits of static and dynamic typing

o Errors early vs. errors late/avoided

- 159 -

o Enforce invariants during code development and code maintenance vs. postpone typing decisions
while prototyping and conveniently allow flexible coding patterns such as heterogeneous
collections

o Avoid misuse of code vs. allow more code reuse

o Detect incomplete programs vs. allow incomplete programs to run

Learning outcomes:

[Core-Tierl]

1.

W

6.

For both a primitive and a compound type, informally describe the values that have that type. [Familiarity]
For a language with a static type system, describe the operations that are forbidden statically, such as
passing the wrong type of value to a function or method. [Familiarity]

Describe examples of program errors detected by a type system. [Familiarity]

For multiple programming languages, identify program properties checked statically and program
properties checked dynamically. [Usage]

Give an example program that does not type-check in a particular language and yet would have no error if
run. [Familiarity]

Use types and type-error messages to write and debug programs. [Usage]

[Core-Tier2]

7.
8.
9.

10.

11.
12.

Explain how typing rules define the set of operations that are legal for a type. [Familiarity]

Write down the type rules governing the use of a particular compound type. [Usage]

Explain why undecidability requires type systems to conservatively approximate program behavior.
[Familiarity]

Define and use program pieces (such as functions, classes, methods) that use generic types, including for
collections. [Usage]

Discuss the differences among generics, subtyping, and overloading. [Familiarity]

Explain multiple benefits and limitations of static typing in writing, maintaining, and debugging software.
[Familiarity]

PL/Program Representation
[1 Core-Tier2 hour]

Topics:

Programs that take (other) programs as input such as interpreters, compilers, type-checkers, documentation
generators

Abstract syntax trees; contrast with concrete syntax
Data structures to represent code for execution, translation, or transmission

Learning outcomes:

1.

(%)

Explain how programs that process other programs treat the other programs as their input data.
[Familiarity]

Describe an abstract syntax tree for a small language. [Usage]

Describe the benefits of having program representations other than strings of source code. [Familiarity]
Write a program to process some representation of code for some purpose, such as an interpreter, an
expression optimizer, or a documentation generator. [Usage]

- 160 -

PL/Language Translation and Execution
[3 Core-Tier2 hours]

Topics:

Interpretation vs. compilation to native code vs. compilation to portable intermediate representation
Language translation pipeline: parsing, optional type-checking, translation, linking, execution

o Execution as native code or within a virtual machine

o Alternatives like dynamic loading and dynamic (or “just-in-time”) code generation
Run-time representation of core language constructs such as objects (method tables) and first-class
functions (closures)
Run-time layout of memory: call-stack, heap, static data

o Implementing loops, recursion, and tail calls
Memory management

o Manual memory management: allocating, de-allocating, and reusing heap memory

o Automated memory management: garbage collection as an automated technique using the notion

of reachability

Learning outcomes:

1.

Distinguish a language definition (what constructs mean) from a particular language implementation
(compiler vs. interpreter, run-time representation of data objects, etc.). [Familiarity]

2. Distinguish syntax and parsing from semantics and evaluation. [Familiarity]

3. Sketch a low-level run-time representation of core language constructs, such as objects or closures.
[Familiarity]

4. Explain how programming language implementations typically organize memory into global data, text,
heap, and stack sections and how features such as recursion and memory management map to this memory
model. [Familiarity]

5. Identify and fix memory leaks and dangling-pointer dereferences. [Usage]

6. Discuss the benefits and limitations of garbage collection, including the notion of reachability. [Familiarity]

PL/Syntax Analysis
[Elective]
Topics:

e Scanning (lexical analysis) using regular expressions
Parsing strategies including top-down (e.g., recursive descent, Earley parsing, or LL) and bottom-up (e.g.,
backtracking or LR) techniques; role of context-free grammars

e Generating scanners and parsers from declarative specifications

Learning outcomes:

1.
2.
3.

Use formal grammars to specify the syntax of languages. [Usage]
Use declarative tools to generate parsers and scanners. [Usage]
Identify key issues in syntax definitions: ambiguity, associativity, precedence. [Familiarity]

- 161 -

PL/Compiler Semantic Analysis

[Elective]
Topics:

High-level program representations such as abstract syntax trees
Scope and binding resolution

Type checking

Declarative specifications such as attribute grammars

Learning outcomes:

1. Implement context-sensitive, source-level static analyses such as type-checkers or resolving identifiers to
identify their binding occurrences. [Usage]
2. Describe semantic analyses using an attribute grammar. [Usage]

PL/Code Generation

[Elective]
Topics:

Procedure calls and method dispatching
Separate compilation; linking
Instruction selection

Instruction scheduling

Register allocation

Peephole optimization

Learning outcomes:

1. Identify all essential steps for automatically converting source code into assembly or other low-level
languages. [Familiarity]

Generate the low-level code for calling functions/methods in modern languages. [Usage]

Discuss why separate compilation requires uniform calling conventions. [Familiarity]

Discuss why separate compilation limits optimization because of unknown effects of calls. [Familiarity]
Discuss opportunities for optimization introduced by naive translation and approaches for achieving
optimization, such as instruction selection, instruction scheduling, register allocation, and peephole
optimization. [Familiarity]

nhA D

PL/Runtime Systems

[Elective]
Topics:

e Dynamic memory management approaches and techniques: malloc/free, garbage collection (mark-sweep,
copying, reference counting), regions (also known as arenas or zones)

- 162 -

Data layout for objects and activation records
Just-in-time compilation and dynamic recompilation
Other common features of virtual machines, such as class loading, threads, and security.

Learning outcomes:

1. Compare the benefits of different memory-management schemes, using concepts such as fragmentation,
locality, and memory overhead. [Familiarity]
2. Discuss benefits and limitations of automatic memory management. [Familiarity]
3. Explain the use of metadata in run-time representations of objects and activation records, such as class
pointers, array lengths, return addresses, and frame pointers. [Familiarity]
4. Discuss advantages, disadvantages, and difficulties of just-in-time and dynamic recompilation.
[Familiarity]
5. Identify the services provided by modern language run-time systems. [Familiarity]
PL/Static Analysis
[Elective]
Topics:
e Relevant program representations, such as basic blocks, control-flow graphs, def-use chains, and static
single assignment
e Undecidability and consequences for program analysis
o Flow-insensitive analyses, such as type-checking and scalable pointer and alias analyses
e Flow-sensitive analyses, such as forward and backward dataflow analyses
e Path-sensitive analyses, such as software model checking
e Tools and frameworks for defining analyses
e Role of static analysis in program optimization
e Role of static analysis in (partial) verification and bug-finding

Learning outcomes:

SR

Define useful static analyses in terms of a conceptual framework such as dataflow analysis. [Usage]
Explain why non-trivial sound static analyses must be approximate. [Familiarity]

Communicate why an analysis is correct (sound and terminating). [Usage]

Distinguish “may” and “must” analyses. [Familiarity]

Explain why potential aliasing limits sound program analysis and how alias analysis can help. [Familiarity]
Use the results of a static analysis for program optimization and/or partial program correctness. [Usage]

PL/Advanced Programming Constructs
[Elective]

Topics:

Lazy evaluation and infinite streams
Control Abstractions: Exception Handling, Continuations, Monads
Object-oriented abstractions: Multiple inheritance, Mixins, Traits, Multimethods

- 163 -

Metaprogramming: Macros, Generative programming, Model-based development
Module systems

String manipulation via pattern-matching (regular expressions)

Dynamic code evaluation (“eval”)

Language support for checking assertions, invariants, and pre/post-conditions

Learning outcomes:

1. Use various advanced programming constructs and idioms correctly. [Usage]
Discuss how various advanced programming constructs aim to improve program structure, software
quality, and programmer productivity. [Familiarity]

3. Discuss how various advanced programming constructs interact with the definition and implementation of
other language features. [Familiarity]

PL/Concurrency and Parallelism
[Elective]

Support for concurrency is a fundamental programming-languages issue with rich material in
programming language design, language implementation, and language theory. Due to coverage
in other Knowledge Areas, this elective Knowledge Unit aims only to complement the material
included elsewhere in the Body of Knowledge. Courses on programming languages are an
excellent place to include a general treatment of concurrency including this other material.

Cross-reference PD/Parallel and Distributed Computing, SF/Parallelism.
Topics:

Constructs for thread-shared variables and shared-memory synchronization

Actor models

Futures

Language support for data parallelism

Models for passing messages between sequential processes

Effect of memory-consistency models on language semantics and correct code generation

Learning outcomes:

1. Write correct concurrent programs using multiple programming models, such as shared memory, actors,
futures, and data-parallelism primitives. [Usage]

2. Use a message-passing model to analyze a communication protocol. [Usage]

3. Explain why programming languages do not guarantee sequential consistency in the presence of data races
and what programmers must do as a result. [Familiarity]

_ 164 -

PL/Type Systems
[Elective]

Topics:

e Compositional type constructors, such as product types (for aggregates), sum types (for unions), function
types, quantified types, and recursive types

Type checking

Type safety as preservation plus progress

Type inference

Static overloading

Learning outcomes:

—

Define a type system precisely and compositionally. [Usage]

For various foundational type constructors, identify the values they describe and the invariants they
enforce. [Familiarity]

Precisely specify the invariants preserved by a sound type system. [Familiarity]

Prove type safety for a simple language in terms of preservation and progress theorems. [Usage]
Implement a unification-based type-inference algorithm for a simple language. [Usage]

Explain how static overloading and associated resolution algorithms influence the dynamic behavior of
programs. [Familiarity]

N

Sk w

PL/Formal Semantics
[Elective]

Topics:

Syntax vs. semantics

Lambda Calculus

Approaches to semantics: Operational, Denotational, Axiomatic

Proofs by induction over language semantics

Formal definitions and proofs for type systems (cross-reference PL/Type Systems)
Parametricity (cross-reference PL/Type Systems)

Using formal semantics for systems modeling

Learning outcomes:

1. Give a formal semantics for a small language. [Usage]

2. Write a lambda-calculus program and show its evaluation to a normal form. [Usage]

3. Discuss the different approaches of operational, denotational, and axiomatic semantics. [Familiarity]

4. Use induction to prove properties of all programs in a language. [Usage]

5. Use induction to prove properties of all programs in a language that are well-typed according to a formally
defined type system. [Usage]

6. Use parametricity to establish the behavior of code given only its type. [Usage]

7. Use formal semantics to build a formal model of a software system other than a programming language.

[Usage]

- 165 -

PL/Language Pragmatics
[Elective]

Topics:

Principles of language design such as orthogonality
Evaluation order, precedence, and associativity
Eager vs. delayed evaluation

Defining control and iteration constructs

External calls and system libraries

Learning outcomes:

1.

Discuss the role of concepts such as orthogonality and well-chosen defaults in language design.
[Familiarity]

Use crisp and objective criteria for evaluating language-design decisions. [Usage]

Give an example program whose result can differ under different rules for evaluation order, precedence, or
associativity. [Usage]

Show uses of delayed evaluation, such as user-defined control abstractions. [Familiarity]

Discuss the need for allowing calls to external calls and system libraries and the consequences for language
implementation. [Familiarity]

PL/Logic Programming
[Elective]

Topics:

Clausal representation of data structures and algorithms
Unification

Backtracking and search

Cuts

Learning outcomes:

1.
2.

Use a logic language to implement a conventional algorithm. [Usage]
Use a logic language to implement an algorithm employing implicit search using clauses, relations, and
cuts. [Usage]

- 166 -

Software Development Fundamentals (SDF)

Fluency in the process of software development is a prerequisite to the study of most of
computer science. In order to use computers to solve problems effectively, students must be
competent at reading and writing programs in multiple programming languages. Beyond
programming skills, however, they must be able to design and analyze algorithms, select
appropriate paradigms, and utilize modern development and testing tools. This knowledge area
brings together those fundamental concepts and skills related to the software development
process. As such, it provides a foundation for other software-oriented knowledge areas, most

notably Programming Languages, Algorithms and Complexity, and Software Engineering.

It is important to note that this knowledge area is distinct from the old Programming
Fundamentals knowledge area from CC2001. Whereas that knowledge area focused exclusively
on the programming skills required in an introductory computer science course, this new
knowledge area is intended to fill a much broader purpose. It focuses on the entire software
development process, identifying those concepts and skills that should be mastered in the first
year of a computer science program. This includes the design and simple analysis of algorithms,
fundamental programming concepts and data structures, and basic software development
methods and tools. As a result of its broader purpose, the Software Development Fundamentals
knowledge area includes fundamental concepts and skills that could naturally be listed in other
software-oriented knowledge areas (e.g., programming constructs from Programming
Languages, simple algorithm analysis from Algorithms & Complexity, simple development
methodologies from Software Engineering). Likewise, each of these knowledge areas will

contain more advanced material that builds upon the fundamental concepts and skills listed here.

While broader in scope than the old Programming Fundamentals, this knowledge area still allows
for considerable flexibility in the design of first-year curricula. For example, the Fundamental
Programming Concepts unit identifies only those concepts that are common to all programming
paradigms. It is expected that an instructor would select one or more programming paradigms
(e.g., object-oriented programming, functional programming, scripting) to illustrate these
programming concepts, and would pull paradigm-specific content from the Programming

Languages knowledge area to fill out a course. Likewise, an instructor could choose to

emphasize formal analysis (e.g., Big-Oh, computability) or design methodologies (e.g., team
projects, software life cycle) early, thus integrating hours from the Programming Languages,
Algorithms and Complexity, and/or Software Engineering knowledge areas. Thus, the 43 hours
of material in this knowledge area will typically be augmented with core material from one or

more of these knowledge areas to form a complete and coherent first-year experience.

When considering the hours allocated to each knowledge unit, it should be noted that these hours
reflect the minimal amount of classroom coverage needed to introduce the material. Many
software development topics will reappear and be reinforced by later topics (e.g., applying
iteration constructs when processing lists). In addition, the mastery of concepts and skills from
this knowledge area requires a significant amount of software development experience outside of

class.

SDF. Software Development Fundamentals (43 Core-Tier1 hours)

Core-Tier1 hours | Core-Tier2 hours Inclufies

Electives
SDF/Algorithms and Design 11 N
SDF/Fundamental Programming Concepts | 10 N
SDF/Fundamental Data Structures 12 N
SDF/Development Methods 10 N

- 168 -

SDF/Algorithms and Design

[11 Core-Tier1 hours]

This unit builds the foundation for core concepts in the Algorithms and Complexity Knowledge
Area, most notably in the Basic Analysis and Algorithmic Strategies knowledge units.

Topics:

The concept and properties of algorithms
o Informal comparison of algorithm efficiency (e.g., operation counts)
The role of algorithms in the problem-solving process
Problem-solving strategies
o [terative and recursive mathematical functions
o [terative and recursive traversal of data structures
o Divide-and-conquer strategies
Fundamental design concepts and principles
o Abstraction
Program decomposition
Encapsulation and information hiding
Separation of behavior and implementation

O O O

Learning Outcomes:

L=

aia g el B 4

—_ O

Discuss the importance of algorithms in the problem-solving process. [Familiarity]

Discuss how a problem may be solved by multiple algorithms, each with different properties. [Familiarity]
Create algorithms for solving simple problems. [Usage]

Use a programming language to implement, test, and debug algorithms for solving simple problems.
[Usage]

Implement, test, and debug simple recursive functions and procedures. [Usage]

Determine whether a recursive or iterative solution is most appropriate for a problem. [Assessment]
Implement a divide-and-conquer algorithm for solving a problem. [Usage]

Apply the techniques of decomposition to break a program into smaller pieces. [Usage]

Identify the data components and behaviors of multiple abstract data types. [Usage]

Implement a coherent abstract data type, with loose coupling between components and behaviors. [Usage]
Identify the relative strengths and weaknesses among multiple designs or implementations for a problem.
[Assessment]

SDF/Fundamental Programming Concepts
[10 Core-Tier1 hours]

This knowledge unit builds the foundation for core concepts in the Programming Languages
Knowledge Area, most notably in the paradigm-specific units: Object-Oriented Programming,
Functional Programming, and Event-Driven & Reactive Programming.

Topics:

Basic syntax and semantics of a higher-level language

Variables and primitive data types (e.g., numbers, characters, Booleans)
Expressions and assignments

Simple I/O including file I/O

Conditional and iterative control structures

Functions and parameter passing

The concept of recursion

- 169 -

Learning Outcomes:

1. Analyze and explain the behavior of simple programs involving the fundamental programming
constructs variables, expressions, assignments, I/O, control constructs, functions, parameter passing,
and recursion. [Assessment]

2. Identify and describe uses of primitive data types. [Familiarity]

Write programs that use primitive data types. [Usage]

4. Modify and expand short programs that use standard conditional and iterative control structures and
functions. [Usage]

5. Design, implement, test, and debug a program that uses each of the following fundamental

programming constructs: basic computation, simple I/O, standard conditional and iterative structures,

the definition of functions, and parameter passing. [Usage]

Write a program that uses file I/O to provide persistence across multiple executions. [Usage]

Choose appropriate conditional and iteration constructs for a given programming task. [Assessment]

Describe the concept of recursion and give examples of its use. [Familiarity]

Identify the base case and the general case of a recursively-defined problem. [Assessment]

W

X

SDF/Fundamental Data Structures

[12 Core-Tier1 hours]

This unit builds the foundation for core concepts in the Algorithms and Complexity Knowledge
Area, most notably in the Fundamental Data Structures and Algorithms and Basic Computability
and Complexity knowledge units.

Topics:
e Arrays
e Records/structs (heterogeneous aggregates)
e Strings and string processing
e Abstract data types and their implementation
o Stacks
o Queues
o Priority queues
o Sets
o Maps

e References and aliasing
e Linked lists
e Strategies for choosing the appropriate data structure

Learning Outcomes:

1. Discuss the appropriate use of built-in data structures. [Familiarity]
Describe common applications for each of the following data structures: stack, queue, priority queue, set,
and map. [Familiarity]

3. Write programs that use each of the following data structures: arrays, records/structs, strings, linked lists,
stacks, queues, sets, and maps. [Usage]

4. Compare alternative implementations of data structures with respect to performance. [Assessment]

5. Describe how references allow for objects to be accessed in multiple ways. [Familiarity]

6. Compare and contrast the costs and benefits of dynamic and static data structure implementations.
[Assessment]

7. Choose the appropriate data structure for modeling a given problem. [Assessment]

- 170 -

SDF/Development Methods
[10 Core-Tier1 hours]

This unit builds the foundation for core concepts in the Software Engineering knowledge area,
most notably in the Software Processes, Software Design and Software Evolution knowledge

units.

Topics:

Program comprehension
Program correctness
o Types of errors (syntax, logic, run-time)
The concept of a specification
Defensive programming (e.g. secure coding, exception handling)
Code reviews
Testing fundamentals and test-case generation
The role and the use of contracts, including pre- and post-conditions
o Unit testing
Simple refactoring
Modern programming environments
o Code search
o Programming using library components and their APIs
Debugging strategies
Documentation and program style

O O O O O

Learning Outcomes:

1.

Trace the execution of a variety of code segments and write summaries of their computations. [Assessment]
Explain why the creation of correct program components is important in the production of high-quality
software. [Familiarity]

Identify common coding errors that lead to insecure programs (e.g., buffer overflows, memory leaks,
malicious code) and apply strategies for avoiding such errors. [Usage]

Conduct a personal code review (focused on common coding errors) on a program component using a
provided checklist. [Usage]

Contribute to a small-team code review focused on component correctness. [Usage]

Describe how a contract can be used to specify the behavior of a program component. [Familiarity]
Refactor a program by identifying opportunities to apply procedural abstraction. [Usage]

Apply a variety of strategies to the testing and debugging of simple programs. [Usage]

Construct, execute and debug programs using a modern IDE and associated tools such as unit testing tools
and visual debuggers. [Usage]

. Construct and debug programs using the standard libraries available with a chosen programming language.

[Usage]

. Analyze the extent to which another programmer’s code meets documentation and programming style

standards. [Assessment]

. Apply consistent documentation and program style standards that contribute to the readability and

maintainability of software. [Usage]

-171 -

Software Engineering (SE)

In every computing application domain, professionalism, quality, schedule, and cost are critical
to producing software systems. Because of this, the elements of software engineering are
applicable to developing software in all areas of computing. A wide variety of software
engineering practices have been developed and utilized since the need for a discipline of
software engineering was first recognized. Many trade-offs between these different practices
have also been identified. Practicing software engineers have to select and apply appropriate
techniques and practices to a given development effort in order to maximize value. To learn how

to do so, they study the elements of software engineering.

Software engineering is the discipline concerned with the application of theory, knowledge, and
practice to effectively and efficiently build reliable software systems that satisfy the requirements
of customers and users. This discipline is applicable to small, medium, and large-scale systems.
It encompasses all phases of the lifecycle of a software system, including requirements
elicitation, analysis and specification; design; construction; verification and validation;
deployment; and operation and maintenance. Whether small or large, following a traditional
plan-driven development process, an agile approach, or some other method, software engineering

is concerned with the best way to build good software systems.

Software engineering uses engineering methods, processes, techniques, and measurements. It
benefits from the use of tools for managing software development; analyzing and modeling
software artifacts; assessing and controlling quality; and for ensuring a disciplined, controlled
approach to software evolution and reuse. The software engineering toolbox has evolved over the
years. For instance, the use of contracts, with requires and ensure clauses and class invariants, is
one good practice that has become more common. Software development, which can involve an
individual developer or a team or teams of developers, requires choosing the most appropriate

tools, methods, and approaches for a given development environment.

Students and instructors need to understand the impacts of specialization on software engineering

approaches. For example, specialized systems include:
e Real time systems
e C(Client-server systems
¢ Distributed systems
e Parallel systems
e Web-based systems
e High integrity systems
e (Games
e Mobile computing
¢ Domain specific software (e.g., scientific computing or business applications)

Issues raised by each of these specialized systems demand specific treatments in each phase of
software engineering. Students must become aware of the differences between general software
engineering techniques and principles and the techniques and principles needed to address issues

specific to specialized systems.

An important effect of specialization is that different choices of material may need to be made
when teaching applications of software engineering, such as between different process models,
different approaches to modeling systems, or different choices of techniques for carrying out any
of the key activities. This is reflected in the assignment of core and elective material, with the
core topics and learning outcomes focusing on the principles underlying the various choices, and
the details of the various alternatives from which the choices have to be made being assigned to

the elective material.

Another division of the practices of software engineering is between those concerned with the
fundamental need to develop systems that implement correctly the functionality that is required
for them and those concerned with other qualities for systems and the trade-offs needed to
balance these qualities. This division too is reflected in the assignment of core and elective

material, so that topics and learning outcomes concerned with the basic methods for developing

-173 -

such system are assigned to the core and those that are concerned with other qualities and trade-

offs between them are assigned to the elective material.

In general, students can best learn to apply much of the material defined in the Sofware
Engineering KA by participating in a project. Such projects should require students to work on a
team to develop a software system through as much of its lifecycle as is possible. Much of
software engineering is devoted to effective communication among team members and
stakeholders. Utilizing project teams, projects can be sufficiently challenging to require students
to use effective software engineering techniques and to develop and practice their
communication skills. While organizing and running effective projects within the academic
framework can be challenging, the best way to learn to apply software engineering theory and
knowledge is in the practical environment of a project. The minimum hours specified for some
knowledge units in this document may appear insufficient to accomplish associated application-
level learning outcomes. It should be understood that these outcomes are to be achieved through
project experience that may even occur later in the curriculum than when the topics within the

knowledge unit are introduced.

Further, there is increasing evidence that students learn to apply software engineering principles
more effectively through an iterative approach, where students have the opportunity to work
through a development cycle, assess their work, and then apply the knowledge gained through
their assessment to another development cycle. Agile and iterative lifecycle models inherently

afford such opportunities.

Software lifecycle terminology in this document is based on that used in earlier sources, such as
the Software Engineering Body of Knowledge (SWEBOK) and the ACM/IEEE-CS Software
Engineering 2004 Curriculum Guidelines (SE2004). While some terms were originally defined
in the context of plan-driven development processes, they are treated here as generic, and thus

equally applicable to agile processes.

Note: The SDF/Development Methods knowledge unit includes 9 Core-Tierl hours that
constitute an introduction to certain aspects of software engineering. The knowledge units,
topics and core hour specifications in this Software Engineering Knowledge Area must be
understood as assuming previous exposure to the material described in SDF/Development

Methods.

174 -

SE. Software Engineering (6 Core-Tier1 hours; 21 Core-Tier2 hours)

Core-Tier1 hours | Core-Tier2 hours | Includes Electives
SE/Software Processes 2 1 Y
SE/Software Project Management 2 Y
SE/Tools and Environments 2 N
SE/Requirements Engineering 1 3 Y
SE/Software Design 3 5 Y
SE/Software Construction 2 Y
SE/Software Verification and Validation 4 Y
SE/Software Evolution 2 Y
SE/Software Reliability 1 Y
SE/Formal Methods Y

SE/Software Processes

[2 Core-Tier1 hours; 1 Core-Tier2 hour]
Topics:

[Core-Tierl]

e Systems level considerations, i.e., the interaction of software with its intended environment (cross-
reference IAS/Secure Software Engineering)
e Introduction to software process models (e.g., waterfall, incremental, agile)
o Activities within software lifecycles
e Programming in the large vs. individual programming

[Core-Tier2]

o Evaluation of software process models

[Elective]
e Software quality concepts
e Process improvement
e Software process capability maturity models
e Software process measurements

- 175 -

Learning Outcomes:

[Core-Tierl]

1. Describe how software can interact with and participate in various systems including information
management, embedded, process control, and communications systems. [Familiarity]

2. Describe the relative advantages and disadvantages among several major process models (e.g., waterfall,

iterative, and agile). [Familiarity]

Describe the different practices that are key components of various process models. [Familiarity]

Differentiate among the phases of software development. [Familiarity]

5. Describe how programming in the large differs from individual efforts with respect to understanding a large
code base, code reading, understanding builds, and understanding context of changes. [Familiarity]

B

[Core-Tier2]

6. Explain the concept of a software lifecycle and provide an example, illustrating its phases including the
deliverables that are produced. [Familiarity]

7. Compare several common process models with respect to their value for development of particular classes
of software systems taking into account issues such as requirement stability, size, and non-functional
characteristics. [Usage]

[Elective]

8. Define software quality and describe the role of quality assurance activities in the software process.

[Familiarity]
. Describe the intent and fundamental similarities among process improvement approaches. [Familiarity]

10. Compare several process improvement models such as CMM, CMMI, CQI, Plan-Do-Check-Act, or
ISO9000. [Assessment]

11. Assess a development effort and recommend potential changes by participating in process improvement
(using a model such as PSP) or engaging in a project retrospective. [Usage]

12. Explain the role of process maturity models in process improvement. [Familiarity]

13. Describe several process metrics for assessing and controlling a project. [Familiarity]

14. Use project metrics to describe the current state of a project. [Usage]

SE/Software Project Management

[2 Core-Tier2 hours]
Topics:
[Core-Tier2]

e Team participation
o Team processes including responsibilities for tasks, meeting structure, and work schedule
o Roles and responsibilities in a software team
o Team conflict resolution
o Risks associated with virtual teams (communication, perception, structure)
o Effort Estimation (at the personal level)
e Risk (cross reference IAS/Secure Software Engineering)
o The role of risk in the lifecycle
o Risk categories including security, safety, market, financial, technology, people, quality, structure
and process

[Elective]

e Team management
o Team organization and decision-making

- 176 -

o Role identification and assignment
o Individual and team performance assessment
e Project management
o Scheduling and tracking
o Project management tools
o Cost/benefit analysis
e Software measurement and estimation techniques
e Software quality assurance and the role of measurements
e Risk
o Risk identification and management
o Risk analysis and evaluation
o Risk tolerance (e.g., risk-adverse, risk-neutral, risk-seeking)
o Risk planning
e System-wide approach to risk including hazards associated with tools

Learning Outcomes:
[Core-Tier2]

Discuss common behaviors that contribute to the effective functioning of a team. [Familiarity]

Create and follow an agenda for a team meeting. [Usage]

Identify and justify necessary roles in a software development team. [Usage]

Understand the sources, hazards, and potential benefits of team conflict. [Usage]

Apply a conflict resolution strategy in a team setting. [Usage]

Use an ad hoc method to estimate software development effort (e.g., time) and compare to actual effort
required. [Usage]

List several examples of software risks. [Familiarity]

8. Describe the impact of risk in a software development lifecycle. [Familiarity]

9. Describe different categories of risk in software systems. [Familiarity]

A

[Elective]

10. Demonstrate through involvement in a team project the central elements of team building and team
management. [Usage]

11. Describe how the choice of process model affects team organizational structures and decision-making
processes. [Familiarity]

12. Create a team by identifying appropriate roles and assigning roles to team members. [Usage]

13. Assess and provide feedback to teams and individuals on their performance in a team setting. [Usage]

14. Using a particular software process, describe the aspects of a project that need to be planned and monitored,
(e.g., estimates of size and effort, a schedule, resource allocation, configuration control, change
management, and project risk identification and management). [Familiarity]

15. Track the progress of some stage in a project using appropriate project metrics. [Usage]

16. Compare simple software size and cost estimation techniques. [Usage]

17. Use a project management tool to assist in the assignment and tracking of tasks in a software development
project. [Usage]

18. Describe the impact of risk tolerance on the software development process. [Assessment]

19. Identify risks and describe approaches to managing risk (avoidance, acceptance, transference, mitigation),
and characterize the strengths and shortcomings of each. [Familiarity]

20. Explain how risk affects decisions in the software development process. [Usage]

21. Identify security risks for a software system. [Usage]

22. Demonstrate a systematic approach to the task of identifying hazards and risks in a particular situation.
[Usage]

23. Apply the basic principles of risk management in a variety of simple scenarios including a security
situation. [Usage]

24. Conduct a cost/benefit analysis for a risk mitigation approach. [Usage]

25. Identify and analyze some of the risks for an entire system that arise from aspects other than the software.
[Usage]

- 177 -

SE/Tools and Environments
[2 Core-Tier2 hours]

Topics:
e Software configuration management and version control
e Release management
e Requirements analysis and design modeling tools
e Testing tools including static and dynamic analysis tools
e Programming environments that automate parts of program construction processes (e.g., automated builds)

o Continuous integration
e Tool integration concepts and mechanisms

Learning Outcomes:

1. Describe the difference between centralized and distributed software configuration management.
[Familiarity]

2. Describe how version control can be used to help manage software release management. [Familiarity]

Identify configuration items and use a source code control tool in a small team-based project. [Usage]

4. Describe how available static and dynamic test tools can be integrated into the software development
environment. [Familiarity]

5. Describe the issues that are important in selecting a set of tools for the development of a particular software
system, including tools for requirements tracking, design modeling, implementation, build automation, and
testing. [Familiarity]

6. Demonstrate the capability to use software tools in support of the development of a software product of
medium size. [Usage]

W

SE/Requirements Engineering
[1 Core-Tier1 hour; 3 Core-Tier2 hours]

The purpose of requirements engineering is to develop a common understanding of the needs,
priorities, and constraints relevant to a software system. Many software failures arise from an
incomplete understanding of requirements for the software to be developed or inadequate
management of those requirements.

Specifications of requirements range in formality from completely informal (e.g., spoken) to
rigorously mathematical (e.g., written in a formal specification language such as Z or first-order
logic). In practice, successful software engineering efforts use requirements specifications to
reduce ambiguity and improve the consistency and completeness of the development team’s
understanding of the vision of the intended software. Plan-driven approaches tend to produce
formal documents with numbered requirements. Agile approaches tend to favor less formal
specifications that include user stories, use cases, and test cases.

- 178 -

Topics:
[Core-Tierl]

e Describing functional requirements using, for example, use cases or users stories
e Properties of requirements including consistency, validity, completeness, and feasibility

[Core-Tier2]

e Software requirements elicitation

e Describing system data using, for example, class diagrams or entity-relationship diagrams

e Non-functional requirements and their relationship to software quality (cross-reference IAS/Secure
Software Engineering)

o Evaluation and use of requirements specifications

[Elective]

Requirements analysis modeling techniques

Acceptability of certainty / uncertainty considerations regarding software / system behavior
Prototyping

Basic concepts of formal requirements specification

Requirements specification

Requirements validation

Requirements tracing

Learning Outcomes:
[Core-Tierl]

1. List the key components of a use case or similar description of some behavior that is required for a system.
[Familiarity]

2. Describe how the requirements engineering process supports the elicitation and validation of behavioral
requirements. [Familiarity]

3. Interpret a given requirements model for a simple software system. [Familiarity]

[Core-Tier2]

4. Describe the fundamental challenges of and common techniques used for requirements elicitation.

[Familiarity]

List the key components of a data model (e.g., class diagrams or ER diagrams). [Familiarity]

6. Identify both functional and non-functional requirements in a given requirements specification for a
software system. [Usage]

7. Conduct a review of a set of software requirements to determine the quality of the requirements with
respect to the characteristics of good requirements. [Usage]

(9,1

[Elective]

8. Apply key elements and common methods for elicitation and analysis to produce a set of software
requirements for a medium-sized software system. [Usage]

9. Compare the plan-driven and agile approaches to requirements specification and validation and describe the
benefits and risks associated with each. [Familiarity]

10. Use a common, non-formal method to model and specify the requirements for a medium-size software
system. [Usage]

11. Translate into natural language a software requirements specification (e.g., a software component contract)
written in a formal specification language. [Usage]

12. Create a prototype of a software system to mitigate risk in requirements. [Usage]

13. Differentiate between forward and backward tracing and explain their roles in the requirements validation
process. [Familiarity]

- 179 -

SE/Software Design
[3 Core-Tier1 hours; 5 Core-Tier2 hours]

Topics:

[Core-Tierl]

System design principles: levels of abstraction (architectural design and detailed design), separation of
concerns, information hiding, coupling and cohesion, re-use of standard structures

Design Paradigms such as structured design (top-down functional decomposition), object-oriented analysis
and design, event driven design, component-level design, data-structured centered, aspect oriented,
function oriented, service oriented

Structural and behavioral models of software designs

Design patterns

[Core-Tier2]

Relationships between requirements and designs: transformation of models, design of contracts, invariants
Software architecture concepts and standard architectures (e.g. client-server, n-layer, transform centered,
pipes-and-filters)

Refactoring designs using design patterns

The use of components in design: component selection, design, adaptation and assembly of components,
components and patterns, components and objects (for example, building a GUI using a standard widget
set)

[Elective]

Internal design qualities, and models for them: efficiency and performance, redundancy and fault
tolerance, traceability of requirements
External design qualities, and models for them: functionality, reliability, performance and efficiency,
usability, maintainability, portability
Measurement and analysis of design quality
Tradeoffs between different aspects of quality
Application frameworks
Middleware: the object-oriented paradigm within middleware, object request brokers and marshalling,
transaction processing monitors, workflow systems
Principles of secure design and coding (cross-reference IAS/Principles of Secure Design)
o Principle of least privilege
o Principle of fail-safe defaults
o Principle of psychological acceptability

Learning Outcomes:

[Core-Tierl]

1.

2.

Articulate design principles including separation of concerns, information hiding, coupling and cohesion,
and encapsulation. [Familiarity]

Use a design paradigm to design a simple software system, and explain how system design principles have
been applied in this design. [Usage]

Construct models of the design of a simple software system that are appropriate for the paradigm used to
design it. [Usage]

Within the context of a single design paradigm, describe one or more design patterns that could be
applicable to the design of a simple software system. [Familiarity]

- 180 -

[Core-Tier2]

5.

6.

9.

10.
11.
12.
13.
14.

15.

For a simple system suitable for a given scenario, discuss and select an appropriate design paradigm.
[Usage]

Create appropriate models for the structure and behavior of software products from their requirements
specifications. [Usage]

Explain the relationships between the requirements for a software product and its design, using appropriate
models. [Assessment]

For the design of a simple software system within the context of a single design paradigm, describe the
software architecture of that system. [Familiarity]

Given a high-level design, identify the software architecture by differentiating among common software
architectures such as 3-tier, pipe-and-filter, and client-server. [Familiarity]

Investigate the impact of software architectures selection on the design of a simple system. [Assessment]
Apply simple examples of patterns in a software design. [Usage]

Describe a form of refactoring and discuss when it may be applicable. [Familiarity]

Select suitable components for use in the design of a software product. [Usage]

Explain how suitable components might need to be adapted for use in the design of a software product.
[Familiarity]

Design a contract for a typical small software component for use in a given system. [Usage]

[Elective]

16.

17.

18.
19.
20.
21.

22.
23.

Discuss and select appropriate software architecture for a simple system suitable for a given scenario.
[Usage]

Apply models for internal and external qualities in designing software components to achieve an acceptable
tradeoff between conflicting quality aspects. [Usage]

Analyze a software design from the perspective of a significant internal quality attribute. [Assessment]
Analyze a software design from the perspective of a significant external quality attribute. [Assessment]
Explain the role of objects in middleware systems and the relationship with components. [Familiarity]
Apply component-oriented approaches to the design of a range of software, such as using components for
concurrency and transactions, for reliable communication services, for database interaction including
services for remote query and database management, or for secure communication and access. [Usage]
Refactor an existing software implementation to improve some aspect of its design. [Usage]

State and apply the principles of least privilege and fail-safe defaults. [Familiarity]

SE/Software Construction
[2 Core-Tier2 hours]

Topics:

[Core-Tier2]

Coding practices: techniques, idioms/patterns, mechanisms for building quality programs (cross-reference
IAS/Defensive Programming; SDF/Development Methods)
o Defensive coding practices
o Secure coding practices
o Using exception handling mechanisms to make programs more robust, fault-tolerant
Coding standards
Integration strategies
Development context: “green field” vs. existing code base
o Change impact analysis
o Change actualization

- 181 -

[Elective]

Potential security problems in programs
o Buffer and other types of overflows
Race conditions
Improper initialization, including choice of privileges
Checking input
Assuming success and correctness
Validating assumptions

o 0 0 0 O

Learning Outcomes:

[Core-Tier2]

1. Describe techniques, coding idioms and mechanisms for implementing designs to achieve desired
properties such as reliability, efficiency, and robustness. [Familiarity]

2. Build robust code using exception handling mechanisms. [Usage]

3. Describe secure coding and defensive coding practices. [Familiarity]

4. Select and use a defined coding standard in a small software project. [Usage]

5. Compare and contrast integration strategies including top-down, bottom-up, and sandwich integration.
[Familiarity]

6. Describe the process of analyzing and implementing changes to code base developed for a specific project.
[Familiarity]

7. Describe the process of analyzing and implementing changes to a large existing code base. [Familiarity]

[Elective]

8. Rewrite a simple program to remove common vulnerabilities, such as buffer overflows, integer overflows
and race conditions. [Usage]

9. Write a software component that performs some non-trivial task and is resilient to input and run-time

errors. [Usage]

SE/Software Verification and Validation
[4 Core-Tier2 hours]

Topics:

[Core-Tier2]

Verification and validation concepts
Inspections, reviews, audits
Testing types, including human computer interface, usability, reliability, security, conformance to
specification (cross-reference IAS/Secure Software Engineering)
Testing fundamentals (cross-reference SDF/Development Methods)
o Unit, integration, validation, and system testing
o Test plan creation and test case generation
o Black-box and white-box testing techniques
o Regression testing and test automation
Defect tracking
Limitations of testing in particular domains, such as parallel or safety-critical systems

- 182 -

[Elective]

Static approaches and dynamic approaches to verification

Test-driven development

Validation planning; documentation for validation

Object-oriented testing; systems testing

Verification and validation of non-code artifacts (documentation, help files, training materials)
Fault logging, fault tracking and technical support for such activities

Fault estimation and testing termination including defect seeding

Learning Outcomes:

[Core-Tier2]

1. Distinguish between program validation and verification. [Familiarity]

2. Describe the role that tools can play in the validation of software. [Familiarity]

3. Undertake, as part of a team activity, an inspection of a medium-size code segment. [Usage]

4. Describe and distinguish among the different types and levels of testing (unit, integration, systems, and
acceptance). [Familiarity]

5. Describe techniques for identifying significant test cases for integration, regression and system testing.
[Familiarity]

6. Create and document a set of tests for a medium-size code segment. [Usage]

7. Describe how to select good regression tests and automate them. [Familiarity]

8. Use a defect tracking tool to manage software defects in a small software project. [Usage]

9. Discuss the limitations of testing in a particular domain. [Familiarity]

[Elective]

10. Evaluate a test suite for a medium-size code segment. [Usage]

11. Compare static and dynamic approaches to verification. [Familiarity]

12. Identify the fundamental principles of test-driven development methods and explain the role of automated
testing in these methods. [Familiarity]

13. Discuss the issues involving the testing of object-oriented software. [Usage]

14. Describe techniques for the verification and validation of non-code artifacts. [Familiarity]

15. Describe approaches for fault estimation. [Familiarity]

16. Estimate the number of faults in a small software application based on fault density and fault seeding.
[Usage]

17. Conduct an inspection or review of software source code for a small or medium sized software project.

[Usage]

SE/Software Evolution
[2 Core-Tier2 hour]

Topics:

Software development in the context of large, pre-existing code bases
o Software change
o Concerns and concern location
o Refactoring

Software evolution

Characteristics of maintainable software

Reengineering systems

Software reuse

- 183 -

Code segments

Libraries and frameworks
Components

Product lines

o O O O

Learning Outcomes:

1.

Sk WD

Identify the principal issues associated with software evolution and explain their impact on the software
lifecycle. [Familiarity]

Estimate the impact of a change request to an existing product of medium size. [Usage]

Use refactoring in the process of modifying a software component. [Usage]

Discuss the challenges of evolving systems in a changing environment. [Familiarity]

Outline the process of regression testing and its role in release management. [Familiarity]

Discuss the advantages and disadvantages of different types of software reuse. [Familiarity]

SE/Software Reliability
[1 Core-Tier2]

Topics:

[Core-Tier2]

Software reliability engineering concepts

Software reliability, system reliability and failure behavior (cross-reference SF/Reliability Through
Redundancy)

Fault lifecycle concepts and techniques

[Elective]

Software reliability models

Software fault tolerance techniques and models
Software reliability engineering practices
Measurement-based analysis of software reliability

Learning Outcomes:

[Core-Tier2]

1. Explain the problems that exist in achieving very high levels of reliability. [Familiarity]

2. Describe how software reliability contributes to system reliability. [Familiarity]

3. List approaches to minimizing faults that can be applied at each stage of the software lifecycle.
[Familiarity]

[Elective]

4. Compare the characteristics of three different reliability modeling approaches. [Familiarity]

5. Demonstrate the ability to apply multiple methods to develop reliability estimates for a software system.
[Usage]

6. Identify methods that will lead to the realization of a software architecture that achieves a specified level of
reliability. [Usage]

7. Identify ways to apply redundancy to achieve fault tolerance for a medium-sized application. [Usage]

_ 184 -

SE/Formal Methods
[Elective]

The topics listed below have a strong dependency on core material from the Discrete Structures
(DS) Knowledge Area, particularly knowledge units DS/Functions Relations and Sets, DS/Basic
Logic and DS/Proof Techniques.

Topics:

Role of formal specification and analysis techniques in the software development cycle
Program assertion languages and analysis approaches (including languages for writing and analyzing pre-
and post-conditions, such as OCL, JML)
Formal approaches to software modeling and analysis
o Model checkers
o Model finders
Tools in support of formal methods

Learning Outcomes:

1.

W

Describe the role formal specification and analysis techniques can play in the development of complex
software and compare their use as validation and verification techniques with testing. [Familiarity]

Apply formal specification and analysis techniques to software designs and programs with low complexity.
[Usage]

Explain the potential benefits and drawbacks of using formal specification languages. [Familiarity]

Create and evaluate program assertions for a variety of behaviors ranging from simple through complex.
[Usage]

Using a common formal specification language, formulate the specification of a simple software system
and derive examples of test cases from the specification. [Usage]

- 185 -

Systems Fundamentals (SF)

The underlying hardware and software infrastructure upon which applications are constructed is
collectively described by the term "computer systems." Computer systems broadly span the sub-
disciplines of operating systems, parallel and distributed systems, communications networks, and
computer architecture. Traditionally, these areas are taught in a non-integrated way through
independent courses. However these sub-disciplines increasingly share important common
fundamental concepts within their respective cores. These concepts include computational
paradigms, parallelism, cross-layer communications, state and state transition, resource
allocation and scheduling, and so on. The Systems Fundamentals Knowledge Area is designed
to present an integrative view of these fundamental concepts in a unified albeit simplified
fashion, providing a common foundation for the different specialized mechanisms and policies

appropriate to the particular domain area.

SF. Systems Fundamentals. [18 Core-Tier1 hours, 9 Core-Tier2 hours]

Core-Tier1 hours | Core-Tier2 hours Includes
Electives

SF/Computational Paradigms N

SF/Cross-Layer Communications

SF/State and State Machines

SF/Parallelism

Wl W oW W

SF/Evaluation

SF/Resource Allocation and Scheduling

SF/Proximity

SF/Virtualization and Isolation

N|IDN|[®W]IDN

SF/Reliability through Redundancy

<|Z2|lZ2|Z2|Z2|Z2|Z2|Z2 |2

SF/Quantitative Evaluation

SF/Computational Paradigms
[3 Core-Tier1 hours]

The view presented here is the multiple representations of a system across layers, from hardware
building blocks to application components, and the parallelism available in each representation.
Cross-reference PD/Parallelism Fundamentals.

Topics:

Basic building blocks and components of a computer (gates, flip-flops, registers, interconnections;
Datapath + Control + Memory)

Hardware as a computational paradigm: Fundamental logic building blocks; Logic expressions,
minimization, sum of product forms

Application-level sequential processing: single thread

Simple application-level parallel processing: request level (web services/client-server/distributed), single
thread per server, multiple threads with multiple servers

Basic concept of pipelining, overlapped processing stages

Basic concept of scaling: going faster vs. handling larger problems

Learning Outcomes:

1.

AW

List commonly encountered patterns of how computations are organized. [Familiarity]

Describe the basic building blocks of computers and their role in the historical development of computer
architecture. [Familiarity]

Articulate the differences between single thread vs. multiple thread, single server vs. multiple server
models, motivated by real world examples (e.g., cooking recipes, lines for multiple teller machines and
couples shopping for food). [Familiarity]

Articulate the concept of strong vs. weak scaling, i.e., how performance is affected by scale of problem vs.
scale of resources to solve the problem. This can be motivated by the simple, real-world examples.
[Familiarity]

Design a simple logic circuit using the fundamental building blocks of logic design. [Usage]

Use tools for capture, synthesis, and simulation to evaluate a logic design. [Usage]

Write a simple sequential problem and a simple parallel version of the same program. [Usage]

Evaluate performance of simple sequential and parallel versions of a program with different problem sizes,
and be able to describe the speed-ups achieved. [Assessment]

SF/Cross-Layer Communications

Cross-reference NC/Introduction, OS/Operating Systems Principles

[3 Core-Tier1 hours]

Topics:

Programming abstractions, interfaces, use of libraries

Distinction between Application and OS services, Remote Procedure Call
Application-Virtual Machine Interaction

Reliability

Learning Outcomes:

1.

Describe how computing systems are constructed of layers upon layers, based on separation of concerns,
with well-defined interfaces, hiding details of low layers from the higher layers. [Familiarity]

- 187 -

2. Describe how hardware, VM, OS, and applications are additional layers of interpretation/processing.
[Familiarity]

3. Describe the mechanisms of how errors are detected, signaled back, and handled through the layers.
[Familiarity]

4. Construct a simple program using methods of layering, error detection and recovery, and reflection of error
status across layers. [Usage]

5. Find bugs in a layered program by using tools for program tracing, single stepping, and debugging. [Usage]

SF/State and State Machines

[6 Core-Tier1 hours]

Cross-reference AL/Basic Computability and Complexity, OS/State and State Diagrams,
NC/Protocols

Topics:

Digital vs. Analog/Discrete vs. Continuous Systems

Simple logic gates, logical expressions, Boolean logic simplification
Clocks, State, Sequencing

Combinational Logic, Sequential Logic, Registers, Memories
Computers and Network Protocols as examples of state machines

Learning Outcomes:

1. Describe computations as a system characyterized by a known set of configurations with transitions from
one unique configuration (state) to another (state). [Familiarity]

2. Describe the distinction between systems whose output is only a function of their input (Combinational)

and those with memory/history (Sequential). [Familiarity]

Describe a computer as a state machine that interprets machine instructions. [Familiarity]

4. Explain how a program or network protocol can also be expressed as a state machine, and that alternative
representations for the same computation can exist. [Familiarity]

5. Develop state machine descriptions for simple problem statement solutions (e.g., traffic light sequencing,
pattern recognizers). [Usage]

6. Derive time-series behavior of a state machine from its state machine representation. [Assessment]

W

SF/Parallelism
[3 Core-Tier1 hours]

Cross-reference PD/Parallelism Fundamentals.

Topics:

Sequential vs. parallel processing

Parallel programming vs. concurrent programming

Request parallelism vs. Task parallelism

Client-Server/Web Services, Thread (Fork-Join), Pipelining
Multicore architectures and hardware support for synchronization

- 188 -

Learning Outcomes:

1. For a given program, distinguish between its sequential and parallel execution, and the performance
implications thereof. [Familiarity]

2. Demonstrate on an execution time line that parallelism events and operations can take place simultaneously

(i.e., at the same time). Explain how work can be performed in less elapsed time if this can be exploited.

[Familiarity]

Explain other uses of parallelism, such as for reliability/redundancy of execution. [Familiarity]

4. Define the differences between the concepts of Instruction Parallelism, Data Parallelism, Thread
Parallelism/Multitasking, Task/Request Parallelism. [Familiarity]

5. Write more than one parallel program (e.g., one simple parallel program in more than one parallel
programming paradigm; a simple parallel program that manages shared resources through synchronization
primitives; a simple parallel program that performs simultaneous operation on partitioned data through task
parallel (e.g., parallel search terms; a simple parallel program that performs step-by-step pipeline
processing through message passing). [Usage]

6. Use performance tools to measure speed-up achieved by parallel programs in terms of both problem size
and number of resources. [Assessment]

W

SF/Evaluation
[3 Core-Tier1 hours]

Cross-reference PD/Parallel Performance.

Topics:

e Performance figures of merit

e Workloads and representative benchmarks, and methods of collecting and analyzing performance figures of
merit

e CPI (Cycles per Instruction) equation as tool for understanding tradeoffs in the design of instruction sets,
processor pipelines, and memory system organizations.

e Amdahl’s Law: the part of the computation that cannot be sped up limits the effect of the parts that can

Learning Outcomes:

Explain how the components of system architecture contribute to improving its performance. [Familiarity]
Describe Amdahl’s law and discuss its limitations. [Familiarity]

Design and conduct a performance-oriented experiment. [Usage]

Use software tools to profile and measure program performance. [Assessment]

L=

SF/Resource Allocation and Scheduling

[2 Core-Tier2 hours]
Topics:

¢ Kinds of resources (e.g., processor share, memory, disk, net bandwidth)
e Kinds of scheduling (e.g., first-come, priority)
e Advantages of fair scheduling, preemptive scheduling

Learning Outcomes:

1. Define how finite computer resources (e.g., processor share, memory, storage and network bandwidth) are
managed by their careful allocation to existing entities. [Familiarity]

- 189 -

2. Describe the scheduling algorithms by which resources are allocated to competing entities, and the figures
of merit by which these algorithms are evaluated, such as fairness. [Familiarity]

Implement simple schedule algorithms. [Usage]

4. Use figures of merit of alternative scheduler implementations. [Assessment]

(%)

SF/Proximity

[3 Core-Tier2 hours]

Cross-reference AR/Memory Management, OS/Virtual Memory.
Topics:

Speed of light and computers (one foot per nanosecond vs. one GHz clocks)

Latencies in computer systems: memory vs. disk latencies vs. across the network memory

Caches and the effects of spatial and temporal locality on performance in processors and systems
Caches and cache coherency in databases, operating systems, distributed systems, and computer
architecture

e Introduction into the processor memory hierarchy and the formula for average memory access time

Learning Outcomes:

1. Explain the importance of locality in determining performance. [Familiarity]
Describe why things that are close in space take less time to access. [Familiarity]

3. Calculate average memory access time and describe the tradeoffs in memory hierarchy performance in
terms of capacity, miss/hit rate, and access time. [Assessment]

SF/Virtualization and Isolation
[2 Core-Tier2 hours]

Topics:

e Rationale for protection and predictable performance
e Levels of indirection, illustrated by virtual memory for managing physical memory resources
e Methods for implementing virtual memory and virtual machines

Learning Outcomes:

1. Explain why it is important to isolate and protect the execution of individual programs and environments
that share common underlying resources. [Familiarity]

2. Describe how the concept of indirection can create the illusion of a dedicated machine and its resources
even when physically shared among multiple programs and environments. [Familiarity]

3. Measure the performance of two application instances running on separate virtual machines, and determine
the effect of performance isolation. [Assessment]

SF/Reliability through Redundancy
[2 Core-Tier2 hours]

Topics:

e Distinction between bugs and faults
e Redundancy through check and retry

- 190 -

Redundancy through redundant encoding (error correcting codes, CRC, FEC)
Duplication/mirroring/replicas
Other approaches to fault tolerance and availability

Learning Outcomes:

1.

2.

Explain the distinction between program errors, system errors, and hardware faults (e.g., bad memory) and
exceptions (e.g., attempt to divide by zero). [Familiarity]

Articulate the distinction between detecting, handling, and recovering from faults, and the methods for their
implementation. [Familiarity]

Describe the role of error correcting codes in providing error checking and correction techniques in
memories, storage, and networks. [Familiarity]

Apply simple algorithms for exploiting redundant information for the purposes of data correction. [Usage]
Compare different error detection and correction methods for their data overhead, implementation
complexity, and relative execution time for encoding, detecting, and correcting errors. [Assessment]

SF/Quantitative Evaluation
[Elective]

Topics:

Analytical tools to guide quantitative evaluation

Order of magnitude analysis (Big-Oh notation)

Analysis of slow and fast paths of a system

Events on their effect on performance (e.g., instruction stalls, cache misses, page faults)
Understanding layered systems, workloads, and platforms, their implications for performance, and the
challenges they represent for evaluation

Microbenchmarking pitfalls

Learning Outcomes:

1.

3.

Explain the circumstances in which a given figure of system performance metric is useful. [Familiarity]
Explain the inadequacies of benchmarks as a measure of system performance. [Familiarity]

Use limit studies or simple calculations to produce order-of-magnitude estimates for a given performance
metric in a given context. [Usage]

Conduct a performance experiment on a layered system to determine the effect of a system parameter on
figure of system performance. [Assessment]

- 191 -

Social Issues and Professional Practice (SP)

While technical issues are central to the computing curriculum, they do not constitute a complete
educational program in the field. Students must also be exposed to the larger societal context of
computing to develop an understanding of the relevant social, ethical, legal and professional
issues. This need to incorporate the study of these non-technical issues into the ACM curriculum

was formally recognized in 1991, as can be seen from the following excerpt [2]:

Undergraduates also need to understand the basic cultural, social, legal, and ethical
issues inherent in the discipline of computing. They should understand where the
discipline has been, where it is, and where it is heading. They should also understand
their individual roles in this process, as well as appreciate the philosophical questions,
technical problems, and aesthetic values that play an important part in the development

of the discipline.

Students also need to develop the ability to ask serious questions about the social
impact of computing and to evaluate proposed answers to those questions. Future
practitioners must be able to anticipate the impact of introducing a given product into a
given environment. Will that product enhance or degrade the quality of life? What will

the impact be upon individuals, groups, and institutions?

Finally, students need to be aware of the basic legal rights of software and hardware
vendors and users, and they also need to appreciate the ethical values that are the basis
for those rights. Future practitioners must understand the responsibility that they will
bear, and the possible consequences of failure. They must understand their own
limitations as well as the limitations of their tools. All practitioners must make a long-
term commitment to remaining current in their chosen specialties and in the discipline

of computing as a whole.

As technological advances continue to significantly impact the way we live and work, the critical
importance of social issues and professional practice continues to increase; new computer-based
products and venues pose ever more challenging problems each year. It is our students who
must enter the workforce and academia with intentional regard for the identification and

resolution of these problems.

Computer science educators may opt to deliver this core and elective material in stand-alone
courses, integrated into traditional technical and theoretical courses, or as special units in
capstone and professional practice courses. The material in this familiarity area is best covered
through a combination of one required course along with short modules in other courses. On the
one hand, some units listed as Core Tier-1 (in particular, Social Context, Analytical Tools,
Professional Ethics, and Intellectual Property) do not readily lend themselves to being covered in
other traditional courses. Without a standalone course, it is difficult to cover these topics
appropriately. On the other hand, if ethical and social considerations are covered only in the
standalone course and not “in context,” it will reinforce the false notion that technical processes
are void of these other relevant issues. Because of this broad relevance, it is important that
several traditional courses include modules with case studies that analyze the ethical, legal,
social and professional considerations in the context of the technical subject matter of the course.
Courses in areas such as software engineering, databases, computer networks, information
assurance and security, and introduction to computing provide obvious context for analysis of
ethical issues. However, an ethics-related module could be developed for almost any course in
the curriculum. It would be explicitly against the spirit of the recommendations to have only a
standalone course. Running through all of the issues in this area is the need to speak to the
computing practitioner’s responsibility to proactively address these issues by both moral and
technical actions. The ethical issues discussed in any class should be directly related to and arise
naturally from the subject matter of that class. Examples include a discussion in the database
course of data aggregation or data mining, or a discussion in the software engineering course of
the potential conflicts between obligations to the customer and obligations to the user and others
affected by their work. Programming assignments built around applications such as controlling
the movement of a laser during eye surgery can help to address the professional, ethical and
social impacts of computing. Computing faculty who are unfamiliar with the content and/or
pedagogy of applied ethics are urged to take advantage of the considerable resources from ACM,

IEEE-CS, SIGCAS (special interest group on computers and society), and other organizations.

It should be noted that the application of ethical analysis underlies every subsection of this Social
and Professional knowledge area in computing. The ACM Code of Ethics and Professional
Conduct (http://www.acm.org/about/code-of-ethics) provides guidelines that serve as the basis

for the conduct of our professional work. The General Moral Imperatives provide an

-193 -

understanding of our commitment to personal responsibility, professional conduct, and our

leadership roles.

SP. Social Issues and Professional Practice. [11 Core-Tier1 hours, 5 Core-Tier2
hours]

Core-Tier1 hours | Core-Tier2 hours | Includes Electives

SP/Social Context 1 2 N
SP/Analytical Tools 2 N
SP/Professional Ethics 2 2 N
SP/Intellectual Property 2 Y
SP/Privacy and Civil Liberties 2 Y
SP/Professional Communication |1 Y
SP/Sustainability 1 1 Y
SP/History Y
SP/Economies of Computing Y
SP/Security Policies, Laws and Y
Computer Crimes

SP/Social Context
[1 Core-Tier1 hour, 2 Core-Tier2 hours]

Computers and the Internet, perhaps more than any other technologies, have transformed society
over the past 75 years, with dramatic increases in human productivity; an explosion of options
for news, entertainment, and communication; and fundamental breakthroughs in almost every
branch of science and engineering. Social Context provides the foundation for all other SP
knowledge units, especially Professional Ethics. Also see cross-referencing with Human-
Computer Interaction (HCI) and Networking and Communication (NC) Knowledge Areas.

Topics:
[Core-Tierl]

e Social implications of computing in a networked world (cross-reference HCI/Foundations/social models;
IAS/Fundamental Concepts/social issues)
e Impact of social media on individualism, collectivism and culture.

_ 194 -

[Core-Tier2]

e Growth and control of the Internet (cross-reference NC/Introduction/organization of the Internet)

e Often referred to as the digital divide, differences in access to digital technology resources and its resulting
ramifications for gender, class, ethnicity, geography, and/or underdeveloped countries.

e Accessibility issues, including legal requirements

e Context-aware computing (cross-reference HCI/Design for non-mouse interfaces/ ubiquitous and context-
aware)

Learning Outcomes:

[Core-Tierl]

1. Describe positive and negative ways in which computer technology (networks, mobile computing, cloud
computing) alters modes of social interaction at the personal level. [Familiarity]

2. Identify developers’ assumptions and values embedded in hardware and software design, especially as they

pertain to usability for diverse populations including under-represented populations and the disabled.

[Familiarity]

Interpret the social context of a given design and its implementation. [Familiarity]

Evaluate the efficacy of a given design and implementation using empirical data. [Assessment]

5. Summarize the implications of social media on individualism versus collectivism and culture. [Usage]

B

[Core-Tier2]

6. Discuss how Internet access serves as a liberating force for people living under oppressive forms of
government; explain how limits on Internet access are used as tools of political and social repression.
[Familiarity]

7. Analyze the pros and cons of reliance on computing in the implementation of democracy (e.g. delivery of
social services, electronic voting). [Assessment]

8. Describe the impact of the under-representation of diverse populations in the computing profession (e.g.,
industry culture, product diversity). [Familiarity]

9. Explain the implications of context awareness in ubiquitous computing systems. [Familiarity]

SP/Analytical Tools
[2 Core-Tier1 hours]

Ethical theories and principles are the foundations of ethical analysis because they are the
viewpoints from which guidance can be obtained along the pathway to a decision. Each theory
emphasizes different points such as predicting the outcome and following one's duties to others
in order to reach an ethically guided decision. However, in order for an ethical theory to be
useful, the theory must be directed towards a common set of goals. Ethical principles are the
common goals that each theory tries to achieve in order to be successful. These goals include
beneficence, least harm, respect for autonomy, and justice.

Topics:
e Ethical argumentation

e Ethical theories and decision-making
e Moral assumptions and values

- 195 -

Learning Outcomes:

Evaluate stakeholder positions in a given situation. [Assessment]
Analyze basic logical fallacies in an argument. [Assessment]

Analyze an argument to identify premises and conclusion. [Assessment]
lustrate the use of example and analogy in ethical argument. [Usage]
Evaluate ethical/social tradeoffs in technical decisions. [Assessment]

MRS

SP/Professional Ethics

[2 Core-Tier1 hours, 2 Core-Tier2 hours]

Computer ethics is a branch of practical philosophy that deals with how computing professionals
should make decisions regarding professional and social conduct. There are three primary
influences: 1) an individual's own personal code; 2) any informal code of ethical behavior
existing in the work place; and 3) exposure to formal codes of ethics. See cross-referencing with
the Information Assurance and Security (IAS) Knowledge Area.

Topics:

[Core-Tierl]

e Community values and the laws by which we live

e The nature of professionalism including care, attention and discipline, fiduciary responsibility, and
mentoring

e Keeping up-to-date as a computing professional in terms of familiarity, tools, skills, legal and professional
framework as well as the ability to self-assess and progress in the computing field

e Professional certification, codes of ethics, conduct, and practice, such as the ACM/IEEE-CS, SE, AITP,
IFIP and international societies (cross-reference IAS/Fundamental Concepts/ethical issues)

e Accountability, responsibility and liability (e.g. software correctness, reliability and safety, as well as
ethical confidentiality of cybersecurity professionals)

[Core-Tier2]

The role of the computing professional in public policy

Maintaining awareness of consequences

Ethical dissent and whistle-blowing

The relationship between regional culture and ethical dilemmas

Dealing with harassment and discrimination

Forms of professional credentialing

Acceptable use policies for computing in the workplace

Ergonomics and healthy computing environments

Time to market and cost considerations versus quality professional standards

Learning Outcomes:

[Core-Tierl]

1. Identify ethical issues that arise in software development and determine how to address them technically
and ethically. [Familiarity]

2. Explain the ethical responsibility of ensuring software correctness, reliability and safety. [Familiarity]

3. Describe the mechanisms that typically exist for a professional to keep up-to-date. [Familiarity]

- 196 -

Describe the strengths and weaknesses of relevant professional codes as expressions of professionalism and
guides to decision-making. [Familiarity]

Analyze a global computing issue, observing the role of professionals and government officials in
managing this problem. [Assessment]

Evaluate the professional codes of ethics from the ACM, the IEEE Computer Society, and other
organizations. [Assessment]

[Core-Tier2]

7.
8.
9.

10.
11.
12.
13.
14.
15.

Describe ways in which professionals may contribute to public policy. [Familiarity]

Describe the consequences of inappropriate professional behavior. [Familiarity]

Identify progressive stages in a whistle-blowing incident. [Familiarity]

Identify examples of how regional culture interplays with ethical dilemmas. [Familiarity]

Investigate forms of harassment and discrimination and avenues of assistance. [Usage]

Examine various forms of professional credentialing. [Usage]

Explain the relationship between ergonomics in computing environments and people’s health. [Familiarity]
Develop a computer usage/acceptable use policy with enforcement measures. [Assessment]

Describe issues associated with industries’ push to focus on time to market versus enforcing quality
professional standards. [Familiarity]

SP/Intellectual Property
[2 Core-Tier1 hours]

Intellectual property refers to a range of intangible rights of ownership in an asset such as a
software program. Each intellectual property "right" is itself an asset. The law provides different
methods for protecting these rights of ownership based on their type. There are essentially four
types of intellectual property rights relevant to software: patents, copyrights, trade secrets and
trademarks. Each affords a different type of legal protection. See cross-referencing with the
Information Management (IM) Knowledge Area.

Topics:

[Core-Tierl]

Philosophical foundations of intellectual property

Intellectual property rights (cross-reference IM/Information Storage and Retrieval/intellectual property and
protection)

Intangible digital intellectual property (IDIP)

Legal foundations for intellectual property protection

Digital rights management

Copyrights, patents, trade secrets, trademarks

Plagiarism

[Elective]

Foundations of the open source movement
Software piracy

-197 -

Learning Outcomes:

[Core-Tierl]

1. Discuss the philosophical bases of intellectual property. [Familiarity]

2. Discuss the rationale for the legal protection of intellectual property. [Familiarity]

3. Describe legislation aimed at digital copyright infringements. [Familiarity]

4. Critique legislation aimed at digital copyright infringements. [Assessment]

5. Identify contemporary examples of intangible digital intellectual property. [Familiarity]

6. Justify uses of copyrighted materials. [Assessment]

7. Evaluate the ethical issues inherent in various plagiarism detection mechanisms. [Assessment]
8. Interpret the intent and implementation of software licensing. [Familiarity]

9. Discuss the issues involved in securing software patents. [Familiarity]

10. Characterize and contrast the concepts of copyright, patenting and trademarks. [Assessment]

[Elective]

11. Identify the goals of the open source movement. [Familiarity]
12. Identify the global nature of software piracy. [Familiarity]

SP/Privacy and Civil Liberties
[2 Core-Tier1 hours]

Electronic information sharing highlights the need to balance privacy protections with
information access. The ease of digital access to many types of data makes privacy rights and
civil liberties more complex, differing among the variety of cultures worldwide. See cross-
referencing with the Human-Computer Interaction (HCI), Information Assurance and Security
(TAS), Information Management (IM), and Intelligent Systems (IS) Knowledge Areas.

Topics:

[Core-Tierl]

e Philosophical foundations of privacy rights (cross-reference IS/Fundamental Issues/philosophical issues)
e Legal foundations of privacy protection
e Privacy implications of widespread data collection for transactional databases, data warehouses,
surveillance systems, and cloud computing (cross-reference IM/Database Systems/data independence;
IM/Data Mining/data cleaning)
Ramifications of differential privacy
Technology-based solutions for privacy protection (cross-reference IAS/Threats and Attacks/attacks on
privacy and anonymity)

[Elective]

e Privacy legislation in areas of practice

e Civil liberties and cultural differences

e Freedom of expression and its limitations
Learning Outcomes:
[Core-Tierl]

1. Discuss the philosophical basis for the legal protection of personal privacy. [Familiarity]
2. Evaluate solutions to privacy threats in transactional databases and data warchouses. [Assessment]

- 198 -

3.

Describe the role of data collection in the implementation of pervasive surveillance systems (e.g., RFID,
face recognition, toll collection, mobile computing). [Familiarity]

4. Describe the ramifications of differential privacy. [Familiarity]
5. Investigate the impact of technological solutions to privacy problems. [Usage]
[Elective]
6. Critique the intent, potential value and implementation of various forms of privacy legislation.
[Assessment]
7. Identify strategies to enable appropriate freedom of expression. [Familiarity]

SP/Professional Communication
[1 Core-Tier1 hour]

Professional communication conveys technical information to various audiences who may have
very different goals and needs for that information. Effective professional communication of
technical information is rarely an inherited gift, but rather needs to be taught in context
throughout the undergraduate curriculum. See cross-referencing with Human-Computer
Interaction (HCI) and Software Engineering (SE) Knowledge Areas.

Topics:

[Core-Tierl]

Reading, understanding and summarizing technical material, including source code and documentation
Writing effective technical documentation and materials

Dynamics of oral, written, and electronic team and group communication (cross-reference
HClI/Collaboration and Communication/group communication; SE/Project Management/team participation)
Communicating professionally with stakeholders

Utilizing collaboration tools (cross-reference HCI/Collaboration and Communication/online communities;
IS/Agents/collaborative agents)

[Elective]

Dealing with cross-cultural environments (cross-reference HCI/User-Centered Design and Testing/cross-
cultural evaluation)

Tradeoffs of competing risks in software projects, such as technology, structure/process, quality, people,
market and financial (cross-reference SE/Software Project Management/Risk)

Learning Outcomes:

[Core-Tierl]

1.

w

Write clear, concise, and accurate technical documents following well-defined standards for format and for
including appropriate tables, figures, and references. [Usage]

Evaluate written technical documentation to detect problems of various kinds. [Assessment]

Develop and deliver a good quality formal presentation. [Assessment]

Plan interactions (e.g. virtual, face-to-face, shared documents) with others in which they are able to get
their point across, and are also able to listen carefully and appreciate the points of others, even when they
disagree, and are able to convey to others what they have heard. [Usage]

Describe the strengths and weaknesses of various forms of communication (e.g. virtual, face-to-face, shared
documents). [Familiarity]

Examine appropriate measures used to communicate with stakeholders involved in a project. [Usage]
Compare and contrast various collaboration tools. [Assessment]

- 199 -

[Elective]

8. Discuss ways to influence performance and results in cross-cultural teams. [Familiarity]

9. Examine the tradeoffs and common sources of risk in software projects regarding technology,
structure/process, quality, people, market and financial. [Usage]

10. Evaluate personal strengths and weaknesses to work remotely as part of a multinational team. [Assessment]

SP/Sustainability
[1 Core-Tier1 hour, 1 Core-Tier2 hour]

Sustainability is characterized by the United Nations [1] as “development that meets the needs of
the present without compromising the ability of future generations to meet their own needs."
Sustainability was first introduced in the CS2008 curricular guidelines. Topics in this emerging
area can be naturally integrated into other familiarity areas and units, such as human-computer
interaction and software evolution. See cross-referencing with the Human-Computer Interaction
(HCI) and Software Engineering (SE) Knowledge Areas.

Topics:

[Core-Tierl]

e Being a sustainable practitioner by taking into consideration cultural and environmental impacts of
implementation decisions (e.g. organizational policies, economic viability, and resource consumption).
e Explore global social and environmental impacts of computer use and disposal (e-waste)

[Core-Tier2]

e Environmental impacts of design choices in specific areas such as algorithms, operating systems, networks,
databases, or human-computer interaction (cross-reference SE/Software Evaluation/software evolution;
HCI/Design-Oriented HCI/sustainability)

[Elective]

e Guidelines for sustainable design standards

e Systemic effects of complex computer-mediated phenomena (e.g. telecommuting or web shopping)

e Pervasive computing; information processing integrated into everyday objects and activities, such as smart
energy systems, social networking and feedback systems to promote sustainable behavior, transportation,
environmental monitoring, citizen science and activism.

e Research on applications of computing to environmental issues, such as energy, pollution, resource usage,
recycling and reuse, food management, farming and others.

e The interdependence of the sustainability of software systems with social systems, including the knowledge
and skills of its users, organizational processes and policies, and its societal context (e.g., market forces,
government policies).

Learning Outcomes:

[Core-Tierl]

1. Identify ways to be a sustainable practitioner. [Familiarity]
2. Illustrate global social and environmental impacts of computer use and disposal (e-waste). [Usage]

- 200 -

[Core-Tier2]

3. Describe the environmental impacts of design choices within the field of computing that relate to algorithm
design, operating system design, networking design, database design, etc. [Familiarity]
4. Investigate the social and environmental impacts of new system designs through projects. [Usage]

[Elective]

5. Identify guidelines for sustainable IT design or deployment. [Familiarity]

6. List the sustainable effects of telecommuting or web shopping. [Familiarity]

7. Investigate pervasive computing in areas such as smart energy systems, social networking, transportation,
agriculture, supply-chain systems, environmental monitoring and citizen activism. [Usage]

8. Develop applications of computing and assess through research areas pertaining to environmental issues
(e.g. energy, pollution, resource usage, recycling and reuse, food management, farming). [Assessment]

SP/History
[Elective]

This history of computing is taught to provide a sense of how the rapid change in computing
impacts society on a global scale. It is often taught in context with foundational concepts, such as
system fundamentals and software developmental fundamentals.

Topics:

e Prehistory—the world before 1946

e History of computer hardware, software, networking (cross-reference AR/Digital logic and digital systems/
history of computer architecture)

e Pioneers of computing

e History of the Internet

Learning Outcomes:

Identify significant continuing trends in the history of the computing field. [Familiarity]

Identify the contributions of several pioneers in the computing field. [Familiarity]

Discuss the historical context for several programming language paradigms. [Familiarity]

Compare daily life before and after the advent of personal computers and the Internet. [Assessment]

el S

SP/Economies of Computing
[Elective]

Economics of computing encompasses the metrics and best practices for personnel and financial
management surrounding computer information systems.

Topics:

Monopolies and their economic implications

Effect of skilled labor supply and demand on the quality of computing products

Pricing strategies in the computing domain

The phenomenon of outsourcing and off-shoring software development; impacts on employment and on
economics

e Consequences of globalization for the computer science profession

-201 -

e Differences in access to computing resources and the possible effects thereof

Cost/benefit analysis of jobs with considerations to manufacturing, hardware, software, and engineering
implications

Cost estimates versus actual costs in relation to total costs

Entrepreneurship: prospects and pitfalls

Network effect or demand-side economies of scale

Use of engineering economics in dealing with finances

Learning Outcomes:

—_—

Summarize the rationale for antimonopoly efforts. [Familiarity]

2. Identify several ways in which the information technology industry is affected by shortages in the labor
supply. [Familiarity]

3. Identify the evolution of pricing strategies for computing goods and services. [Familiarity]

4. Discuss the benefits, the drawbacks and the implications of off-shoring and outsourcing. [Familiarity]

5. Investigate and defend ways to address limitations on access to computing. [Usage]

6. Describe the economic benefits of network effects. [Familiarity]

SP/Security Policies, Laws and Computer Crimes
[Elective]

While security policies, laws and computer crimes are important subjects, it is essential they are
viewed with the foundation of other Social and Professional knowledge units, such as Intellectual
Property, Privacy and Civil Liberties, Social Context, and Professional Ethics. Computers and
the Internet, perhaps more than any other technology, have transformed society over the past 75
years. At the same time, they have contributed to unprecedented threats to privacy; whole new
categories of crime and anti-social behavior; major disruptions to organizations; and the large-
scale concentration of risk into information systems. See cross-referencing with the Human-
Computer Interaction (HCI) and Information Assurance and Security (IAS) Knowledge Areas.

Topics:

e Examples of computer crimes and legal redress for computer criminals (cross-reference IAS/Digital
Forensics/rules of evidence)

e Social engineering, identity theft and recovery (cross-reference HCI/Human Factors and Security/trust,

privacy and deception)

Issues surrounding the misuse of access and breaches in security

Motivations and ramifications of cyber terrorism and criminal hacking, “cracking”

Effects of malware, such as viruses, worms and Trojan horses

Crime prevention strategies

Security policies (cross-reference IAS/Security Policy and Governance/policies)

Learning Outcomes:

1. List classic examples of computer crimes and social engineering incidents with societal impact.
[Familiarity]

2. Identify laws that apply to computer crimes. [Familiarity]

Describe the motivation and ramifications of cyber terrorism and criminal hacking. [Familiarity]

4. Examine the ethical and legal issues surrounding the misuse of access and various breaches in security.
[Usage]

W

-202 -

hd

Discuss the professional's role in security and the trade-offs involved. [Familiarity]

6. Investigate measures that can be taken by both individuals and organizations including governments to
prevent or mitigate the undesirable effects of computer crimes and identity theft. [Usage]

7. Write a company-wide security policy, which includes procedures for managing passwords and employee

monitoring. [Usage]

References

[1] “Our Common Future.” http://grawemeyer.org/worldorder/previous-winners/1991-the-
united-nations-world-commission-on-environment-and-development.html

[2] Tucker, A. (ed), B. Barnes, R. Aiken, K. Barker, K. Bruce, J. Cain, S. Conry, G. Engel,
R. Epstein, D. Lidtke, M. Mulder, J. Rogers, E. Spafford, A. Turner, Computing
Curricula 1991: Report of the Joint Curriculum Task Force, ACM Press and IEEE-CS
Press, 1991.

-203 -

Appendix B: Migrating to CS2013

A goal of CS2013 is to create guidelines that are realistic and implementable. One question that
often arises is, “How are these guidelines different from what we already do?” While it is not
possible in this document to answer that question for each institution, it is possible to describe in
general terms how these guidelines differ from previous versions in order to provide assistance to

curriculum developers in moving towards the CS2013 recommendations.

Due to advancements in the field and the increased needs of stakeholders, CS2013 has
reorganized and expanded the number of topics. However, few institutions have the luxury of
expanding their programs to accommodate a larger body of knowledge. CS2013 has taken the

following approaches to managing the size of curricula:

e The core material has been divided into Core-Tier] and Core-Tier2, providing more

guidance to programs about the relative importance of material.
e Sets of knowledge areas have been restructured where common themes were identified.

e The expected depth of coverage has been made explicit. Outcomes listed at the
Familiarity level will typically require less coverage than topics at the Usage level, which

in turn require less coverage time than Assessment outcomes.

e Topic emphasis has changed within individual knowledge areas to reflect the state of the

art and practice.

To assist programs in migrating towards CS2013, we first compare the CC2001 Core with the
CS2013 Core (Tierl and Tier2 combined). We include brief descriptions of how the content in

the KAs has changed, what outcomes were removed, and what outcomes have emerged.

Outcomes

CS2013 lists 1110 outcomes, just over half of which are in the core. Core-Tierl comprises just
over one-fifth of the total outcomes. As shown in Figure B-1, over half of the learning outcomes

are at the Familiarity level, and one-third are at the Usage level.

- 204 -

Table B-1: Count of Outcomes by Figure B-1: Distribution of Outcomes by
Category Knowledge Level

Tierl | Tier2 | Elective

Familiarity | 118 | 192 | 273

m Familiarity
Usage 93 92 191 m Usage
Assessment | 43 23 86 Assessment

Over 160 of the 560 core outcomes are substantially new and another approximately 150 are
significantly different than what is implied by CC2001. These new learning outcomes are
identified in Table B-4, which appears at the end of this appendix. Over two dozen topics from
CC2001 have been removed from the core, either by moving them to elective material or by

elimination entirely. These are summarized in Table B-3.

Changes in Knowledge Area Structure

Several knowledge areas have been significantly changed from the CC2001 and CS2008
Guidelines. Specifically, Systems Fundamentals has been added to capture the common themes
in previously distinct systems knowledge areas. The new Software Development Fundamentals
KA provides students with a view of software beyond programming skills, including topics from
Algorithms and Complexity (e.g., basic analysis, fundamental data structures), Software
Engineering (e.g., small scale reviews, basic development tools), and Programming Languages
(e.g., paradigm-independent constructs). Topics related to specific programming paradigms are

now covered in the Programming Languages and Platform-Based Development KAs.

A comparison of learning outcomes between CS2013 and CC2001 leads to several general

observations:

e The Systems Fundamentals knowledge area was created to capture the fundamental

principles common among operating systems, networking, and distributed systems.

e Digital logic and numerical methods are de-emphasized. A fundamental coverage of
digital logic can be found in Systems Fundamentals, but more advanced coverage is
considered to be the domain of computer engineering and electrical engineering.
Numerical methods are elective material in the Computational Science Knowledge Area

and are treated as a topic geared towards a more selected group of students entering into
computational sciences.

e Similarly, foundational topics related to software development have been reorganized to
produce a more coherent grouping and encourage curricular flexibility.

e There is increased emphasis on Parallel and Distributed Computing, as evidenced by the
new Knowledge Area with that name.

e There is a significant new emphasis on security. To this end, a new KA has been
developed, Information Assurance and Security (IAS). Much of the material described in
the KA is also mentioned in other KAs. The IAS KA cross-lists these topics. Some
institutions may choose to distribute the core IAS topics among existing courses. In
addition, privacy is a topic of growing concern, and is described in IAS as well as being
represented in the core content of the Social Issues and Professional Practice KA.

e There is no distinguished emphasis on building web pages or search engine use. We
assume that students entering undergraduate study in this decade are familiar with
internet search, email, and social networking, an assumption that was not universally true
in 2001.

e The Programming Languages core in CC2001 had a significant emphasis on language
translation. The CS2013 core material in PL is more focused on language paradigms and
tradeoffs, rather than implementation. The implementation content is elective.

e The Intelligent Systems, Architecture and Organization, and Discrete Structures
Knowledge Areas have many topics in common with CC2001, but also have a number of
new topics. Emphases have changed. Some topics have been de-emphasised to allow for
inclusion of new topics.

e The Social Issues and Professional Practice Knowledge Area has changed to a great
degree, particularly with respect to contemporary issues.

Core Comparison

There is significant overlap between the CC2001 Core and the CS2013 Core, particularly in the
more theoretical and fundamental content. This is an indication of growing maturity in the
fundamentals of the field. Knowledge Areas such as Discrete Structures, Algorithms and
Complexity, and Programming Languages are updated in CS2013, but the central material is
largely unchanged. Two new knowledge areas, Systems Fundamentals and Software

Development Fundamentals, are constructed from cross-cutting, foundational material from

- 206 -

existing knowledge areas. There are significant differences in applied and rapidly-changing

areas such as information assurance and security, intelligent systems, parallel and distributed

computing, and topics related to professionalism and society. This, too, is to be expected of a

field that is vibrant and expanding. The comparison is complicated by the fact that in CS2013,

we have augmented the topic list with explicit student outcomes and levels of understanding. To

compare CC2001 directly, we had to make some reasonable assumptions about what CC2001

intended. The changes are summarized in Table B-2 by knowledge area in CS2013.

Table B-2: Summary of Changes by Knowledge Area

KA

Changes in CS2013

AL

This knowledge area now includes a basic understanding of the classes P and NP, the P
vs NP problem, and examples of NP-complete problems. It also includes empirical
studies for the purposes of comparing algorithm performance. Note that Distributed

Algorithms have been moved to the Parallel and Distributed Computing KA.

AR

In this knowledge area, multi-core parallelism, virtual machine support, and power as a
constraint are more significant considerations now than a decade ago. The use of CAD

tools is prescribed rather than suggested.

CN

The topics in the core of this area are central to “computational thinking” and are at the
heart of using computational power to solve problems in domains both inside and outside
of traditional CS boundaries. The elective material covers topics that prepare students to
contribute to efforts such as computational biology, bioinformatics, eco-informatics,

computational finance, and computational chemistry.

DS

The concepts covered in the core are not new, but some coverage time has shifted from
logic to discrete probability, reflecting the growing use of probability as a mathematical

tool in computing. Many learning outcomes are also more explicit in CS2013.

-207 -

GV

The storage of analog signals in digital form is a general computing idea, as is storing

information vs. re-computing. (This outcome appears in System Fundamentals, also.)

HCI

Although the core hours have not increased, there is a change in emphasis within this
knowledge area to recognize the increased importance of design methods and

interdisciplinary approaches within the specialty.

IAS

This is a new knowledge area. All of these outcomes reflect the growing emphasis in the
profession on security. The IAS knowledge area contains specific security and assurance
knowledge units; however, it is also heavily integrated with many other knowledge areas.
For example defensive programming is addressed in Core-Tier]l and Core-Tier2 hours
within the Programming Languages, System Fundamentals, Software Engineering, and

Operating Systems Knowledge Areas.

IM

The core outcomes in this Knowledge Area reflect topics that are broader than a typical
database course. They can easily be covered in a traditional database course, but they

must be explicitly addressed.

IS

Greater emphasis has been placed on machine learning than in the past. Additional
guidance has been provided on what is expected of students with respect to understanding

the challenges of implementing and using intelligent systems.

NC

There is greater focus on the comparison of IP and Ethernet networks, and increased
attention to wireless networking. A related topic is reliable delivery. Here there is also

added emphasis on implementation of protocols and applications.

- 208 -

OS

This knowledge area is structured to be complementary to Systems Fundamentals,
Networking and Communication, Information Assurance and Security, and the Parallel
and Distributed Computing Knowledge Areas. While some argue that system
administration is the realm of IT and not CS, the working group believes that every
student should have the capability to carry out basic administrative activities, especially
those impact access control. Security and protection were electives in CC2001, while they
were included in the core in CS2008. They appear in the core here as well. Realization of
virtual memory using hardware and software has been moved to be an elective learning
outcome (OS/Virtual Machines). Details of deadlocks and their prevention, including

detailed concurrency is left to the Parallel and Distributed Computing Knowledge Area.

PD

This is a new knowledge area, which demonstrates the need for students to be able to
work in parallel and distributed environments. This trend was initially identified, but not
included, in the CS2008 Body of Knowledge. It is made explicit here to reflect that some

familiarity with this topic has become essential for all undergraduates in CS.

PL

For the core material, the outcomes were made more uniform and general by refactoring
material on object-oriented programming, functional programming, and event-oriented
programming that was in multiple knowledge areas in CC2001. Programming with less
mutable state and with more use of higher-order functions (like map and reduce) have
greater emphasis. For the elective material, there is greater depth on advanced language
constructs, type systems, static analysis for purposes other than compiler optimization,

and run-time systems particularly garbage collection.

- 209 -

SDF

This new knowledge area pulls together foundational concepts and skills needed for
software development. It is derived from the Programming Fundamentals Knowledge
Area in CC2001, but also draws basic analysis material from Algorithms and Complexity,
development process from Software Engineering, fundamental data structures from
Discrete Structures, and programming language concepts from Programming Languages.
Material specific to particular programming paradigms (e.g. object-oriented, functional)
has been moved to Programming Languages to allow for a more uniform treatment with

complementary material.

SE

The changes in this knowledge area introduce or require topics such as refactoring, secure
programming, code modeling, code reviews, contracts, and team participation and process
improvement. These topics, which reflect the growing awareness of software process in
industry, are central to any level of modern software development, and should be used for
software development projects throughout the curriculum. Agile process models have

been added.

SF

This is a new knowledge area. Its outcomes reflect the refactoring of the knowledge areas
to identify common themes across previously existing systems-related knowledge areas
(in particular, operating systems, networks, and computer architecture). The new cross-
cutting thematic areas include parallelism, communications, performance, proximity,

virtualization/isolation, and reliability.

SP

These outcomes in this knowledge area reflect a shift in the past decade toward
understanding intellectual property as related to digital intellectual property and digital
rights management, the need for global awareness, and a growing concern for privacy in
the digital age. They further recognize the enormous impact that computing has had on
society at large emphasizing a sustainable future and placing added responsibilities on
computing professionals. The outcomes also identify the vital needs for professional
ethics, professional development, professional communication, and the ability to

collaborate in person as well as remotely across time zones.

-210 -

Conclusions

The changes from CC2001 to CS2013 are significant. Approximately one-half of the outcomes
are new or significantly changed from those implied by CC2001. Many of these changes were
suggested in the CS2008 revision, and reflect current practice in CS programs. Programs may be
in a position to migrate their curricula incrementally towards the CS2013 guidelines. In other
cases it will be preferable for faculty to revisit the structure of their curriculum to address the

changing landscape of computing.

-211-

Table B-3: Core Learning Topics and Objectives in CC2001 not found in the CS2013 Core

KA | Topic From CC2001 Comment

AL | Design and implement an appropriate hashing | This is elective material in C2013.
function for an application.

AL | Distributed Algorithms Topics in this section have been updated

and moved to the CS2013 Parallel and
Distributed knowledge unit.

AR | Logic gates, flip flops, PLA, minimization, This material has been moved to Systems
sum-of-product form, fan-out Fundamentals/Computational Paradigms.

AR | VLIW, EPIC, Systolic architecture; These topics are elective in CS2013.
hypercube, shuffle-exchange, mesh, crossbar
as examples of interconnection networks

GV | Raster and vector graphics systems; These topics have been updated
video display devices; significantly.
physical and logical input devices;
issues facing the developer of graphical
systems

GV | Affine transformations, homogeneous This is elective material in C2013.
coordinates, clipping;
raster and vector graphics, physical and
logical input devices

IM | Information storage and retrieval This is elective material in C2013.

IM | Summarize the evolution of information The history of information systems has
systems from early visions up through been removed.
modern offerings, distinguishing their
respective capabilities and future potential.

NC | Evolution of early networks; use of common | The evolution of early networks is elective
networked applications (e-mail, telnet, FTP, material in C2013. Use of common
newsgroups, and web browsers, online web applications has been removed. We
courses, and instant messaging); streams and | assume that students enter programs
datagrams; CGI, applets, web servers familiar with common web applications.

NC | Discuss important network standards in their | The history of networking has been
historical context. removed.

NC | Install a simple network with two clients and | System administration outcomes are

a single server using standard host
configuration software tools such as DHCP.

described in Operating Systems/Security
and Protection.

-212 -

OS | Describe how operating systems have evolved | The history of operating systems has been
over time from primitive batch systems to removed.
sophisticated multiuser systems.
OS | Describe how issues such as open source No core outcomes explicitly mention the
software and the increased use of the Internet | use of open source software.
are influencing operating system design.
OS | Discuss the utility of data structures, such as | Concurrency topics are now located in
stacks and queues, in managing concurrency. | Parallel and Distributed Computing.
PF | Describe the mechanics of parameter passing | Implementation specifics are elective
topics in CS2013.
PF | Describe how recursion can be implemented | Recursion remains a significant topic,
using a stack. much of which is described in
Programming Languages now.
PL | Summarize the evolution of programming The history of programming languages has
languages illustrating how this history has led | been removed.
to the paradigms available today.
PL | Activation records, type parameters, internal | Most implementation specifics are elective
representations of objects and methods topics in CS2013, with a basic familiarity
with the implementation of key language
constructs appearing in Core-Tier-2.
SE | Class browsers, programming by example, Covered without listing a necessary and
API debugging; sufficient list of tools.
tools.
SP | History This is elective material in C2013.
SP | Gender-related issues This material has been expanded to
include all under-represented populations.
SP | Growth of the internet This material has been subsumed by topics
in Social Context with an understanding
that students entering undergraduate study
no longer consider the Internet to be a
novel concept.
SP | Freedom of expression This is elective material in C2013.

-213 -

Table B-4: New and Expanded Core Learning Outcomes in CS2013

KA

Core Learning Outcomes as described in CS2013

AL

Core-Tierl:

Explain what is meant by “best”, “expected”, and “worst” case behavior of an
algorithm.

In the context of specific algorithms, identify the characteristics of data and/or
other conditions or assumptions that lead to different behaviors.

Perform empirical studies to validate hypotheses about runtime stemming from
mathematical analysis. Run algorithms on input of various sizes and compare
performance.

Give examples that illustrate time-space trade-offs of algorithms.

Use dynamic programming to solve an appropriate problem.

Explain how tree balance affects the efficiency of various binary search tree
operations.

Core-Tier2:

Define the classes P and NP.

Explain the significance of NP-completeness.

Discuss factors other than computational efficiency that influence the choice of
algorithms, such as programming time, maintainability, and the use of
application-specific patterns in the input data.

AR

Core-Tier2:

Comprehend the trend of modern computer architectures towards multi-core and
that parallelism is inherent in all hardware systems.

Explain the implications of the “power wall” in terms of further processor
performance improvements and the drive towards harnessing parallelism.
Design the basic building blocks of a computer: arithmetic-logic unit (gate-level),
registers (gate-level), central processing unit (register transfer-level), and
memory (register transfer-level).

Use CAD tools for capture, synthesis, and simulation to evaluate simple building
blocks (e.g., arithmetic-logic unit, registers, movement between registers) of a
simple computer design.

Evaluate the functional and timing diagram behavior of a simple processor
implemented at the logic circuit level.

Compute Average Memory Access Time under a variety of cache and memory
configurations and mixes of instruction and data references.

_214-

CN

Core-Tierl:

Explain the concept of modeling and the use of abstraction that allows the use of
a machine to solve a problem.

Describe the relationship between modeling and simulation, ie, thinking of
simulation as dynamic modeling.

Create a simple, formal mathematical model of a real-world situation and use that
model in a simulation.

Differentiate among the different types of simulations, including physical
simulations, human-guided simulations, and virtual reality.

Describe several approaches to validating models.

DS

Core-Tierl:

Apply the pigeonhole principle in the context of a formal proof.

Perform computations involving modular arithmetic.

Identify a case of the binomial distribution and compute a probability using that
distribution.

Compute the variance for a given probability distribution.

Core-Tier2:

Compute the variance for a given probability distribution.

Explain how events that are independent can be conditionally dependent (and
vice-versa). Identify real-world examples of such cases.

Determine if two graphs are isomorphic.

GV

Core-Tierl:

Explain in general terms how analog signals can be reasonably represented by
discrete samples, for example, how images can be represented by pixels.
Explain how the limits of human perception affect choices about the digital
representation of analog signals.

Describe the differences between lossy and lossless image compression

techniques, for example as reflected in common graphics image file formats such
as JPG, PNG, MP3, MP4, and GIF.

Core-Tier2:

Describe color models and their use in graphics display devices.

Describe the tradeoffs between storing information vs storing enough
information to reproduce the information, as in the difference between vector and
raster rendering.

HCI

Core-Tier2:

For an identified user group, undertake and document an analysis of their needs.
Create a simple application, together with help and documentation, that supports
a graphical user interface.

Discuss at least one national or international user interface design standard.

-215-

IAS

Core-Tierl:

Analyze the tradeoffs of balancing key security properties (Confidentiality,
Integrity, Availability).

Describe the concepts of risk, threats, vulnerabilities and attack vectors
(including the fact that there is no such thing as perfect security).

Explain the concept of trust and trustworthiness.

Recognize that there are important ethical issues to consider in computer
security, including ethical issues associated with fixing or not fixing
vulnerabilities and disclosing or not disclosing vulnerabilities.

Describe the principle of least privilege and isolation as applied to system design.
Summarize the principle of fail-safe and deny-by-default.

Recognize not to rely on the secrecy of design for security (but also that open
design alone does not imply security).

Explain the goals of end-to-end data security.

Discuss the benefits of having multiple layers of defenses.

Recognize that security has to be a consideration from the point of initial design
and throughout the lifecycle of a product.

Recognize that security imposes costs and tradeoffs.

Explain why input validation and data sanitization is necessary in the face of
adversarial control of the input channel.

Explain why you might choose to develop a program in a type-safe language like
Java, in contrast to an unsafe programming language like C/C++.

Classify common input validation errors, and write correct input validation code.
Demonstrate using a high-level programming language how to prevent a race
condition from occurring and how to handle an exception.

Demonstrate the identification and graceful handling of error conditions.

Core-Tier2:

Describe the concept of mediation and the principle of complete mediation.

Be aware of standard components for security operations, instead of re-inventing
fundamentals operations.

Explain the concept of trusted computing including trusted computing base and
attack surface and the principle of minimizing trusted computing base.

Discuss the importance of usability in security mechanism design.

Recognize that security does not compose by default; security issues can arise at
boundaries between multiple components.

Identify the different roles of prevention mechanisms and detection/deterrence
mechanisms.

Explain the risks with misusing interfaces with third-party code and how to
correctly use third-party code.

Discuss the need to update software to fix security vulnerabilities and the
lifecycle management of the fix.

List examples of direct and indirect information flows.

-216 -

Describe likely attacker types against a particular system.

Discuss the limitations of malware countermeasures (eg, signature-based
detection, behavioral detection).

Identify instances of social engineering attacks and Denial of Service attacks.
Discuss how Denial of Service attacks can be identified and mitigated.
Describe risks to privacy and anonymity in commonly used applications.
Discuss the concepts of covert channels and other data leakage procedures.
Describe the different categories of network threats and attacks.

Describe virtues and limitations of security technologies at each layer of the
network stack.

Identify the appropriate defense mechanism(s) and its limitations given a network
threat.

Discuss security properties and limitations of other non-wired networks.

Define the following terms: cipher, cryptanalysis, cryptographic algorithm, and
cryptology and describe the two basic methods (ciphers) for transforming plain
text in cipher text.

Discuss the importance of prime numbers in cryptography and explain their use
in cryptographic algorithms.

Use cryptographic primitives and their basic properties.

M

Core-Tierl:

Describe how humans gain access to information and data to support their needs.
Understand advantages and disadvantages of central organizational control over
data.

Identify the careers/roles associated with information management (e.g., database
administrator, data modeler, application developer, end-user).

Demonstrate uses of explicitly stored metadata/schema associated with data.
Identify issues of data persistence for an organization.

Core-Tier2:

Explain uses of declarative queries.

Give a declarative version for a navigational query.

Identify vulnerabilities and failure scenarios in common forms of information
systems.

Describe the most common designs for core database system components
including the query optimizer, query executor, storage manager, access methods,
and transaction processor.

Describe facilities that databases provide supporting structures and/or stream
(sequence) data, e.g., text.

Compare and contrast appropriate data models, including internal structures, for
different types of data.

Describe the differences between relational and semi-structured data models.
Give a semi-structured equivalent (e.g., in DTD or XML Schema) for a given
relational schema.

-217 -

IS

Core-Tier2:

Translate a natural language (e.g., English) sentence into predicate logic
statement.

Convert a logic statement into clause form.

Apply resolution to a set of logic statements to answer a query.

Make a probabilistic inference in a real-world problem using Bayes’ theorem to
determine the probability of a hypothesis given evidence.

List the differences among the three main styles of learning: supervised,
reinforcement, and unsupervised.

Identify examples of classification tasks, including the available input features
and output to be predicted.

Explain the difference between inductive and deductive learning.

Describe over-fitting in the context of a problem.

Apply the simple statistical learning algorithm such as Naive Bayesian Classifier
to a classification task and measure the classifier's accuracy.

NC

Core-Tierl:

Articulate the organization of the Internet.

List and define the appropriate network terminology.

Identify the different types of complexity in a network (edges, core, etc).

List the differences and the relations between names and addresses in a network.
Define the principles behind naming schemes and resource location.

Core-Tier2:

List the factors that affect the performance of reliable delivery protocols.
Design and implement a simple reliable protocol.

Describe the organization of the network layer.

Describe how packets are forwarded in an IP network.

List the scalability benefits of hierarchical addressing.

Describe how frames are forwarded in an Ethernet network.

Describe the steps used in one common approach to the multiple access problem.
Describe how resources can be allocated in a network.

Describe the congestion problem in a large network.

Compare and contrast fixed and dynamic allocation techniques.
Compare and contrast current approaches to congestion.

Describe the organization of a wireless network.

Describe how wireless networks support mobile users.

-218 -

OS

Core-Tier2:

Articulate the need for protection and security in an OS (cross-reference
IAS/Security Architecture and Systems Administration/Investigating Operating
Systems Security for various systems).

Summarize the features and limitations of an operating system used to provide
protection and security (cross-reference IAS/Security Architecture and Systems
Administration).

Explain the mechanisms available in an OS to control access to resources (cross-
reference IAS/Security Architecture and Systems Administration/Access
Control/Configuring systems to operate securely as an IT system).

Carry out simple system administration tasks according to a security policy, for
example, creating accounts, setting permissions, applying patches, and arranging
for regular backups (cross-reference IAS/Security Architecture and Systems
Administration).

PD

Core-Tierl:

Distinguish using computational resources for a faster answer from managing
efficient access to a shared resource.

Distinguish multiple sufficient programming constructs for synchronization that
may be inter-implementable but have complementary advantages.

Distinguish data races from higher level races.

Explain why synchronization is necessary in a specific parallel program.

Use mutual exclusion to avoid a given race condition.

Explain the differences between shared and distributed memory.

Core-Tier2:

Identify opportunities to partition a serial program into independent parallel
modules.

Write a correct and scalable parallel algorithm.

Parallelize an algorithm by applying task-based decomposition.

Parallelize an algorithm by applying data-parallel decomposition.

Write a program using actors and/or reactive processes.

Give an example of an ordering of accesses among concurrent activities (eg,
program with a data race) that is not sequentially consistent.

Give an example of a scenario in which blocking message sends can deadlock.
Explain when and why multicast or event-based messaging can be preferable to
alternatives.

Write a program that correctly terminates when all of a set of concurrent tasks
have completed.

Use a properly synchronized queue to buffer data passed among activities.
Explain why checks for preconditions, and actions based on these checks, must
share the same unit of atomicity to be effective.

Write a test program that can reveal a concurrent programming error, for
example, missing an update when two activities both try to increment a variable.

-219 -

Describe at least one design technique for avoiding liveness failures in programs
using multiple locks or semaphores.

Describe the relative merits of optimistic versus conservative concurrency
control under different rates of contention among updates.

Give an example of a scenario in which an attempted optimistic update may
never complete.

Define “critical path”, “work”, and “span”.

Compute the work and span, and determine the critical path with respect to a
parallel execution diagram.

Define “speed-up” and explain the notion of an algorithm’s scalability in this
regard.

Identify independent tasks in a program that may be parallelized.

Characterize features of a workload that allow or prevent it from being naturally
parallelized.

Implement a parallel divide-and-conquer (and/or graph algorithm) and
empirically measure its performance relative to its sequential analog.
Decompose a problem (e.g., counting the number of occurrences of some word in
a document) via map and reduce operations.

Describe the SMP architecture and note its key features.

Characterize the kinds of tasks that are a natural match for SIMD machines.

PL

Core-Tierl:

Write basic algorithms that avoid assigning to mutable state or considering
reference equality.

Write useful functions that take and return other functions.

Compare and contrast (1) the procedural/functional approach (defining a function
for each operation with the function body providing a case for each data variant)
and (2) the object-oriented approach (defining a class for each data variant with
the class definition providing a method for each operation). Understand both as
defining a matrix of operations and variants.

For both a primitive and a compound type, informally describe the values that
have that type.

For a language with a static type system, describe the operations that are
forbidden statically, such as passing the wrong type of value to a function or
method.

Describe examples of program errors detected by a type system.

For multiple programming languages, identify program properties checked
statically and program properties checked dynamically.

Give an example program that does not type-check in a particular language and
yet would have no error if run.

Use types and type-error messages to write and debug programs.

Core-Tier2:

Correctly reason about variables and lexical scope in a program using function
closures.

-220 -

Use functional encapsulation mechanisms such as closures and modular
interfaces.

Define and use iterators and other operations on aggregates, including operations
that take functions as arguments, in multiple programming languages, selecting
the most natural idioms for each language.

Explain why an event-driven programming style is natural in domains where
programs react to external events.

Describe an interactive system in terms of a model, a view, and a controller.
Explain how typing rules define the set of operations that are legal for a type.
Write down the type rules governing the use of a particular compound type.
Explain why undecidability requires type systems to conservatively approximate
program behavior.

Define and use program pieces (such as functions, classes, methods) that use
generic types, including for collections.

Discuss the differences among generics, subtyping, and overloading.

Explain multiple benefits and limitations of static typing in writing, maintaining,
and debugging software.

Explain how programs that process other programs treat the other programs as
their input data.

Describe an abstract syntax tree for a small language.

Describe the benefits of having program representations other than strings of
source code.

Write a program to process some representation of code for some purpose, such
as an interpreter, an expression optimizer, or a documentation generator.
Distinguish syntax and parsing from semantics and evaluation.

Sketch a low-level run-time representation of core language constructs, such as
objects or closures.

Explain how programming language implementations typically organize memory
into global data, text, heap, and stack sections and how features such as recursion
and memory management map to this memory model.

Identify and fix memory leaks and dangling-pointer dereferences.

Discuss the benefits and limitations of garbage collection, including the notion of
reachability.

SDF

Core-Tierl:

Discuss how a problem may be solved by multiple algorithms, each with
different properties.

Identify the data components and behaviors of multiple abstract data types.
Implement a coherent abstract data type, with loose coupling between
components and behaviors.

Identify the relative strengths and weaknesses among multiple designs or
implementations for a problem.

Trace the execution of a variety of code segments and write summaries of their
computations.

-221-

Explain why the creation of correct program components is important in the
production of high-quality software.

Identify common coding errors that lead to insecure programs (eg, buffer
overflows, memory leaks, malicious code) and apply strategies for avoiding such
errors.

Conduct a personal code review (focused on common coding errors) on a
program component using a provided checklist.

Describe how a contract can be used to specify the behavior of a program
component.

Refactor a program by identifying opportunities to apply procedural abstraction.
Analyze the extent to which another programmer’s code meets documentation
and programming style standards.

Apply consistent documentation and program style standards that contribute to
the readability and maintainability of software.

SE

Core-Tierl:

List the key components of a use case or similar description of some behavior
that is required for a system.

Describe how the requirements engineering process supports the elicitation and
validation of behavioral requirements.

Interpret a given requirements model for a simple software system.

Use a design paradigm to design a simple software system, and explain how
system design principles have been applied in this design.

Within the context of a single design paradigm, describe one or more design
patterns that could be applicable to the design of a simple software system.

Core-Tier2:

Discuss common behaviors that contribute to the effective functioning of a team.
Create and follow an agenda for a team meeting.

Identify and justify necessary roles in a software development team.
Understand the sources, hazards, and potential benefits of team conflict.

Apply a conflict resolution strategy in a team setting.

Use an ad hoc method to estimate software development effort (e.g., time) and
compare to actual effort required.

List several examples of software risks.

Describe the impact of risk in a software development lifecycle.

Describe different categories of risk in software systems.

Describe the difference between centralized and distributed software
configuration management.

Describe how version control can be used to help manage software release
management.

Identify configuration items and use a source code control tool in a small team-
based project.

-222 -

Describe how available static and dynamic test tools can be integrated into the
software development environment.

Describe the issues that are important in selecting a set of tools for the
development of a particular software system, including tools for requirements
tracking, design modeling, implementation, build automation, and testing.
Demonstrate the capability to use software tools in support of the development of
a software product of medium size.

Describe the fundamental challenges of and common techniques used for
requirements elicitation.

List the key components of a data model (eg, class diagrams or ER diagrams).
Identify both functional and non-functional requirements in a given requirements
specification for a software system.

For a simple system suitable for a given scenario, discuss and select an
appropriate design paradigm.

Create appropriate models for the structure and behavior of software products
from their requirements specifications.

Explain the relationships between the requirements for a software product and its
design, using appropriate models.

For the design of a simple software system within the context of a single design
paradigm, describe the software architecture of that system.

Given a high-level design, identify the software architecture by differentiating
among common software architectures such as 3-tier, pipe-and-filter, and client-
server.

Investigate the impact of software architectures selection on the design of a
simple system.

Describe a form of refactoring and discuss when it may be applicable.

Select suitable components for use in the design of a software product.

Explain how suitable components might need to be adapted for use in the design
of a software product.

Design a contract for a typical small software component for use in a given
system.

Describe techniques, coding idioms and mechanisms for implementing designs to
achieve desired properties such as reliability, efficiency, and robustness.
Describe secure coding and defensive coding practices.

Select and use a defined coding standard in a small software project.

Compare and contrast integration strategies including top-down, bottom-up, and
sandwich integration.

Describe the process of analyzing and implementing changes to code base
developed for a specific project.

Describe the process of analyzing and implementing changes to a large existing
code base.

Describe how to select good regression tests and automate them.

Use a defect tracking tool to manage software defects in a small software project.
Discuss the limitations of testing in a particular domain.

-223 -

Use refactoring in the process of modifying a software component.

Explain the problems that exist in achieving very high levels of reliability.
Describe how software reliability contributes to system reliability.

List approaches to minimizing faults that can be applied at each stage of the
software lifecycle.

SF

Core-Tierl:

List commonly encountered patterns of how computations are organized.
Articulate the differences between single thread vs. multiple thread, single server
vs multiple server models, motivated by real world examples (e.g., cooking
recipes, lines for multiple teller machines and couples shopping for food).
Articulate the concept of strong vs. weak scaling, i.e., how performance is
affected by scale of problem vs. scale of resources to solve the problem. This can
be motivated by the simple, real-world examples.

Use tools for capture, synthesis, and simulation to evaluate a logic design.

Write a simple sequential problem and a simple parallel version of the same
program.

Evaluate performance of simple sequential and parallel versions of a program
with different problem sizes, and be able to describe the speed-ups achieved.
Describe how computing systems are constructed of layers upon layers, based on
separation of concerns, with well-defined interfaces, hiding details of low layers
from the higher layers.

Describe that hardware, VM, OS, application are additional layers of
interpretation/processing.

Describe the mechanisms of how errors are detected, signaled back, and handled
through the layers.

Construct a simple program using methods of layering, error detection and
recovery, and reflection of error status across layers.

Find bugs in a layered program by using tools for program tracing, single
stepping, and debugging.

Describe computations as a system characterized by a known set of
configurations with transitions from one unique configuration (state) to another
(state).

Describe the distinction between systems whose output is only a function of their
input (combinational) and those with memory/history (sequential).

Describe a computer as a state machine that interprets machine instructions.
Explain how a program or network protocol can also be expressed as a state
machine, and that alternative representations for the same computation can exist.
Develop state machine descriptions for simple problem statement solutions (eg,
traffic light sequencing, pattern recognizers).

Derive time-series behavior of a state machine from its state machine
representation.

For a given program, distinguish between its sequential and parallel execution,
and the performance implications thereof.

- 224 -

Demonstrate on an execution time line that parallelism events and operations can
take place simultaneously (ie, at the same time) Explain how work can be
performed in less elapsed time if this can be exploited.

Explain other uses of parallelism, such as for reliability/redundancy of execution.
Define the differences between the concepts of Instruction Parallelism, Data
Parallelism, Thread Parallelism/Multitasking, and Task/Request Parallelism.
Write more than one parallel program (e.g., one simple parallel program in more
than one parallel programming paradigm; a simple parallel program that manages
shared resources through synchronization primitives; a simple parallel program
that performs simultaneous operation on partitioned data through task parallelism
(e.g., parallel search terms); a simple parallel program that performs step-by-step
pipeline processing through message passing).

Use performance tools to measure speed-up achieved by parallel programs in
terms of both problem size and number of resources.

Explain how the components of system architecture contribute to improving its
performance.

Describe Amdahl’s law and discuss its limitations.

Design and conduct a performance-oriented experiment.

Use software tools to profile and measure program performance.

Core-Tier2:

Define how finite computer resources (e.g., processor share, memory, storage,
and network bandwidth) are managed by their careful allocation to existing
entities.

Describe the scheduling algorithms by which resources are allocated to
competing entities, and the figures of merit by which these algorithms are
evaluated, such as fairness.

Implement simple schedule algorithms.

Use figures of merit of alternative scheduler implementations.

Explain the importance of locality in determining performance.

Describe why things that are close in space take less time to access.

Calculate average memory access time and describe the tradeoffs in memory
hierarchy performance in terms of capacity, miss/hit rate, and access time.
Describe how the concept of indirection can create the illusion of a dedicated
machine and its resources even when physically shared among multiple programs
and environments.

Measure the performance of two application instances running on separate virtual
machines, and determine the effect of performance isolation.

Explain the distinction between program errors, system errors, and hardware
faults (e.g., bad memory) and exceptions (e.g., attempt to divide by zero).
Articulate the distinction between detecting, handling, and recovering from
faults, and the methods for their implementation.

Describe the role of error correcting codes in providing error checking and
correction techniques in memories, storage, and networks.

-225 -

Apply simple algorithms for exploiting redundant information for the purposes of
data correction.

Compare different error detection and correction methods for their data overhead,
implementation complexity, and relative execution time for encoding, detecting,
and correcting errors.

SP

Core-Tierl:

Summarize the implications of social media on individualism versus collectivism
and culture.

Recognize the ethical responsibility of ensuring software correctness, reliability
and safety.

Describe the mechanisms that typically exist for a professional to keep up-to-
date.

Discuss the philosophical bases of intellectual property.

Discuss the rationale for the legal protection of intellectual property.

Describe legislation aimed at digital copyright infringements.

Critique legislation aimed at digital copyright infringements.

Identify contemporary examples of intangible digital intellectual property.

Justify uses of copyrighted materials.

Evaluate the ethical issues inherent in various plagiarism detection mechanisms.

Interpret the intent and implementation of software licensing.

Discuss the issues involved in securing software patents.

Evaluate solutions to privacy threats in transactional databases and data
warehouses.

Recognize the fundamental role of data collection in the implementation of
pervasive surveillance systems (e.g., RFID, face recognition, toll collection,
mobile computing).

Recognize the ramifications of differential privacy.

Investigate the impact of technological solutions to privacy problems.

Write clear, concise, and accurate technical documents following well-defined
standards for format and for including appropriate tables, figures, and
references.

Evaluate written technical documentation to detect problems of various kinds.

Develop and deliver a good quality formal presentation.

Plan interactions (e.g., virtual, face-to-face, shared documents) with others in
which they are able to get their point across, and are also able to listen carefully
and appreciate the points of others, even when they disagree, and are able to
convey to others that they have heard.

Describe the strengths and weaknesses of various forms of communication (e.g.,
virtual, face-to-face, shared documents).

Examine appropriate measures used to communicate with stakeholders involved
in a project.

Compare and contrast various collaboration tools.

Identify ways to be a sustainable practitioner.

- 226 -

lustrate global social and environmental impacts of computer use and disposal
(e-waste).

Core-Tier2:

Discuss how Internet access serves as a liberating force for people living under
oppressive forms of government; explain how limits on Internet access are used
as tools of political and social repression.

Analyze the pros and cons of reliance on computing in the implementation of
democracy (e.g., delivery of social services, electronic voting).

Describe the impact of the under-representation of diverse populations in the
computing profession (e.g., industry culture, product diversity).

Explain the implications of context awareness in ubiquitous computing systems.

Describe ways in which professionals may contribute to public policy.

Describe the consequences of inappropriate professional behavior.

Identify examples of how regional culture interplays with ethical dilemmas.

Investigate forms of harassment and discrimination and avenues of assistance.

Examine various forms of professional credentialing.

Explain the relationship between ergonomics in computing environments and
people’s health.

Describe issues associated with industries’ push to focus on time to market
versus enforcing quality professional standards.

Describe the environmental impacts of design choices within the field of
computing that relate to algorithm design, operating system design, networking
design, database design, etc.

Investigate the social and environmental impacts of new system designs through
projects.

-227 -

Appendix C: Course Exemplars

While the Body of Knowledge lists the topics that should be included in undergraduate programs
in computer science and their associated learning outcomes, there are many different ways in
which these topics may be packaged into courses. In this appendix we present a collection of
course exemplars gathered from a wide variety of institutions. These take different approaches in
how they cover portions of the CS2013 Body of Knowledge. To allow easy comparison, the
exemplars were all written following a common template, which is included before the actual
course exemplars. These exemplars are not generalized models, artificially created from abstract
features, but are rather examples of real courses. Thus they are written from a variety of
viewpoints and in many voices. In the writing, each one embodies the traditions and practices of

its own institution.

Table C1 provides a list of exemplars organized by the Knowledge Area that they most
significantly cover. The courses listed first with respect to each Knowledge Area devote the
majority of their time to the specific Knowledge Area. Courses listed in parentheses have
significant coverage of topics in the Knowledge Area, but have primary emphasis in a different
Knowledge Area. As can be seen from these exemplars, a course often includes material from
multiple Knowledge Areas and, equally, that multiple courses are often used to cover all the

material from one Knowledge Area.

These exemplars are not meant to be prescriptive with respect to curricular design, nor are they
meant to define a standard curriculum for all institutions. Rather they are provided to give
educators examples of different ways that the Body of Knowledge may be organized into

courses, to provide comparative breadth, and to spur new thinking for future course design.

-228 -

Table C1: Exemplars by Knowledge Area

NOTE: Courses listed below in parentheses have a secondary emphasis in this area.

KA Course Page
Course Exemplar Template 232
AL Pomona College CSCI 140: Algorithms 234
Princeton University COS 226: Algorithms and Data Structures 237
Williams College CSCI 256: Algorithm Design and Analysis 240
U. Washington CSE332: Data Abstractions 243
(Grinnell College CSC207: Algorithms and Object-Oriented Design) 460
(Princeton University COS126: General Computer Science) 443
(Utrect Languages and Compilers) 359
(Harvey Mudd College CS5: Intro to Computer Science) 391
(Portland Community College Discrete Structures 2) 271
(Reykjavik University Operating Systems) 336
(Carnegie Mellon University CS 150: Functional Programming) 384
(Creighton University CSC222 Object-Oriented Programming) 452
AR U. Wisconsin-Madison CS522: Intro to Computer Architecture 246
UC Berkeley CS150: Digital Logic Design 249
UC Berkeley CS152: Computer Engineering 251
(Grinnell College The Digital Age) 439
(Harvey Mudd College CSS5: Intro to Computer Science) 391
(Princeton University COS126 General Computer Sience) 443
CN UNC Charlotte eScience 253
Wofford College COSC/Math 201: Modeling and Simulation 258
(Harvard University CS175 Computer Graphics)
DS Union County College MAT 267 Discrete Mathematics 262
Stanford University CS103/CS109: Mathematical Foundations of CS 265
and Probability for CS
Portland Community College Discrete Structures 1 268
Portland Community College Discrete Structures 2 271
(Carnegie Mellon University 15-312 Principles of Programming Languages) 380
(Carnegie Mellon University 15-150 Functional Programming) 384
GV Harvard CS175:Computer Graphics 274
Williams College CS371: Computer Graphics 277
(Grinnell College CSC151 Functional Problem Solving) 456
HCI University of York, UK Human Aspects of Computer Science 280
Monash University FIT3063 Human Computer Interaction 282
University of Kent Human Computer Interaction 285
Miami University CS 262 Technology, Ethics, and Global Society
University of Cambridge Human Computer Interaction 287
Stanford University Human Computer Interaction 289
(Open University Netherlands Human Information Processing) 291
(University of Cambridge Software and Interface Design) 293
IAS Lewis and Clark State College CS 475 Computer Systems Security 295
(Colorado State University Database Systems) 298
IM Colorado State Universit Database Systems 298

-229 -

IS U. San Francisco Artificial Intelligence Programming 304
Politecnico di Milano Intelligenza Artificiale 306
U. Maryland, Baltimore County Introduction to Artificial Intelligence 308
Case Western Reserve Univ. Artificial Intelligence 310
UC Berkeley CS188: Artificial Intelligence 313
University Hartford Artificial Intelligence 315
(U. North Carolina Charlotte eScience) 253
NC Case Western Reserve U. Computer Networks I 318
Stanford University CS144: Introduction to Computer Networking 320
Williams College Computer Networks 323
(Reykjavik University Operating Systems) 336
OS Williams College CSCI 432: Operating Systems 327
Embry Riddle Aeronautical U. CS 420: Operating Systems 330
University of Ark. Little Rock CPSC 3380: Operating Systems 332
University. of Helsinki 582219 Operating Systems 334
Reykjavik University RU STY1 Operating Systems 336
(Carnegie Mellon University 15-312 Principles of Programming Languages) 380
PD Huazhong U. Of Science and Tech. Parallel Programming Principle and Practice 339
Nizhni Novgorod State University Introduction to Parallel Programming 342
CSInParallel.org CS in Parallel (course modules on parallel computing) 344
(Carnegie Mellon University CS 150: Functional Programming) 384
(U. Washington CSE 332: Data Abstractions) 243
(U. of Arkansas. Little Rock CPSC 3380: Operating Systems) 332
(Embry Riddle Aeronautical U. CS 420: Operating Systems) 330
(Williams College CSCI 334: Principles of Programming Languages) 374
PL Compilers
Colorado State University CS 453: Introduction to Compilers 348
U. Arizona, Tucson CSC 453: Translators and Systems Software 351
Williams College CSCI 434T: Compiler Design 353
Utrect Languages and Compilers 359
Stanford University Compilers 356
Rice Topics in Compiler Construction 361
Programming Languages
Pomona College CS 131: Principles of Programming Languages 364
Brown University CSCI 1730: Introduction to Programming 367
U. of Rochester Programming Language Design and Implementation 369
U. Washington Programming Languages 372
Williams College CSCI 334 Principles of Programming 374
U. of Pennsylvania Programming Languages and Techniques I 377
(Carnegie Mellon University 15-312 Principles of Programming Languages) 380
(Carnegie Mellon University 15-150 Functional Programming) 384
(Brown University CSCI 0190: Accelerated Intro. to Computer Science) 447
(Grinnell College CSC151 Functional Problem Solving) 456
(Grinnell College CSC161 Imperative Problem Solving) 458
(Grinnell College CSC207 Algorithms and Object-Oriented Design) 460
(Clemson University 215 Software Development Foundations) 394
(Creighton University CS222 Object Oriented Programming) 452
(Portland Community College CIS 1331J: Java Programming I) 388
(Worchester Polytechnic Inst. CS1101: Introduction to Program Design) 397

-230 -

SDF Also see Introductory Sequences (at end of table) 449

Portland Community College CIS1331J: Java Programming I 388

Harvey Mudd College CSS5: Introduction to Computer Science 391

Clemson University 215 Software Development Foundations 394

Worchester Polytechnic Inst. CS1101: Introduction to Program Design 397

(U. of Pennsylvania Programming Languages and Techniques I) 377

(Miami University Data Abstraction) 400

(Princeton University COS126: General Computer Science) 443

(Brown Uniyv. CSCI 0190: Accelerated Intro. to Computer Science) 447

SE Embry Riddle Aeronautical U. Software Engineering Practices 402

U. California Berkeley CS169 Software Engineering 406

Milwaukee School of Engineering SE 2890:Software Engineering Practices 409

Quinnipiac University Software Development 411

(Clemson University 215 Software Development Foundations) 394

(Colorado State University CS453: Introduction to Compilers) 348

(Harvard CS175 Computer Graphics) 274

(Williams College CS371: Computer Graphics) 277

(Brown University CSCI 0190: Accelerated Intro. to Computer Science) 447

SF Georgia Tech CS 2200: Computer Systems and Networks 414

UC Berkeley CS 61c: Great Ideas in Computer Architecture 418

U. Washington CSE 333: System Programming 420

SP U. of Maryland, Univ. College IFSM 304 Ethics in Technology 423

Carnegie Mellon University Technology Consulting in the Community 426

Saint Xavier University Issues in Computing 430

Anne Arundel Community College Ethics & the Information Age (CSI 194) 433

Miami University (Oxford, OH) Technology, Ethics, and Global Society 301

Northwest Missouri State U. Professional Development Seminar 433

(Grinnell College The Digital Age) 439

Creighton University 449

> CSC221: Introduction to Programming 450

E § CSC222: Object-Oriented Programming 452
2 £

2 % Grinnell College 454

E % CSC207: Algorithms and Object-Oriented Design 460

- CSC161: Imperative Problem Solving and Data Structures 458

CSC151: Functional problem solving 456

-231-

ACM/IEEE-CS CS2013 Course-Exemplar Template:
Total length should not exceed 4 pages, 2-3 pages preferred

Course Exemplar Template (Name of Course, Institution)

Location of Institution
Your Name
Email Address

Permanent URL where additional materials and information are available (this may be course website
for a recent offering assuming it is public)

Knowledge Areas that contain topics and learning outcomes covered in the course
[List Knowledge Area(s) and associated acronym. It might be easier to complete this table last —
especially the total hours]

Knowledge Area Total Hours of Coverage

Name (e.g., Systems Fundamentals (SF)) Number

Where does the course fit in your curriculum?
[In what year do students commonly take the course? Is it compulsory? Does it have pre-requisites,

required following courses? How many students take it?]

What is covered in the course?
[A short description, and/or a concise list of topics - possibly from your course syllabus.(This is likely to
be your longest answer)]

What is the format of the course?
[Is it face-to-face, online or blended? How many contact hours? Does it have lectures, lab sessions,
discussion classes?]

How are students assessed?
[What type, and number, of assignments are students are expected to do? (papers, problem sets,
programming projects, etc.). How long do you expect students to spend on completing assessed work?]

Course textbooks and materials
[A brief description of materials used (e.g., textbooks, programming languages, environments etc.)]

Why do you teach the course this way?

[A4 description of the course rationale and goals. If you know, please indicate the history and background
of the course and when it was last reviewed/revised. Do students typically consider this course to be
challenging?]

-232 -

Body of Knowledge coverage

[List the Knowledge Units covered in whole or in part in the course. If in part, please indicate which
topics and/or learning outcomes are covered. For those not covered, you might want to indicate whether
they are covered in another course or not covered in your curriculum at all. This section will likely be the
most time-consuming to complete, but is the most valuable for educators planning to adopt the CS2013
guidelines.]

KA Knowledge Unit Topics Covered Hours
XY Full name of KU [Include explanation as needed] Num
Additional topics

[List notable topics covered in the course that you do not find in the CS2013 Body of Knowledge]

Other comments
[optional]

-233 -

CSCI 140: Algorithms, Pomona College

Claremont, CA 91711, USA

Tzu-Y1 Chen

tzuyi@cs.pomona.edu
http://www.cs.pomona.edu/~tzuyi/Classes/CC2013/Algorithms/index.html

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage
Algorithms and Complexity (AL) 29-32

Software Development Fundamentals (SDF) 1.5

Parallel and Distributed Computing (PD) 0-3

Where does the course fit in your curriculum?

This is a required course in the CS major that is typically taken by juniors and seniors. The official prerequisites
are Data Structures (CSCI 062, the 3rd course in the introductory sequence) and Discrete Math (CSCI 055).
However, we regularly make exceptions for students who have had only the first 2 courses in the introductory
sequence as long as they have also taken a proof-based math class such as Real Analysis or Combinatorics.
Algorithms is not a prerequisite for any other required classes, but is a prerequisite for electives such as Applied
Algorithms.

What is covered in the course?

This class covers basic techniques used to analyze problems and algorithms (including asymptotics, upper/lower
bounds, best/average/worst case analysis, amortized analysis, complexity), basic techniques used to design
algorithms (including divide & conquer / greedy / dynamic programming / heuristics, choosing appropriate data
structures), and important classical algorithms (including sorting, string, matrix, and graph algorithms). The goal
is for students to be able to apply all of the above to designing solutions for real-world problems.

What is the format of the course?
This is a one semester (14 week) face-to-face class with 2.5 hours of lecture a week.

How are students assessed?

There is a written assignment (written up individually) due almost every class as well as 1 or 2 programming
assignments (done in groups of 1-3) due during the semester; solutions are evaluated on clarity, correctness, and
(when appropriate) efficiency. Students are expected to spend 6-10 hours a week outside of class on course
material. There are also 1 or 2 midterms and a final exam. Students are expected to attend lectures and to
demonstrate engagement either by asking/answering questions in class or by going to office hours (the professor's
or the TAs").

Course textbooks and materials

The textbook is Introduction to Algorithms, 3rd Edition by Cormen, Leiserson, Rivest, and Stein. For the
programming assignments students are strongly encouraged to use their choice of C, C++, Java, or Python, though
other languages may be used with permission. Students are required to use LaTeX to format their first 2-3 weeks
of assignments, after which its use is encouraged but not required.

Why do you teach the course this way?

This course serves as a bridge between theory and practice. Lectures cover classical algorithms and techniques for
reasoning about their correctness and efficiency. Assignments allow students to practice skills necessary for

- 234 -

developing, describing, and justifying algorithmic solutions for new problems. The 1 or 2 programming
assignments go a step further by also requiring an implementation; these assignments help students better
appreciate both what it means to describe an algorithm clearly and what issues can remain in implementation. To
encourage students not to fall behind in the material, two problem sets are due every week (one every lecture). By
the end of the semester students should also have a strong appreciation for the role of algorithms.

Body of Knowledge coverage

KA | Knowledge Unit Topics Covered Hours

SDF | algorithms and concept and properties of algorithms, role of algorithms, problem-solving | 1.5
design strategies, separation of behavior and implementation

AL | basic analysis all core-tierl

all core-tier2 1.5

AL | algorithmic core-tierl: brute-force, greedy, divide-and-conquer, 6

strategies dynamic programming
core-tier2: heuristics 5

AL | fundamental data all core-tierl 3
structures core-tier2: heaps, graph algorithms (minimum 6
and algorithms spanning tree, single source shortest path, all pairs

shortest path), string algorithms (longest common
subsequence)

AL | basic automata no core-tierl (covered in other required courses), 0
computability and core-tier2: introduction to P/NP/NPC with examples 1
complexity

AL | advanced P/NP/NPC, Cook-Levin, classic NPC problems, reductions 2
computational
complexity

AL | advanced automata | none (covered in other required courses) 0
theory and
computability

AL | advanced data balanced trees (1-2 examples), graphs (topological sort, strongly 8
structures connected components), advanced data structures (disjoint sets, mergeable
algorithms and heaps), network flows, linear programming (formulating, duality,
analysis overview of techniques), approximation algorithms (2-approx for metric-

TSP, vertex cover), amortized analysis
Additional topics

The above table covers approximately 30 hours of lecture and gives the material that is covered every semester.
The remaining hours can be used for review sessions, to otherwise allow extra time for topics that students that
semester find particularly confusing, for in-class midterms, or to cover a range of additional topics. In the past
these additional topics have included:

KA

Knowledge Unit

Topics Covered

AL

advanced computational complexity P-space, EXP

-235-

AL | advanced data structures algorithms and
analysis

more approximation algorithms (e.g., Christofides, subset-
sum), geometric algorithms, randomized algorithms,
online algorithms and competitive analysis, more data
structures (e.g., log* analysis for disjoint-sets)

PD | parallel algorithms, analysis, and
programming

critical path, work and span, naturally parallel algorithms,
specific algorithms (e.g., mergesort, parallel prefix)

PD | formal models and semantics

PRAM

Other comments

Starting in the Fall of 2013 approximately 2-3 hours of the currently optional material on parallel algorithms will

become a standard part of the class.

-236 -

COS 226: Algorithms and Data Structures, Princeton University

Princeton, NJ

Robert Sedgewick and Kevin Wayne

rs@cs.princeton.edu wayne@cs.princeton.edu
http://www.cs.princeton.edu/courses/archive/spring12/cos226/info.php
http://algs4.cs.princeton.edu

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage
Algorithms and Complexity (AL) 29

Software Development Fundamentals (SDF) 3

Programming Languages (PL) 1

Where does the course fit in your curriculum?

This course introduces fundamental algorithms in the context of significant applications in science, engineering,
and commerce. It has evolved from a traditional “second course for CS majors” to a course that is taken by over
one-third of all Princeton students. The prerequisite is a one-semester course in programming, preferably in Java
and preferably at the college level. Our students nearly all fulfill the prerequisite with our introductory course. This
course is a prerequisite for all later courses in computer science, but is taken by many students in other fields of
science and engineering (only about one-quarter of the students in the course are majors).

What is covered in the course?
Classical algorithms and data structures, with an emphasis on implementing them in modern programming
environments, and using them to solve real-world problems. Particular emphasis is given to algorithms for sorting,
searching, string processing, and graph algorithms. Fundamental algorithms in a number of other areas are covered
as well, including geometric algorithms and some algorithms from operations research. The course concentrates on
developing implementations, understanding their performance characteristics, and estimating their potential
effectiveness in applications.
e Analysis of algorithms, with an emphasis on using the scientific method to validate hypotheses about
algorithm performance.
e Data types, APIs, encapsulation.
e Linked data structures, resizing arrays, and implementations of container types such as stacks and queues.
e Sorting algorithms, including insertion sort, selection sort, shellsort, mergesort, randomized quicksort,
heapsort.
e Priority queue data types and implementations, including binary heaps.
e Symbol table data types and implementations (searching algorithms), including binary search trees, red-
black trees, and hash tables.
e Geometric algorithms (searching in point sets and intersection).
e Graph algorithms (breadth-first search, depth-first search, MST, shortest paths, topological sort, strong
components, maxflow)
e Tries, string sorting, substring search, regular expression pattern matching.
e Data compression (Huffman, LZW).
e Reductions, combinatorial search, P vs. NP, and NP-completeness.

-237 -

mailto:rs@cs.princeton.edu�
http://algs4.cs.princeton.edu/�

What is the format of the course?

The material is presented in two 1.5 hour lectures per week with weekly quizzes and a programming assignment,
supported by a one-hour section where details pertinent to assignments and exams are covered by TAs teaching
smaller groups of students. An alternative format is to use online lectures supplemented by two 1.5 hour sections,
one devoted to discussion of lecture material, the other devoted to assignments.

How are students assessed?
The bulk of the assessment is weekly programming assignments, which usually involve solving an interesting
application problem using an efficient algorithm learned in lecture. Students spend 10-20 hours per week on these
assignments and often consult frequently with section instructors for help.

e Monte Carlo simulation to address the percolation problem from physical chemistry, based on efficient
algorithms for the union-find problem.
Develop generic data types for deques and randomized queues.
Find collinear points in a point set, using an efficient generic sorting algorithm implementation.
Implement A* search to solve a combinatorial problem, based on an efficient priority queue
implementation.
Implement a data type that supports range search and near-neighbor search in point sets, using kD trees.
Build and search a “WordNet” directed acyclic graph.
Use maxflow to solve the “baseball elimination” problem.

e Develop an efficient implementation of Burrow-Wheeler data compression.
Exercises for self-assessment are available on the web, are a topic of discussion in sections, and are good
preparation for exams. A mid-term exam and a final exam account for a significant portion of the grade.

Course textbooks and materials

The course is based on the textbook Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne (Addison-
Wesley Professional, 2011, ISBN 0-321-57351-X). The book is supported by a public “booksite”
(http://algs4.cs.princeton.edu), which contains a condensed version of the text narrative (for reference while
online) Java code for the algorithms and clients in the book, and many related algorithms and clients, test data sets,
simulations, exercises, and solutions to selected exercises. The booksite also has lecture slides and other teaching
material for use by faculty at other universities.

A separate website specific to each offering of the course contains detailed information about schedule, grading
policies, and programming assignments.

Why do you teach the course this way?

The motivation for this course is the idea that knowledge of classical algorithms is fundamental to any computer
science curriculum, but it is not just for programmers and computer science students. Everyone who uses a
computer wants it to run faster or to solve larger problems. The algorithms in the course represent a body of
knowledge developed over the last 50 years that has become indispensable. As the scope of computer applications
continues to grow, so grows the impact of these basic methods. Our experience in developing this course over
several decades has shown that the most effective way to teach these methods is to integrate them with
applications as students are first learning to tackle significant programming problems, as opposed to the oft-used
alternative where they are taught in a theory course. With this approach, we are reaching four times as many
students as do typical algorithms courses. Furthermore, our CS majors have a solid knowledge of the algorithms
when they later learn more about their theoretical underpinnings, and all our students have an understanding that
efficient algorithms are necessary in many contexts.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

SDF Algorithms and Design Encapsulation, separation of behavior and implementation. 1

Object-oriented

PL)
programming

Object-oriented design, encapsulation, iterators. 1

-238 -

http://algs4.cs.princeton.edu/�

SDF Fundamental data Stacks, queues, priority queues, references, linked structures,)
structures resizable arrays.
Asymptotic analysis, empirical measurements. Differences
among best, average, and worst case behaviors of an algorithm.
AL Basic Analysis Complexity classes, such as constant, logarithmic, linear, 1
quadratic, and exponential. Time and space trade-offs in
algorithms.
AL Algorithmic Strategics Bmtg—force, greedy., d1V1de-and—.conquer, apd recursive)
algorithms. Dynamic programming, reduction.
Binary search. Insertion sort, selection sort, shellsort,
Fundamental Data quicksort, mergesort, heapsort. Binary heaps. Binary search
AL Structures and trees, hashing. Representations of graphs. Graph search, union- | 13
Algorithms find, minimum spanning trees, shortest paths. Substring search,
pattern matching.
Basic Autqrpata, Finite-state machines, regular expressions, P vs. NP, NP-
AL Computability and 3
. completeness, NP-complete problems
Complexity
Advanced Automata,
AL Computability and Languages, DFAs, NFAs, equivalence of NFAs and DFAs. 1
Complexity
Advanced Data Balanced trees, B-trees. Topological sort, strong components,
AL Structures and network flow. Convex hull. Geometric search and intersection. | 9
Algorithms String sorts, tries, Data compression.
Additional topics

Use of scientific method to validate hypotheses about an algorithm’s time and space usage.

-239 -

CS 256 Algorithm Design and Analysis, Williams College

Williamstown, MA

Brent Heeringa

heeringa@cs.williams.edu
www.cs.williams.edu/~heeringa/classes/cs256

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage
Algorithms and Complexity (AL) 28
Discrete Structures (DS) 2

Where does the course fit in your curriculum?

Students commonly take this course in their second year. It is required. The course has two prerequisites:
Discrete Mathematics (taken in the Department of Mathematics) and Data Structures. Over the past five years, the
course averages 20 students per year. In 2013 there are 38 students enrolled.

What is covered in the course?
Analysis: asymptotic analysis including lower bounds on sorting, recurrence relations and their solutions.

Graphs: directed, undirected, planar, and bipartite.

Greedy Algorithms: shortest paths, minimum spanning trees, and the union-find data structure (including
amortized analysis).

Divide and Conquer Algorithms: integer and matrix multiplication, the fast-fourier transform.

Dynamic Programming: matrix parenthesization, subset sum, RNA secondary structure, DP on trees.

Network Flow: Max-Flow, Min-Cut (equivalence, duality, algorithms).

Randomization: randomized quicksort, median, min-cut, universal hashing, skip lists.

String Algorithms: string matching, suffix trees and suffix arrays.

Complexity Theory: Complexity classes, reductions, and approximation algorithms.

What is the format of the course?

The course format is face-to-face lecture. The lectures last 50 minutes and happen 3 times a week for 12 weeks
for a total of 30 contact hours. Office hours often increase contact hours significantly. There is no lab or
discussion section.

How are students assessed?

Nine problem sets, each worth 5% of the total grade. I drop the lowest score. One take-home midterm exam
worth 25% of the grade. One take-home final exam worth 25% of the grade. 6 pop quizzes, each worth 1% of the

grade. I drop the lowest score. A class participation grade based on attendance, promptness, and participation
worth 5% of the grade. I expect students will spend 7-10 hours on the problem sets and exams.

- 240 -

Course textbooks and materials
Algorithm Design by Kleinberg and Tardos, supplemented liberally with my own lecture notes. There are two
programming assignments, one in Python and one in Java.

Why do you teach the course this way?
The goal of Algorithms is for students to learn and practice a variety of problem solving strategies and analysis

techniques. Students develop algorithmic maturity. They learn how to think about problems, their solutions, and
the quality of those solutions.

I have taught Algorithms since 2007 except for 2010 when I was on sabbatical. My sense is that my course is non-
trivial revision of the offering pre-2007. Students consider the course challenging in a rewarding way.

Body of Knowledge coverage

KA | Knowledge Topics Covered Hours
Unit

AL | Basic Analysis | Asymptotic analysis including definitions of asymptotic upper, lower, and 5

tight bounds. Discussion of worst, best, and expected running time (Monte
Carlo and Las Vegas for randomized algorithms and a brief discussion about
making assumptions about the distribution of the input). Natural complexity
classes in P (log n, linear quadratic, etc.), recurrence relations and their
solutions (mostly via the recursion tree and master method although we
mention generating functions as a more general solution).

AL | Algorithmic Brute-force algorithms (i.e., try-‘em-all), divide and conquer, greedy 6
Strategies algorithms, dynamic programming, and transformations. We do not cover

recursive backtracking, branch and bound, or heuristic programming although
these topics are given some attention in Artificial Intelligence.

AL | Fundamental Order statistics including deterministic median, We do not cover heaps 4
Data Structures | directly in this course although we mention various heap implementations and
and Algorithms | their trade-offs (e.g., Fibonacci heaps, soft heaps, etc.) when discussing

shortest path and spanning tree algorithms. Undirected and directed graphs,
bipartite graphs, graph representations and trade-offs, fundamental graph
algorithms including BFS and DFS, shortest-path algorithms, and spanning
tree algorithms. Many of the topic areas included in this knowledge unit are
covered in Data Structures so we review them quickly and use them as a
launching point for more advanced material.

AL | Basic Algorithm Design and Analysis contains very little complexity theory—these 1
Automata, topics are all covered in detail in our Theory of Computation course.
Computability However, we do spend 1 lecture on the complexity classes P and NP, and
and Complexity | approaches to dealing with intractability including approximation algorithms

(mentioned below).

AL [Advanced Data | A quick review of ordered dynamic dictionaries (including balanced BSTs 12
Structures, like Red-Black Trees and AVL-Trees) as a way of motivating Skip Lists.
Algorithms and | Graph algorithms to find a maximum matching and connected components.
Analysis Some advanced data structures like union-find (including the log*n amortized

analysis). Suffix trees, suffix arrays (we follow the approach of Karkkainen
and Sanders that recursively builds a suffix array and then transforms it into a
suffix tree). Network flow including max-flow, min-cut, bipartite matching

_241 -

and other applications including Baseball Elimination. Randomized
algorithms including randomized median, randomized min-cut, randomized
quicksort, and Rabin-Karp string matching. We cover the geometric problem
of finding the closest pair of points in the plane and develop the standard
randomized solution based on hashing. Sometimes we cover linear
programming. Very little number theoretic and geometric algorithms are
covered due to time. We spend two lectures on approximation algorithms
because it is my research area.

DS | Discrete
Probability

We review concepts from discrete probability in support of randomized
algorithms. This includes expectation, variance, and (very quickly)
concentration bounds (we use these to prove that many of our algorithms run
in their expected time with very high probability)

Other comments

There is some overlap with the topics covered here and DS/Graphs and Trees.

242 -

CSE332: Data Abstractions, University of Washington

Seattle, WA

Dan Grossman

djg@cs.washington.edu
http://www.cs.washington.edu/education/courses/cse332/

(Description below based on, for example, the Spring 2012 offering)

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage
Algorithms and Complexity (AL) 19
Parallel and Distributed Computing (PD) 9
Discrete Structures (DS) 3
Software Development Fundamentals (SDF) 2

Where does the course fit in your curriculum?

This is a required course taken by students mostly in their second year, following at least CS1, CS2, and a
“Foundations” course that covers much of Discrete Structures. This course is approximately 70% classic data
structures and 30% an introduction to shared-memory parallelism and concurrency. It is a prerequisite for many
senior-level courses.

What is covered in the course?

The core of this course is fundamental “classical” data structures and algorithms including balanced trees,
hashtables, sorting, priority queues, graphs and graph algorithms like shortest paths, etc. The course includes
asymptotic complexity (e.g., big-O notation). The course also includes an introduction to concurrency and
parallelism grounded in the data structure material. Concurrent access to shared data motivates mutual exclusion.
Independent subcomputations (e.g., recursive calls to mergesort) motivate parallelism and cost models that
account for time-to-completion in the presence of parallelism.

More general goals of the course include (1) exposing students to non-obvious algorithms (to make the point that
algorithm selection and design is an important and non-trivial part of computer science & engineering) and (2)
giving students substantial programming experience in a modern high-level programming language such as Java
(to continue developing their software-development maturity).

Course topics:
e Asymptotic complexity, algorithm analysis, recurrence relations
Review of stacks, queues, and binary search trees (covered in CS2)
Priority queues and binary heaps
Dictionaries and AVL trees, B trees, and hashtables
Insertion sort, selection sort, heap sort, merge sort, quicksort, bucket sort, radix sort
Lower bound for comparison sorting
Graphs, graph representations, graph traversals, topological sort, shortest paths, minimum spanning trees
Simple examples of amortized analysis (e.g., resizing arrays)
Introduction to multiple explicit threads of execution
Parallelism via fork-join computations
Basic parallel algorithms: maps, reduces, parallel-prefix computations
Parallel-algorithm analysis: Amdahl’s Law, work, span
Concurrent use of shared resources, mutual exclusion via locks

- 243 -

http://www.cs.washington.edu/education/courses/cse332/�

e Data races and higher-level race conditions
e Deadlock
e Condition variables

What is the format of the course?

This is a fairly conventional course with 3 weekly 1-hour lectures and 1 weekly recitation section led by a teaching
assistant. The recitation section often covers software-tool details not covered in lecture. It is a 10-week course
because the university uses a “quarter system” with 10-week terms.

How are students assessed?
Students complete § written homework assignments, 3 programming projects in Java (1 using parallelism), a
midterm, and a final exam.

Course textbooks and materials

For the classic data structures material, the textbook is Data Structures and Algorithm Analysis in Java by Weiss.
For parallelism and concurrency, materials were developed originally for this course and are now used by several
other institutions (see URL below). Programming assignments use Java, in particular Java’s Fork-Join Framework
for parallelism.

Why do you teach the course this way?
Clearly the most novel feature of this course is the integration of multithreading, parallelism, and concurrency.

The paper “Introducing Parallelism and Concurrency in the Data Structures Course” by Dan Grossman and Ruth
E. Anderson, published in SIGCSE2012, provides additional rationale and experience for this approach. In short,

data structures provides a rich source of canonical examples to motivate both parallelism and concurrency.

Moreover, an introduction to parallelism benefits from the same mix of algorithms, analysis, programming, and
practical considerations that is the main ethos of the data structures course.

Body of Knowledge coverage

KA | Knowledge Unit Topics Covered Hours
AL Basic Analysis All except the Master Theorem 3
AL Fundamental Data All topics except string/text algorithms. Also, the preceding CS2 | 10
Structures and course covers some of the simpler topics, which are then quickly
Algorithms reviewed
AL Advanced Data Only these: AVL trees, topological sort, B-trees, and a brief 6
Structures Algorithms introduction to amortized analysis
and Analysis
DS Graphs and Trees All topics except graph isomorphism 3
PD Parallelism Fundamentals | All 2
PD Parallel Decomposition All topics except actors and reactive processes, but at only a 1
cursory level
PD Communication and All topics except Consistency in shared memory models, Message | 2
Coordination passing, Composition, Transactions, Consensus, Barriers, and
Conditional actions. (The treatment of atomicity and deadlock is
also very elementary.)
PD Parallel Algorithms, All Core-Tier-2 topics; none of the Elective topics 4
Analysis, and
Programming

_244 -

http://www.cs.washington.edu/homes/djg/papers/SIGCSE2012.pdf�

SDF

Fundamental Data
Structures

Only priority queues (all other topics are in CS1 and CS2)

Additional topics

The parallel-prefix algorithm

Other comments
The parallelism and concurrency materials are freely available at
http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/

- 245 -

http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/�

CS/ECE 552: Introduction to Computer Architecture, University of
Wisconsin

Computer Sciences Department
sohi@cs.wisc.edu
http://pages.cs.wisc.edu/~karu/courses/cs552/spring2011/wiki/index.php/Main/Syllabus

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Architecture and Organization (AR) 39

Where does the course fit in your curriculum?

This is taken by juniors, seniors, and beginning graduate students in computer science and computer engineering.
Prerequisites include courses that cover assembly language and logic design. This course is a (recommended)
prerequisite for a graduate course on advanced computer architecture. Approximately 60 students take the course
per offering; it is offered two times per year (once each semester).

What is covered in the course?

The goal of the course is to teach the design and operation of a digital computer. It serves students in two ways.
First, for those who want to continue studying computer architecture, embedded systems, and other low-level
aspects of computer systems, it lays the foundation of detailed implementation experience needed to make the
quantitative tradeoffs in more advanced courses meaningful. Second, for those students interested in other areas of
computer science, it solidifies an intuition about why hardware is as it is and how software interacts with
hardware.

The subject matter covered in the course includes technology trends and their implications, performance
measurement, instruction sets, computer arithmetic, design and control of a datapath, pipelining, memory
hierarchies, input and output, and brief introduction to multiprocessors.

The full list of course topics is:
Introduction and Performance
e Technology trends
e Measuring CPU performance
e Amdahl’s law and averaging performance metrics

Instruction Sets
e Components of an instruction set
e Understanding instruction sets from an implementation perspective
e RISC and CISC and example instruction sets

Computer Arithmetic
e Ripple carry, carry lookahead, and other adder designs
e ALU and Shifters
e Floating-point arithmetic and floating-point hardware design

_ 246 -

Datapath and Control
e Single-cycle and multi-cycle datapaths
e Control of datapaths and implementing control finite-state machines

Pipelining
e Basic pipelined datapath and control
e Data dependences, data hazards, bypassing, code scheduling
e Branch hazards, delayed branches, branch prediction

Memory Hierarchies
e Caches (direct mapped, fully associative, set associative)
e Main memories
e Memory hierarchy performance metrics and their use
e Virtual memory, address translation, TLBs
Input and Output

e Common I/O device types and characteristics
e Memory mapped I/O, DMA, program-controlled I/O, polling, interrupts
e Networks

Multiprocessors
e Introduction to multiprocessors
e Cache coherence problem

What is the format of the course?

The course is 15 weeks long, with students meeting for three 50-minute lectures per week or two 75-minute
lectures per week. If the latter, the course is typically “front loaded” so that lecture material is covered earlier in
the semester and students are able to spend more time later in the semester working on their projects.

How are students assessed?

Assessment is a combination of homework, class project, and exams. There are typically six homework
assignments. The project is a detailed implementation of a 16-bit computer for an example instruction set. The
project requires both an unpipelined as well as a pipelined implementation and typically takes close to a hundred
hours of work to complete successfully. The project and homeworks are typically done by teams of 2 students.
There is a midterm exam and a final exam, each of which is typically 2 hours long.

Course textbooks and materials

David A. Patterson and John L. Hennessy, Computer Organization and Design: The Hardware and Software
Interface Morgan Kaufmann Publishers,

Fourth Edition. ISBN: 978-0-12-374493-7

Why do you teach the course this way?

Since the objective is to teach how a digital computer is designed and built and how it executes programs, we want
to show how basic logic gates could be combined to construct building blocks which are then combined to work
together to execute programs written in a machine language. The students learn the concepts of how to do so in
the classroom, and then apply them in their project. Having taken this course a student can go into an industrial
environment and be ready to participate in the design of complex digital.

- 247 -

Body of Knowledge coverage

KA

Knowledge Unit

Topics Covered

Hours

AR

Introductory Material and
Performance

Technology trends, measuring CPU performance,
Amdahl’s law and averaging performance metrics

AR

Instruction Set Architecture

Components of instruction sets, understanding
instruction sets from an implementation perspective,
RISC and CISC and example instruction sets

AR

Computer Arithmetic

Ripple carry, carry lookahead, and other adder designs,
ALU and Shifters, floating-point arithmetic and floating-
point hardware design

AR

Datapath and Control

Single-cycle and multi-cycle datapaths, control of
datapaths and implementing control finite-state
machines

AR

Pipelined Datapaths and Control

Basic pipelined datapath and control, data dependences,
data hazards, bypassing, code scheduling, branch
hazards, delayed branches, branch prediction

AR

Memory Hierarchies

Caches (direct mapped, fully associative, set
associative), main memories, memory hierarchy
performance metrics and their use, virtual memory,
address translation, TLBs

AR

Input and Output

Common I/O device types and characteristics, memory
mapped 1/0, DMA, program-controlled 1/O, polling,
interrupts, networks

AR

Multiprocessors

Introduction to multiprocessors, cache coherence
problem

- 248 -

CS150: Digital Components and Design, University of California,
Berkeley

Randy H. Katz
randy(@cs.Berkeley.edu
http://inst.eecs.berkeley.edu/~cs150/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Architecture and Organization (AR) 37.5

Where does the course fit in your curriculum?
This is a junior-level course in the computer science curriculum for computer engineering students interested in
digital system design and implementation.

What is covered in the course?
Design of synchronous digital systems using modern tools and methodologies, in particular, digital logic synthesis
tools, digital hardware simulation tools, and field programmable gate array architectures.

What is the format of the course?
Lecture, discussion section, laboratory

How are students assessed?
Laboratories, examinations, and an independent design project

Course textbook and materials
Harris and Harris, Digital Design and Computer Architecture

Why do you teach the course this way?

Understand the principles and methodology of digital logic design at the gate and switch level, including both
combinational and sequential logic elements. Gain experience developing a relatively large and complex digital
system. Gain experience with modern computer-aided design tools for digital logic design. Understand clocking
methodologies used to control the flow of information and manage circuit state. Appreciate methods for specifying
digital logic, as well as the process by which a high-level specification of a circuit is synthesized into logic
networks. Appreciate the tradeoffs between hardware and software implementations of a given function.
Appreciate the uses and capabilities of a modern FPGA platform.

Body of Knowledge coverage

KA | Knowledge Unit Topics Covered Hours
AR Digital Logic and Digital Systems Combinational /Sequential 4.5
Logic Design and CAD Tools; 4.5
State Machines, Counters; 3
Digital Building Blocks; 4.5
High Level Design w/Verilog 4.5
AR Machine Level Representation of Data N/A 0

- 249 -

AR Assembly Level Machine Organization MIPS Architecture & Project 3
AR Memory System Organization and Architecture CMOS/SRAM/DRAM, 6
Video/Frame Buffers
AR Interfacing and Communication Timing;
Synchronization 1.5
AR Functional Organization N/A 0
AR Multprocessing and Alternative Architecture Graphics Processing Chips 1.5
AR Performance Enhancements Power and Energy 1.5

-250 -

CC152: Computer Architecture and Engineering, University of
California, Berkeley

Randy H. Katz
randy(@cs.Berkeley.edu
http://inst.eecs.berkeley.edu/~cs152/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Architecture and Organization (AR) 33

Where does the course fit in your curriculum?
This is a senior-level course in the computer science curriculum for computer engineering students interested in
computer design.

What is covered in the course?
Historical Perspectives: RISC vs. CISC, Pipelining, Memory Hierarchy, Virtual Memory, Complex Pipelines and
Out-of-Order Execution, Superscaler and VLIW Architecture, Synchronization, Cache Coherency.

What is the format of the course?
Lectures, Discussion, Laboratories, and Examinations

How are students assessed?
Examinations, homeworks, and hands-on laboratory exercises

Course textbook and materials
J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, 5th Edition, Morgan
Kaufmann Publishing Co., Menlo Park, CA. 2012.

Why do you teach the course this way?

The course is intended to provide a foundation for students interested in performance programming, compilers,
and operating systems, as well as computer architecture and engineering. Our goal is for you to better understand
how software interacts with hardware, and to understand how trends in technology, applications, and economics
drive continuing changes in the field. The course will cover the different forms of parallelism found in applications
(instruction-level, data-level, thread-level, gate-level) and how these can be exploited with various architectural
features. We will cover pipelining, superscalar, speculative and out-of-order execution, vector machines, VLIW
machines, multithreading, graphics processing units, and parallel microprocessors. We will also explore the design
of memory systems including caches, virtual memory, and DRAM. An important part of the course is a series of
lab assignments using detailed simulation tools to evaluate and develop architectural ideas while running real
applications and operating systems. Our objective is that you will understand all the major concepts used in
modern microprocessors by the end of the semester.

-251-

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours
AR Digital Logic and Digital Systems N/A 0
AR Machine Level Representation of Data N/A 0
AR Assembly Level Machine Organization Historical Perspectives 6
AR Memory System Organization and Architecture Memory Hierarchy, 9
Virtual Memory,
Snooping Caches
AR Interfacing and Communication Synchronization, 3
Sequential Consistency
AR Functional Organization Pipelining 3
AR Multprocessing and Alternative Architecture Superscalar, VLIW, 6
Vector Processing
AR Performance Enhancements Complex Pipelining 3
Additional topics

Case Study: Intel Sandy Bridge & AMD Bulldozer (1.5); Warehouse-Scale Computing (1.5)

-252 -

eScience, University of North Carolina at Charlotte

Mirsad Hadzikadic and Carlos E. Seminario
mirsad@uncc.edu cseminar@uncc.edu

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage
Computational Science (CN) 42
Intelligent Systems (IS) 15
Topics outside Body of Knowledge 33

Where does the course fit in your curriculum?

The University of North Carolina at Charlotte’s (UNCC) College of Computing and Informatics (CCI) has recently
introduced its first laboratory-based science course, designed to partially satisfy the science portion of the University
College’s general education requirements” °. The University College General Education program’s curriculum
reflects UNCC’s commitment to the principles of a liberal arts education, a broad training that develops analytic,
problem solving, and communications skills and also awareness of bodies of knowledge and new perspectives that
prepare students for success in their careers and communities in the 21st century. In the General Education
curriculum, eScience is positioned alongside other introductory “Inquiry into the Sciences” courses” such as
Astronomy, Bioinformatics, Biological Anthropology, Biology, Chemistry, Earth Sciences, Geology, Physics, and
Psychology.

This course is commonly taken by freshmen and sophomores, occasionally juniors and seniors have attended.
Although this course is not compulsory, it does satisfy the requirement for a science class with lab. There are no
course pre-requisites and no follow-on courses are required. (Starting in the Fall 2013, a related and optional Agent-
Based Modeling course will be offered for undergraduate and graduate students.) Typically, anywhere from 15 to 40
students will take this course per semester.

What is covered in the course?

eScience’s basic premise is that in addition to the two accepted scientific inquiry methods: theoretical/mathematical
formulation and experimentation, computational simulation/modeling has become the third method for doing
science. eScience introduces the application of computational methods to scientific exploration and discovery in the
social and natural sciences. Both the class and the laboratory include a broad range of well-defined experiments,
verified data inputs, predictable/repeatable outcomes, and open questions to be explored. We begin with an
Introduction to eScience, Scientific Method, and Models. Thereafter, we have weekly topics including Spread of
Epidemics, Spread of Fire, Movement of Ants and Problem Solving, Predator-prey relationships,

% http://ucol.uncc.edu/

3 http://ucol.uncc.edu/gened/requirements.htm

* https://ucol.uncc.edu/general-education/requirements/inquiry-sciences

-253 -

mailto:mirsad@uncc.edu�
mailto:cseminar@uncc.edu�
http://ucol.uncc.edu/�
http://ucol.uncc.edu/gened/requirements.htm�
https://ucol.uncc.edu/general-education/requirements/inquiry-sciences�

Altruism/Collaboration/Competition, Economics, Art and Music, Climate Change, E. coli metabolism of lactose,
Cancer and Tumors, Games, Complex Systems and Chaos, Networks, and Fractals. Both theory and practice of
computational simulation and modeling techniques are examined as tools to support the scientific method. No
computer programming knowledge or calculus is required. By popular student demand, Netlogo® is predominantly
used as the modeling tool for this course due to its ease of use and extensive library of relevant models. Such tools
have the advantage of embodying principles of a systems approach to non-linear, self-organizing, and emergent
phenomena that characterize most interesting problems that societies face today. They also offer a bottom-up
approach to problem-solution and experimentation in a non-threatening way that does not require the knowledge of
programming. At the same time, these tools also provide more adventurous students with the opportunity to modify
the natural language-like computer code to test their own ideas about modeling the societal challenge under
consideration.

The course includes up to fifteen knowledge units per semester. Each week in the semester is devoted to one
knowledge unit. There are two 75-minute lessons per week/knowledge unit. The first lesson of the week uncovers
the nature of the societal problem targeted in that particular knowledge unit. The second lesson of the week offers
examples of computer-based simulations and models of the problem. Both lessons include many team-based
exercises that encourage self-exploration, innovation, and creativity. The lessons are followed by a laboratory
session that uses well-defined protocols to guide students through hands-on exploration of computer simulations and
models. In the Spring 2013 semester we introduced the use of Audience Response Systems® (clickers) for quizzes at
the end of each lesson or topic; each quiz consisted of four to five questions about the current topic plus one or two
review questions from previous topics. We also experimented with “flipped classroom” methods during some of the
clicker quizzes. When responses to questions were diverse and mostly incorrect, we had students discuss their
responses amongst themselves and then we re-tested them; as expected, student scores improved on those questions
after they had an opportunity to discuss amongst themselves.

Some knowledge units incorporate student projects. Projects are two to three weeks long. They are team-based. Each
team includes two to four students. Students are assigned to teams based on their declared major/discipline. Every
effort is made to ensure that teams are interdisciplinary.

At the conclusion of this one-semester, 4-hour course, students should be able to:

Have an enhanced appreciation for the use of science in addressing real-world problems
Apply critical thinking in solving science-related problems

Survey literature on current and relevant science-related issues

Comfortably communicate scientific concepts with others

Perform basic inquiry-based science experimentation using computational models

Have fun doing all of the above!

AN

What is the format of the course?

eScience is taught as a traditional face-to-face, four credit-hour course consisting of three hours of class instruction
and one three-hour lab per week for about 15 weeks.

3 http://ccl.northwestern.edu/netlogo/

8 http://www.turningtechnologies.com/response-solutions

- 254 -

http://ccl.northwestern.edu/netlogo/�
http://www.turningtechnologies.com/response-solutions�

How are students assessed?

eScience students are assessed using various methods: two or three member team-based project assignments (30%),
eight to ten lab exercises (20%), class participation including weekly quizzes (10%), mid-term and final exams
(20% each). On average, students are expected to spend about two to three hours per week on assessed work plus
class attendance.

Course textbooks and materials

There is currently no textbook for this course. Course materials consist of PowerPoint presentations, online
YouTube videos, and links to other online resources. All course materials, assignments, communications, quizzes,
and exams are available on Moodle’, an open source Learning Management System (LMS) available to students 24
x 7. Netlogo is predominantly used as the modeling tool for this course due to its ease of use and extensive library of
relevant models.

Why do you teach the course this way?

The initial offering of this course in the Fall 2010 and Spring 2011 semesters made use of dynamical systems and
data-driven simulation/modeling paradigms; the textbook we used ("Introduction to Computational Science:
Modeling and Simulation for the Sciences," by Shiflet, A. B. and Shiflet, G. W., Princeton University Press, 2006)
was heavily based on calculus and mathematical formalisms. The topics covered were: Rate of Change, Constrained
Growth, Unconstrained Growth and Decay, Drug Dosage, Modeling Falling and Skydiving, Competition, Spread of
SARS, Predator-Prey, Errors, Euler's Method, Runge-Kutta Method, Empirical Models, Simulations, Area Through
Monte Carlo Simulation, Random Walk, Spreading of Fire, and Movement of Ants. We used Mathematica® and
Vensim”’ for lab experiments. Teaching this course in this manner was instrumental in helping us understand what is
wrong with current approaches to teaching science, including ours. For example, the eScience course attracted a
diverse group of students the first time it was offered, including those majoring in communications, business,
computer science, and information systems. However, early on in the semester eight of the twenty students dropped
the class, citing the heavy use of calculus as the reason for doing so. We can only speculate that these students have
conveyed their experience to their academic advisors and fellow students, and the 75% drop in the course enrollment
the following semester seemed to indicate such a possibility. In conversations with students who stayed in the class,
we learned that they expected a class that was very different from the one that was offered. They were hoping for a
class that would demonstrate the utility of science in many areas of everyday life, including social interactions,
economy, stock market, diseases, weather, poverty, population growth, ecology, global warming, war, politics,
social unrests, and nature in general. They wanted to be able to experiment with various settings and what-if
scenarios in order to understand the consequences of their actions, sensitivity to initial conditions, and
interpretability of the outcomes. All in all, they wanted it to be fun, engaging, and relevant. At the same time, we
felt that both the class and the laboratory needed to be structured enough to include a broad range of well-defined
experiments, verified data inputs, predictable/repeatable outcomes, and open questions to be explored.

We changed the course format to its current incarnation in the Fall 2011 semester. The dependency on math and
calculus was eliminated and the list of topics was changed to include social sciences, humanities, and arts in addition
to the natural sciences. No textbook is required. For each topic, we designed or found existing presentation materials
and experiment/tool that addresses a recognized problem of significant interest relevant to today’s students. The
purpose of the current eScience course is to convince students that science is interesting, important, relevant to their

7 www.moodle.com

8 http://www.wolfram.com/mathematica/

 www.vensim.com

-255-

http://www.moodle.com/�
http://www.wolfram.com/mathematica/�
http://www.vensim.com/�

everyday lives, and therefore at least worth studying, if not majoring in it. The course is divided into knowledge
units. Each knowledge unit exemplifies key concepts that are associated with the scientific method, including
Problem definition, Hypothesis generation, Experiment design and implementation, Results analysis, Model design,
and Model validation and verification.

The knowledge units address issues of everyday interest to the general population. Knowledge units have included:
movement of ants, economics, spread of epidemics, climate change and global warming, cancer, predator-prey
relationships, cooperation and collaboration, computer games, arts and music, fractals, and metabolism of lactose
(lac operon). In addition, students are exposed to tools, methods, theories, and paradigms that allow them to consider
patterns that transcend application domains and problems. These methods and tools include the science of
complexity, the science of networks, fractals, chaos theory, problem solving techniques, and game theory.

Because of the diversity in the majors of students who take this course (Business, Computing, Engineering, Liberal
Arts, etc.) and the diversity of topics that are covered, some students find this course challenging while others feel it
is less so. Again, our goal is to make the course relevant, interesting, and applicable to current issues.

Body of Knowledge coverage

KA | Knowledge Unit | Topics Covered Hours

CN [Fundamentals Models as abstractions of situations 3

CN | Modeling and Purpose of modeling and simulation including optimization; supporting decision | 3
Simulation making, forecasting, safety considerations; for training and education.

Important application areas including health care and diagnostics, economics and
finance, city and urban planning, science, and engineering.

CN | Modeling and Model building: use of mathematical formula or equation, graphs, constraints; 15
Simulation methodologies and techniques; use of time stepping for dynamic systems.

CN [Modeling and Formal models and modeling techniques: mathematical descriptions involving 3
Simulation simplifying assumptions and avoiding detail. The descriptions use fundamental

mathematical concepts such as set and function. Random numbers.

CN | Modeling and Assessing and evaluating models and simulations in a variety of contexts; 18
Simulation verification and validation of models and simulations.
IS | Agents Multi-agent systems 15

Collaborating agents

Agent teams

Competitive agents (e.g., auctions, voting)
Swarm systems and biologically inspired models

Other KA’s are covered in other courses n/a

- 256 -

Additional topics

We begin with an Introduction to eScience, Scientific Method, and Models. Thereafter, we have weekly topics
including Spread of Epidemics, Spread of Fire, Movement of Ants and Problem Solving, Predator-prey
relationships, Altruism/Collaboration/Competition, Economics, Art and Music, Climate Change, E. coli metabolism
of lactose, Cancer and Tumors, Games, Complex Systems and Chaos, Networks, and Fractals. Both theory and
practice of computational simulation and modeling techniques are examined as tools to support the scientific
method. (33 hours)

Other comments

The number of topics taught each semester varies, new topics are added and some topics are dropped.

- 257 -

COSC/MATH 201: Modeling and Simulation for the Sciences, Wofford
College

Angela B. Shiflet
http:// www.wofford.edu/ecs/
(Description below based on the Fall 2011 and 2012 offerings)

Knowledge Areas with topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage
Computational Science (CN) 355

Intelligent Systems (IS) 3

Software Development Fundamentals (SDF) 2

Software Engineering (SE) 1

Graphics and Visualization (GV) 0.5

Where does the course fit in your curriculum?

Modeling and Simulation for the Sciences (COSC/MATH 201) has a pre-requisite of Calculus I. However,
because the course does not require derivative or integral formulas but only an understanding of the concept of
"rate of change," students with no calculus background have taken the course successfully. The course has been
offered since the spring of 2001. Dual-listed as a computer science and a mathematics course and primarily
targeted at second-year science majors, the course is required for Wofford College's Emphasis in Computer
Science (see "Other comments" below). Moreover, Modeling and Simulation meets options for the computer
science, mathematics, and environmental studies majors and counts for both computer science and mathematics
minors.

Wofford College has a thirteen-week semester with an additional week for final exams. Modeling and Simulation
for the Sciences has 3-semester-hours credit and meets 3 contact hours per week.

What is covered in the course?
e The modeling process
e Two system dynamics tool tutorials
e System dynamics problems with rate proportional to amount: unconstrained growth and decay,
constrained growth, drug dosage
System dynamics models with interactions: competition, predator-prey models, spread of disease models
Computational error
Simulation techniques: Euler's method, Runge-Kutta 2 method
Additional system dynamics projects throughout, such as modeling falling and skydiving, enzyme
kinetics, the carbon cycle, economics and fishing
Six computational toolbox tutorials
Empirical models
Introduction to Monte Carlo simulations
Cellular automaton random walk simulations
Cellular automaton diffusion simulations: spreading of fire, formation of biofilms

- 258 -

http://www.wofford.edu/ecs/�

e High-performance computing: concurrent processing, parallel algorithms
e Additional cellular automaton simulations throughout such as simulating polymer formation,
solidification, foraging, pit vipers, mushroom fairy rings, clouds

What is the format of the course?

Usually, students are assigned reading of the material before consideration in class. Then, after questions are
discussed, students often are given a short quiz taken directly from the quick review questions. Answers to these
questions are available at the end of each module. After the quiz, usually the class develops together an extension
of a model in the textbook. Class time is allotted for the first system dynamics tutorial and the first computational
toolbox tutorial. Students work on the remaining tutorials and open-ended projects, often in pairs, primarily
outside of class and occasionally in class.

How are students assessed?

Students complete two system dynamics tutorials and six computational toolbox tutorials with at least one of each
type of tutorial in a lab situation. The students have approximately one project assignment per week during a
thirteen-week semester. Most assignments are completed in teams of two or three students. Generally, a
submission includes a completed model, results, and discussion. Students present their models at least twice during
the semester. Daily quizzes occur on the quick review questions, and tests comprise a midterm and a final.

Course textbooks and materials
Textbook: Introduction to Computational Science: Modeling and Simulation by Angela B. Shiflet and George W.
Shiflet, Princeton University Press, with online materials available at the above website.

A second edition of the textbook is nearing completion and will include new chapters on agent-based modeling
and modeling with matrices along with ten additional project-based modules and more material on high
performance computing.

The first half of the semester on system dynamics uses STELLA or Vensim; and the second half of the semester
on empirical modeling and cellular automaton simulations employs Mathematica or MATLAB. (Tutorials and
files are available on the above website in these tools and also in Python, R, Berkeley Madonna, and Excel for
system dynamics models and in Python, R, Maple, NetLogo, and Excel for the material for the second half of the
semester.)

Why do you teach the course this way?

The course has evolved since its initial offering in 2001, and the vast majority students, who have a variety of
majors in the sciences, mathematics, and computer science, are successful in completing the course with good
grades. Moreover, many of the students have used what they have learned in summer internships involving
computation in the sciences.

Body of Knowledge coverage

KA | Knowledge Unit | Topics Covered Hours
CN | Introduction to Models as abstractions of situations 3
Modeling and Simulations as dynamic modeling
Simulation Simulation techniques and tools, such as physical simulations and

human-in-the-loop guided simulations.
Foundational approaches to validating models

CN | Modeling and Purpose of modeling and simulation including optimization; supporting | 29
Simulation decision making, forecasting, safety considerations; for training and
education.

Tradeoffs including performance, accuracy, validity, and complexity.
The simulation process; identification of key characteristics or

-259 -

behaviors, simplifying assumptions; validation of outcomes.

Model building: use of mathematical formula or equation, graphs,
constraints; methodologies and techniques; use of time stepping for
dynamic systems.

Formal models and modeling techniques: mathematical descriptions
involving simplifying assumptions and avoiding detail. The descriptions
use fundamental mathematical concepts such as set and function.
Random numbers. Examples of techniques including:

Monte Carlo methods

Stochastic processes

Graph structures such as directed graphs, trees, networks

Differential equations: ODE

Non-linear techniques

State spaces and transitions

Assessing and evaluating models and simulations in a variety of
contexts; verification and validation of models and simulations.
Important application areas including health care and diagnostics,
economics and finance, city and urban planning, science, and
engineering.

Software in support of simulation and modeling; packages, languages.

CN | Processing Fundamental programming concepts, including: 3
The process of converting an algorithm to machine-executable code;
Software processes including lifecycle models, requirements, design,
implementation, verification and maintenance;

Machine representation of data computer arithmetic, and numerical
methods, specifically sequential and parallel architectures and
computations;

The basic properties of bandwidth, latency, scalability and granularity;
The levels of parallelism including task, data, and event parallelism.

CN | Interactive Image processing techniques, including the use of standard APIs and 0.5
Visualization tools to create visual displays of data

GV | Fundamental Applications of computer graphics: including visualization 0.5
Concepts

SDF | Development Program comprehension 2
Methods Program correctness

Types or errors (syntax, logic, run-time)

The role and the use of contracts, including pre- and post-conditions
Unit testing

Simple refactoring

Debugging strategies

Documentation and program style

IS Agents Definitions of agents Possibly
Agent architectures (e.g., reactive, layered, cognitive, etc.) 3
Agent theory

Biologically inspired models

SE | Software Design The use of components in design: component selection, design, 1
adaptation and assembly of components, components, components.

- 260 -

Additional topics
Successful course participants will:

Understand the modeling process

Be able to develop and analyze systems dynamics models and Monte Carlo simulations with a team
Understand the concept of rate of change

Understand basic system dynamics models, such as ones for unconstrained and constrained growth,
competition, predator-prey, SIR, enzyme kinetics

Be able to perform error computations

Be able to use Euler's and Runge-Kutta 2 Methods

Be able to develop an empirical model from data

Understand basic cellular automaton simulations, such as ones for random walks, diffusion, and reaction-
diffusion

Be able to verify and validate models

Understand basic hardware and programming issues of high performance computing

Be able to use a system dynamics tool, such as Vensim, STELLA, or Berkeley Madonna

Be able to use a computational tool, such as MATLB, Mathematica, or Maple.

Other comments

Wofford College's Emphasis in Computational Science (ECS), administered by the Computer Science Department,
is available to students pursuing a B.S. in a laboratory science, mathematics, or computer science. The Emphasis
requires five courses—Modeling and Simulation for the Sciences (this course), CS1, CS2, Calculus I, and Data
and Visualization (optionally in 2013, Bioinformatics or High Performance Computing)—and a summer internship
involving computation in the sciences. Computer science majors obtaining the ECS must also complete 8
additional semester hours of a laboratory science at the 200+ level. Note: Data and Visualization covers creation
of Web-accessible scientific databases, a dynamic programming technique of genomic sequence alignment, and
scientific visualization programming in C with OpenGL.

- 261 -

MAT 267: Discrete Mathematics, Union County College

Cranford, NJ

Dr. Cynthia Roemer, Department Chair
roemer@ucc.edu

www.ucc.edu

Per College policy, all course materials are password-protected. Instructional resources are
available upon email request.

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Discrete Structures (DS) 42 hours

Where does the course fit in your curriculum?

Union County College offers this course both Fall and Spring semesters. Computer Science majors typically
complete the required Discrete Mathematics course as sophomores. Students are eligible to enroll in this course
after passing pre-calculus (MAT 143) with a grade of C or better, or scoring well enough on the College Level
Mathematics Test to place directly into it. CS majors are also required to complete Calculus I (MAT 171).

What is covered in the course?

This course will develop advanced mathematics skills appropriate for students pursuing STEM studies such as
Engineering, Science, Computer Science, and Mathematics. Topics include sets, numbers, algorithms, logic,
computer arithmetic, applied modern algebra, combinations, recursion principles, graph theory, trees, discrete
probability, and digraphs.

What is the format of the course?
This course earns 3 credit hours and consists of 3 lecture hours per week for 14 weeks. Discrete Mathematics
offered at Union County College currently meets twice per week for 80 minutes each.

How are students assessed?

Students are assessed on a combination of homework, quizzes/tests, group activities, discussion, projects, and a
comprehensive final exam. Students are expected to complete homework assignments/projects on a weekly basis.
For a typical student, each assignment will require at least 3 hours to complete.

Course textbooks and materials
Text: Discrete Mathematics by Sherwood Washburn, Thomas Marlowe, & Charles T. Ryan (Addison-Wesley)

A graphing calculator (e.g. TI-89) and a computer algebra system (e.g. MAPLE) are required for completing
certain homework exercises and projects.

Union County College has a Mathematics Success Center that is available for tutoring assistance for all
mathematics courses.

Why do you teach the course this way?

Discrete Mathematics is a transfer-oriented course designed to meet the requirements of Computer Science,
Engineering and Mathematics degree programs. Many of the Computer Science majors at Union County College

-262 -

matriculate to New Jersey Institute of Technology. Furthermore, this course is designed to meet the following
program objectives. (Also see Other Comments below). Upon successful completion of this course, students will
be able to:

Body of Knowledge coverage

Demonstrate critical thinking, analytical reasoning, and problem solving skills
Apply appropriate mathematical and statistical concepts and operations to interpret data and to solve

problems

Identify a problem and analyze it in terms of its significant parts and the information needed to solve it
Formulate and evaluate possible solutions to problems, and select and defend the chosen solutions
Construct graphs and charts, interpret them, and draw appropriate conclusions

KA | Knowledge Unit Topics Covered Hours
DS | Sets, Relations, all topics 6
Functions
DS | Basic Logic all topics 9
DS | Proof Techniques all topics 9
DS | Basics of Counting all topics 7
DS | Graphs and Trees all topics except Graph Isomorphism (core tier-2) 6
DS | Discrete Probability all topics except Conditional Independence (core tier-2) 5

Other comments
Correlation of Program Objectives, Student Learning Outcomes, and Assessment Methods

Program Student Assessment

Objectives Learning Outcomes Methods

Demonstrate critical thinking, analytical Recognize, identify, and solve Written: Homework

reasoning, and problem solving skills problems using set theory, assignments, examinations
elementary number theory, and in class, and projects to be
discrete probability completed at home
Recognize, identify, and apply the | Verbal: Classroom
concepts of functions and relations | exercises and discussion
and graph theory in problem
solving
Apply proof techniques in logic

Apply appropriate mathematical and Recognize, identify, and solve Written: Homework

statistical concepts and operations to problems using set theory, assignments, examinations

interpret data and to solve problems elementary number theory, and in class, and projects to be
discrete probability completed at home
Recognize, identify, and apply the | Verbal: Classroom
concepts of functions and relations | exercises and discussion
and graph theory in problem
solving

-263 -

Identify a problem and analyze it in terms of
its significant parts and the information
needed to solve it

Recognize, identify, and solve
problems using set theory,
elementary number theory, and
discrete probability

Recognize, identify, and apply the
concepts of functions and relations
and graph theory in problem
solving

Apply proof techniques in logic

Written: Homework
assignments, examinations
in class, and projects to be
completed at home

Verbal: Classroom
exercises and discussion

Formulate and evaluate possible solutions to
problems, and select and defend the chosen
solutions

Recognize, identify, and solve
problems using set theory ,
elementary number theory, and
discrete probability

Recognize, identify, and apply the
concepts of functions and relations
and graph theory in problem
solving

Apply proof techniques in logic

Written: Homework
assignments, examinations
in class, and projects to be
completed at home

Verbal: Classroom
exercises and discussion

Construct graphs and charts, interpret them,
and draw appropriate conclusions

Recognize, identify, and apply the
concepts of functions and relations
and graph theory in problem
solving

Written: Homework
assignments, examinations
in class, and projects to be
completed at home

Verbal: Classroom
exercises and discussion

- 264 -

CS103: Mathematical Foundations of Computer Science, Stanford
University

and

CS109: Probability Theory for Computer Scientists, Stanford
University

Stanford, CA, USA

Keith Schwarz and Mehran Sahami
{htiek, sahami} @cs.stanford.edu
Course URLs:

cs103.stanford.edu
cs109.stanford.edu

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage
Discrete Structures (DS) 30

Algorithms and Complexity (AL) 6

Intelligent Systems (IS) 2

Where does the course fit in your curriculum?

CS103 and CS109 make up the first two courses in the required introductory CS theory core at Stanford. The
prerequisites for CS103 are CS2 and mathematical maturity (e.g., comfortable with algebra, but calculus is not a
requirement). The prerequisites for CS109 are CS2, CS103, and calculus. However, calculus is only used for
topics beyond the CS2013 Discrete Structures guidelines, such as working with continuous probability density
functions. Approximately 400 students take each course each year. The majority of students taking the courses
are sophomores, although students at all levels (from freshman to graduate students) enroll in these courses.

What is covered in the course?
CS103 covers:

e Sets
Functions and Relations
Proof techniques (including direct, contradiction, diagonalization and induction)
Graphs
Logic (proposition and predicate)
Finite Automata (DFAs, NFAs, PDAs)
Regular and Context-Free Languages
Turing Machines
Complexity Classes (P, NP, Exp)
NP-Completeness

- 265 -

CS109 covers:

e Counting
Combinations and Permutations
Probability (including conditional probability, independence, and conditional independence)
Expectation and Variance
Covariance and Correlation
Discrete distributions (including Binomial, Negative Binomial, Poisson, and Hypergeometric)
Continuous distributions (including Uniform, Normal, Exponential, and Beta)
Limit/Concentration results (including Central Limit Theorem, Markov/Chebyshev bounds)
Parameter estimation (including maximum likelihood and Bayesian estimation)
Classification (including Naive Bayes Classifier and Logistic Regression)
Simulation

What is the format of the course?

Both CS103 and CS109 use a lecture format, but also include interactive class demonstrations. Each course meets
three times per week for 75 minutes per class meeting. CS103 also offers an optional 75 minute discussion
session. The courses each run for 10 weeks (Stanford is on the quarter system).

How are students assessed?

CS103 currently requires nine problem sets (approximately one every week), with an expectation that students
spend roughly 10 hours per week on the assignments. The problem sets are comprised of rigorous exercises (e.g.,
proofs, constructions, etc.) that cover the material from class during the just completed week.

CS109 currently requires five problem sets and one programming assignment (one assignment due every 1.5
weeks), with an expectation that students spend roughly 10 hours per week on the assignments. The problem sets
present problems in probability (both applied and theoretical) with a bent toward applications in computer science.
The programming assignment requires students to implement various probabilistic classification techniques, apply
them to real data, and analyze the results.

Course textbooks and materials
CS103 uses two texts (in addition to a number of instructor-written course notes):
1. Chapter One of Discrete Mathematics and Its Applications, by Kenneth Rosen. This chapter (not the
whole text) covers mathematical logic.
2. Introduction to the Theory of Computation by Michael Sipser.

CS109 uses the text A First Course in Probability Theory by Sheldon Ross for the first two-thirds of the course.
The last third of the course relies on an instructor-written set of notes/slides that cover parameter estimation and
provide an introduction to machine learning. Those slides are available here:
http://ai.stanford.edu/users/sahami/cs 109/

Why do you teach the course this way?

As the result of a department-wide curriculum revision, we created this two course sequence to capture the
foundations we expected students to have in discrete math and probability with more advanced topics, such as
automata, complexity, and machine learning. This obviated the need for later full course requirements in
automata/complexity and an introduction to Al (from which search-based SAT solving and machine learning were
thought to be the most critical aspects). Students do generally find these courses to be challenging.

- 266 -

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours
DS Proof Techniques All 7
DS Basic Logic All 6
DS Discrete Probability All 6
AL Basic Automata, Computability and All 6
Complexity
DS Basics of Counting All 5
DS Sets, Relations, Functions All 4
DS Graphs and Trees All Core-Tierl 2
IS Basic Machine Learning All 2
Additional topics

CS103 covers some elective material from:
AL/Advanced Computational Complexity
AL/Advanced Automata Theory and Computability

CS109 provides expanded coverage of probability, including:
Continuous distributions (including Uniform, Normal, Exponential, and Beta)
Covariance and Correlation
Limit/Concentration results (including Central Limit Theorem, Markov/Chebyshev bounds)
Parameter estimation (including maximum likelihood and Bayesian estimation)
Simulation of probability distributions by computer

CS109 also includes some elective material from:
IS/Reasoning Under Uncertainty
IS/Advanced Machine Learning

Other comments

Both these courses lectures move quite rapidly. As a result, we often cover the full set of topics in one of the
CS2013 Knowledge Units in less time than proscribed in the guidelines. The “Hours” column in the Body of
Knowledge coverage table reflects the number of hours we spend in lecture covering those topics, not the number
suggested in CS2013 (which is always greater than or equal to the number we report).

- 267 -

CS 250 - Discrete Structures |, Portland Community College

12000 SW 49" Ave, Portland, OR 97219

Doug Jones

cdjones@pcc.edu

Knowledge Areas that contain topics and learning outcomes covered in the course
Knowledge Area Total Hours of Coverage
Discrete Structures (DS) 26

Algorithms and Complexity (AL) 4

Where does the course fit in your curriculum?
CS 250 is the first course in a two-term required sequence in discrete mathematics for Computer Science transfer
students. Students typically complete the sequence in their second year.

College algebra and 1 term of programming are pre-requisites for CS 250. The second course in the sequence (CS
251) requires CS 250 as a pre-requisite.

Approximately 80 students per year complete the discrete mathematics sequence (CS 250 and CS 251).

What is covered in the course?
e Introduction to the Peano Axioms and construction of the natural numbers, integer numbers, rational
numbers, and real numbers.
Construction and basic properties of monoids, groups, rings, fields, and vector spaces.
Introduction to transfinite ordinals and transfinite cardinals, and Cantor’s diagonalization methods
Representation of large finite natural numbers using Knuth’s “arrow notation”
Introduction to first order propositional logic, logical equivalence, valid and invalid arguments
Introduction to digital circuits
Introduction to first order monadic predicate logic, universal and existential quantification, and predicate
arguments
Elementary number theory, prime factors, Euclid’s algorithm
o Finite arithmetic, Galois Fields, and RSA encryption
Proof techniques, including direct and indirect proofs, proving universal statements, proving existential
statements, proof forms, common errors in proofs
Sequences, definite and indefinite series, recursive sequences and series
Developing and validating closed-form solutions for series
Well ordering and mathematical induction
Introduction to proving algorithm correctness
Second order linear homogeneous recurrence relations with constant coefficients
General recursive definitions and structural induction
Introduction to classical (Cantor) set theory, Russell’s Paradox, introduction to axiomatic set theory
(Zermelo-Fraenkel with Axiom of Choice).
Set-theoretic proofs
e Boolean algebras
e Halting Problem

What is the format of the course?
CS 250 is a 4 credit course with 30 lecture hours and 30 lab hours. Classes typically meet twice per week for
lecture, with lab sessions completed in tutoring labs outside of lecture.

- 268 -

Course material is available online, but this is not a distance learning class and attendance at lectures is required.

How are students assessed?

Students are assessed using in-class exams and homework. There are 5 in-class exams that count for 40% of the
student’s course grade, and 5 homework assignments that account for 60% of the student’s course grade. In-class
exams are individual work only, while group work is permitted on the homework assignments.

It is expected that students will spend 10 to 15 hours per week outside of class time completing their homework
assignments. Surveys indicate a great deal of variability in this - some students report spending 6 hours per week
to complete assignments, other report 20 or more hours per week.

Course textbooks and materials
The core text is Discrete Mathematics with Applications by Susanna S. Epp (Brooks-Cole/Cengage Learning).
The text is supplemented with instructor-developed material to address topics not covered in the core text.

Students are encouraged to use computer programs to assist in routine calculations. Many students write their own
programs, some use products such as Maple or Mathematica. Most calculators are unable to perform the
calculations needed for this course. No specific tools are required.

Why do you teach the course this way?

This is a transfer course designed to meet the lower-division requirements of Computer Science and Engineering
transfer programs in the Oregon University System with respect to discrete mathematics. As such, it serves many
masters - there is no consistent set of requirements across all OSU institutions.

The majority of Portland Community College (PCC) transfer students matriculate to Portland State University,
Oregon Institute of Technology, or Oregon State University, and these institutions have the greatest influence on
this course. PCC changes the course content as needed to maintain compatibility with these institutions.

The most recent major course revision occurred approximately 24 months ago, although minor changes tend to
occur every Fall term. Portland State University is reviewing all of their lower-division Computer Science
offerings, and when they complete their process PCC expects a major revision of CS 250 and CS 251 will be
required.

Students generally consider the discrete mathematics sequence to be difficult. Most students have studied some
real number algebra, analysis, and calculus, but often have very limited exposure to discrete mathematics prior to

this sequence.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours
AL Basic Analysis [Differences among best, expected, and worst case 4
behaviors

Big-O, Big-Omega, Big-Theta definitions
Complexity classes

[Note: Remainder of Basic Analysis topics covered in CS
251

DS Basic Logic Propositional logic, connectives, truth tables, normal 10
forms, validity, inference, predicate logical,
quantification, limitations

- 269 -

DS Proof Techniques Implications, equivalences, converse, inverse, 10
contrapositive, negation, contradiction, structure, direct
proofs, disproofs, natural number induction, structural
induction, weak/string induction, recursion, well
orderings

DS Basics of Counting Basic modular arithmetic 2

Other counting topics in CS 251

DS Sets, Relations, Functions Sets only: Venn diagrams, union, intersection, 4
complement, product, power sets, cardinality, proof
techniques.

Relations and functions covered in CS 261

Additional topics
Elementary number theory, Peano Axioms, Zermelo-Fraenkel Axioms, Knuth arrow notation, simple digital
circuits, simple encryption/decryption

-270 -

CS 251 - Discrete Structures Il, Portland Community College
12000 SW 49" Ave, Portland, OR 97219

Doug Jones

cdjones@pcc.edu
Knowledge Areas that contain topics and learning outcomes covered in the course
Knowledge Area Total Hours of Coverage
Discrete Structures (DS) 22

Algorithms and Complexity (AL) 8

Where does the course fit in your curriculum?
CS 251 is the second course in a two-term required sequence in discrete mathematics for Computer Science
transfer students. Students typically complete the sequence in their second year.

College algebra (PCC’s MTH 111 course) and 1 term of programming (PCC’s CS 161 course) are pre-requisites
for CS 250. The second course in the sequence (CS 251) requires CS 250 as a pre-requisite.

Approximately 80 students per year complete the discrete mathematics sequence (CS 250 and CS 251).

What is covered in the course?
e Set-based theory of functions, Boolean functions
Injection, surjection, bijection
Function composition
Function cardinality and computability
General set relations
Equivalence relations
Total and partial orderings
Basic counting techniques: multiplication rule, addition rule, Dirichlet’s Box Principle
Combinations and permutations
Pascal’s Formula and the Binomial Theorem
Kolmogorov Axioms and expected value
Markov processes
Conditional probability and Bayes’ Theorem
Classical graph theory: Euler and Hamilton circuits
Introduction to spectral graph theory, isomorphisms
Trees, weighted graphs, spanning trees
Algorithm analysis
Formal languages
Regular expressions
Finite-state automata

What is the format of the course?
CS 251 is a 4 credit course with 30 lecture hours and 30 lab hours. Classes typically meet twice per week for
lecture, with lab sessions completed in tutoring labs outside of lecture.

Course material is available online, but this is not a distance learning class and attendance at lectures is required.

-271 -

How are students assessed?

Students are assessed using in-class exams and homework. There are 5 in-class exams that count for 40% of the
student’s course grade, and 5 homework assignments that account for 60% of the student’s course grade. In-class
exams are individual work only, while group work is permitted on the homework assignments.

It is expected that students will spend 10 to 15 hours per week outside of class time completing their homework
assignments. Surveys indicate a great deal of variability in this - some students report spending 6 hours per week
to complete assignments, other report 20 or more hours per week.

Course textbooks and materials
The core text is Discrete Mathematics with Applications by Susanna S. Epp (Brooks-Cole/Cengage Learning).
The text is supplemented with instructor-developed material to address topics not covered in the core text.

Students are encouraged to use computer programs to assist in routine calculations. Many students write their own
programs, some use products such as Maple or Mathematica. Most calculators are unable to perform the
calculations needed for this course. No specific tools are required.

Why do you teach the course this way?

This is a transfer course designed to meet the lower-division requirements of Computer Science and Engineering
transfer programs in the Oregon University System with respect to discrete mathematics. As such, it serves many
masters - there is no consistent set of requirements across all OSU institutions.

The majority of Portland Community College (PCC) transfer students matriculate to Portland State University,
Oregon Institute of Technology, or Oregon State University, and these institutions have the greatest influence on
this course. PCC changes the course content as needed to maintain compatibility with these institutions.

The most recent major course revision occurred approximately 24 months ago, although minor changes tend to
occur every Fall term. Portland State University is reviewing all of their lower-division Computer Science
offerings, and when they complete their process PCC expects a major revision of CS 250 and CS 251 will be
required.

Students generally consider the discrete mathematics sequence to be difficult. Most students have studied some

real number algebra, analysis, and calculus, but often have very limited exposure to discrete mathematics prior to
this sequence.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

AL Basic Analysis [Empirical measurement and performance 4
Time and space trade-offs in algorithms
Recurrence relations

[Analysis of iterative and recursive algorithms

DS Sets, Relations, and Functions [Reflexivity, symmetry, transitivity 4
[Equivalence relations

Partial orders

Surjection, injection, bijection, inverse, composition of
functions

DS Basics of Counting Counting arguments: cardinality, sum and product rule, |10
[E principle, arithmetic and geometric progressions,
pigeonhole principle, permutations, combinations,
Pascal’s identity, recurrence relations

-272 -

DS Graphs and Trees Tree, tree traversal, undirected graphs, directed graphs,
weighted graphs, isomorphisms, spanning trees

DS Discrete Probability Finite probability space, events, axioms and measures,
conditional probability, Bayes’ Theorem, independence,
[Bernoulli and binomial variables, expectation, variance,
conditional independence

AL Basic Automata Computability [Finite state machines, regular expressions, Halting

and Complexity [problem
Additional topics

Basic linear algebra, graph spectra, Markov processes

-273 -

CS 175 Computer Graphics, Harvard University

Cambridge, MA

Dr. Steven Gortler
http://www.courses.fas.harvard.edu/~lib175
(Description below based on the Fall 2011 offering)

Knowledge Areas with topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage
Graphics and Visualization (GV) 19
Software Engineering (SE) 7
Architecture and Organization (AR) 4
Software Development Fundame