
Computer Science
Curricula 2013

Curriculum Guidelines for
Undergraduate Degree Programs

in Computer Science

December 20, 2013

The Joint Task Force on Computing Curricula
Association for Computing Machinery (ACM)

IEEE Computer Society

A Cooperative Project of

Computer Science
Curricula 2013

Curriculum Guidelines for
Undergraduate Degree Programs

in Computer Science

December 20, 2013

The Joint Task Force on Computing Curricula

Association for Computing Machinery (ACM)

IEEE Computer Society

Computer Science Curricula 2013

Copyright © 2013 by ACM and IEEE.
All rights reserved.

Copyright and Reprint Permissions: Permission is granted to use these curriculum guide-
lines for the development of educational materials and programs. Other use requires
specific permission. Permission requests should be addressed to: ACM Permissions Dept. at per-
missions@acm.org or to the IEEE Copyrights Manager at copyrights@ieee.org.

ISBN: 978-1-4503-2309-3
DOI: 10.1145/2534860

Web link: http://dx.doi.org/10.1145/2534860
ACM Order Number: 999133

Additional copies may be ordered from:

Cover art by Robert Vizzini
Printed in the United States of America

Sponsoring Societies
This report was made possible by

financial support from the following societies:

ACM
IEEE Computer Society

The CS2013 Final Report has been endorsed by ACM and the IEEE Computer Society.

IEEE Computer Society
Customer Service Center

10662 Los Vaqueros
P.O. Box 3014

Los Alamitos, CA 90720-1314

Tel: + 1 800 272 6657
Fax: + 1 714 821 4641

http://computer.org/cspress
csbook@computer.org

IEEE Service Center IEEE
445 Hoes Lane
P.O. Box 1331

Piscataway, NJ 08855-1331

Tel: + 1 732 981 0060
Fax: + 1 732 981 9667

http://shop.ieee.org/store/
customerservice@ieee.org

IEEE Computer Society
Asia/Pacific Office

Watanabe Bldg., 1-4-2
Minami-Aoyama

Minato-ku, Tokyo 107-0062
JAPAN

Tel: + 81 3 3408 3118
Fax: + 81 3 3408 3553

tokyo.ofc@computer.org

ACM Order Department
P.O. Box 30777

New York, NY 10087-0777

1-800-342-6626
1-212-626-0500 (outside U.S.)

orders@acm.org

Computer Science

Curricula 2013

Final Report

December 2013

The Joint Task Force on Computing Curricula
Association for Computing Machinery

IEEE-Computer Society

- 2 -

CS2013 Steering Committee

ACM Delegation

Mehran Sahami, Chair (Stanford University)

Andrea Danyluk (Williams College)

Sally Fincher (University of Kent)

Kathleen Fisher (Tufts University)

Dan Grossman (University of Washington)

Elizabeth Hawthorne (Union County College)

Randy Katz (UC Berkeley)

Rich LeBlanc (Seattle University)

Dave Reed (Creighton University)

 IEEE-CS Delegation

Steve Roach, Chair (Exelis Inc.)

Ernesto Cuadros-Vargas (Univ. Católica San Pablo)

Ronald Dodge (US Military Academy)

Robert France (Colorado State University)

Amruth Kumar (Ramapo Coll. of New Jersey)

Brian Robinson (ABB Corporation)

Remzi Seker (Embry-Riddle Aeronautical Univ.)

Alfred Thompson (Microsoft, retired)

- 3 -

Table of Contents
Chapter 1: Introduction ... 10

Overview of the CS2013 Process ... 11

Survey Input .. 12

High-level Themes .. 13

Knowledge Areas .. 14

Professional Practice ... 15

Exemplars of Curricula and Courses .. 16

Community Involvement and Website ... 16

Acknowledgments .. 16

References ... 19

Chapter 2: Principles ... 20

Chapter 3: Characteristics of Graduates ... 23

Chapter 4: Introduction to the Body of Knowledge.. 27

Knowledge Areas are Not Necessarily Courses (and Important Examples Thereof) 28

Core Tier-1, Core Tier-2, Elective: What These Terms Mean, What is Required 29

Further Considerations in Designing a Curriculum .. 32

Organization of the Body of Knowledge .. 32

Curricular Hours ... 32

Courses .. 33

Guidance on Learning Outcomes ... 33

Overview of New Knowledge Areas .. 34

- 4 -

Chapter 5: Introductory Courses ... 39

Design Dimensions ... 39

Mapping to the Body of Knowledge ... 45

Chapter 6: Institutional Challenges ... 46

Localizing CS2013 ... 46

Actively Promoting Computer Science .. 46

Broadening Participation .. 47

Computer Science Across Campus ... 48

Computer Science Minors .. 48

Mathematics Requirements in Computer Science .. 49

Computing Resources ... 51

Maintaining a Flexible and Healthy Faculty ... 51

Teaching Faculty ... 52

Undergraduate Teaching Assistants .. 53

Online Education .. 53

References ... 54

Appendix A: The Body of Knowledge ... 55

Algorithms and Complexity (AL) ... 55

Architecture and Organization (AR) ... 62

Computational Science (CN) .. 68

Discrete Structures (DS) ... 76

Graphics and Visualization (GV) ... 82

Human-Computer Interaction (HCI) .. 89

Information Assurance and Security (IAS) .. 97

- 5 -

Information Management (IM) ... 112

Intelligent Systems (IS) .. 121

Networking and Communication (NC) ... 130

Operating Systems (OS) ... 135

Platform-Based Development (PBD) ... 142

Parallel and Distributed Computing (PD) ... 145

Programming Languages (PL) .. 155

Software Development Fundamentals (SDF) ... 167

Software Engineering (SE) ... 172

Systems Fundamentals (SF).. 186

Social Issues and Professional Practice (SP) .. 192

Appendix B: Migrating to CS2013 ... 204

Outcomes .. 204

Changes in Knowledge Area Structure ... 205

Core Comparison .. 206

Conclusions ... 211

Appendix C: Course Exemplars.. 228

Course Exemplar Template .. 232

CSCI 140: Algorithms, Pomona College .. 234

COS 226: Algorithms and Data Structures, Princeton University .. 237

CS 256 Algorithm Design and Analysis, Williams College ... 240

CSE332: Data Abstractions, University of Washington ... 243

CS/ECE 552: Introduction to Computer Architecture, University of Wisconsin 246

CS150: Digital Components and Design, University of California, Berkeley 249

- 6 -

CC152: Computer Architecture and Engineering, University of California, Berkeley 251

eScience, University of North Carolina at Charlotte .. 253

COSC/MATH 201: Modeling and Simulation for the Sciences, Wofford College 258

MAT 267: Discrete Mathematics, Union County College ... 262

CS103: Mathematical Foundations of Computer Science, Stanford University 265

CS109: Probability Theory for Computer Scientists, Stanford University 265

CS 250 - Discrete Structures I, Portland Community College ... 268

CS 251 - Discrete Structures II, Portland Community College .. 271

CS 175 Computer Graphics, Harvard University ... 274

CS371: Computer Graphics, Williams College .. 277

Human Aspects of Computer Science, University of York .. 280

FIT3063 Human Computer Interaction, Monash University .. 282

CO328: Human Computer Interaction, University of Kent .. 285

Human Computer Interaction, University of Cambridge ... 287

Human-Computer Interaction, Stanford University ... 289

Human Information Processing (HIP), Open University Netherlands 291

Software and Interface Design, University of Cambridge .. 293

Computer Systems Security (CS-475), Lewis-Clark State College 295

CS430: Database Systems, Colorado State University ... 298

Technology, Ethics, and Global Society (CSE 262), Miami University 301

CS 662; Artificial Intelligence Programming, University of San Francisco 304

Intelligenza Artificiale (Artificial Intelligence), Politecnico di Milano 306

CMSC 471, Introduction to Artificial Intelligence, U. of Maryland, Baltimore County 308

Introduction to Artificial Intelligence, Case Western Reserve University 310

- 7 -

CS188: Artificial Intelligence, University of California Berkeley ... 313

Introduction to Artificial Intelligence, University of Hartford ... 315

Computer Networks I, Case Western Reserve University .. 318

CS144: Introduction to Computer Networking, Stanford University 320

Computer Networks, Williams College .. 323

CSCI 432 Operating Systems, Williams College ... 327

CS 420, Operating Systems, Embry-Riddle Aeronautical University 330

CPSC 3380 Operating Systems, U. of Arkansas at Little Rock ... 332

582219 Operating Systems, University of Helsinki ... 334

RU STY1 Operating Systems, Reykjavik University ... 336

Parallel Programming Principle and Practice, Huazhong U. of Science and Technology 339

Introduction to Parallel Programming, Nizhni Novgorod State University 342

CS in Parallel (course modules on parallel computing) ... 344

CS453: Introduction to Compilers, Colorado State University .. 348

Csc 453: Translators and Systems Software, The University of Arizona 351

CSCI 434T: Compiler Design, Williams College .. 353

Compilers, Stanford University .. 356

Languages and Compilers, Utrecht University ... 359

COMP 412: Topics in Compiler Construction, Rice University .. 361

CSC 131: Principles of Programming Languages, Pomona College...................................... 364

CSCI 1730: Introduction to Programming Languages, Brown University 367

CSC 2/454: Programming Language Design and Implementation, University of Rochester 369

CSE341: Programming Languages, University of Washington ... 372

CSCI 334: Principles of Programming Languages, Williams College 374

- 8 -

Programming Languages and Techniques I, University of Pennsylvania 377

15-312 Principles of Programming Languages, Carnegie Mellon University 380

15-150: Functional Programming, Carnegie Mellon University .. 384

CIS 133J: Java Programming I, Portland Community College .. 388

Introduction to Computer Science, Harvey Mudd College .. 391

CpSc 215: Software Development Foundations, Clemson University 394

CS1101: Introduction to Program Design, WPI ... 397

Data Abstraction and Data Structures, Miami University .. 400

Software Engineering Practices, Embry Riddle Aeronautical University 402

CS169: Software Engineering, University of California, Berkeley .. 406

SE-2890 Software Engineering Practices, Milwaukee School of Engineering 409

Software Development, Quinnipiac University .. 411

CS2200: Introduction to Systems and Networking, Georgia Institute of Technology 414

CS61C: Great Ideas in Computer Architecture, University of California, Berkeley.............. 418

CSE333: Systems Programming, University of Washington ... 420

Ethics in Technology (IFSM304), University of Maryland ... 423

Technology Consulting in the Community, Carnegie Mellon University 426

Issues in Computing, Saint Xavier University .. 430

Ethics & the Information Age (CSI 194), Anne Arundel Community College 433

Professional Development Seminar, Northwest Missouri State University 436

The Digital Age, Grinnell College .. 439

COS 126: General Computer Science, Princeton University ... 443

CSCI 0190: Accelerated Introduction to Computer Science, Brown University 447

An Overview of the Two-Course Intro Sequence, Creighton University 449

- 9 -

CSC 221: Introduction to Programming, Creighton University ... 450

CSC 222: Object-Oriented Programming, Creighton University ... 452

An Overview of the Mulit-paradigm Three-course CS Introduction at Grinnell College 454

CSC 151: Functional problem solving, Grinnell College ... 456

CSC 161: Imperative Problem Solving and Data Structures, Grinnell College 458

CSC 207: Algorithms and Object-Oriented Design, Grinnell College 460

Appendix D: Curricular Exemplars .. 463

Bluegrass Community and Technical College (A.S. Degree) .. 465

Bluegrass Community and Technical College (A.A.S. Degree) .. 472

Grinnell College .. 480

Stanford University ... 492

Williams College .. 503

Chapter 1: Introduction
ACM and IEEE-Computer Society have a long history of sponsoring efforts to establish

international curricular guidelines for undergraduate programs in computing on roughly a ten-

year cycle, starting with the publication of Curriculum 68 [1] over 40 years ago. This volume is

the latest in this series of curricular guidelines. As the field of computing has grown and

diversified, so too have the curricular recommendations, and there are now curricular volumes

for Computer Engineering, Information Systems, Information Technology, and Software

Engineering in addition to Computer Science [3]. These volumes are updated regularly with the

aim of keeping computing curricula modern and relevant. The last complete Computer Science

curricular volume was released in 2001 (CC2001) [2], and an interim review effort concluded in

2008 (CS2008) [4].

This volume, Computer Science Curricula 2013 (CS2013), represents a comprehensive revision.

The CS2013 guidelines include a redefined body of knowledge, a result of rethinking the

essentials necessary for a Computer Science curriculum. It also seeks to identify exemplars of

actual courses and programs to provide concrete guidance on curricular structure and

development in a variety of institutional contexts.

The development of curricular guidelines for Computer Science has always been challenging

given the rapid evolution and expansion of the field. The growing diversity of topics potentially

relevant to an education in Computer Science and the increasing integration of computing with

other disciplines create particular challenges for this effort. Balancing topical growth with the

need to keep recommendations realistic and implementable in the context of undergraduate

education is particularly difficult. As a result, the CS2013 Steering Committee made

considerable effort to engage the broader computer science education community in a dialog to

better understand new opportunities and local needs, and to identify successful models of

computing curricula – whether established or novel.

- 11 -

Charter

The ACM and IEEE-Computer Society chartered the CS2013 effort with the following directive:

To review the Joint ACM and IEEE-CS Computer Science volume of
Computing Curricula 2001 and the accompanying interim review CS 2008, and
develop a revised and enhanced version for the year 2013 that will match the
latest developments in the discipline and have lasting impact.

The CS2013 task force will seek input from a diverse audience with the goal of
broadening participation in computer science. The report will seek to be
international in scope and offer curricular and pedagogical guidance
applicable to a wide range of institutions. The process of producing the final
report will include multiple opportunities for public consultation and scrutiny.

The process by which the volume was produced followed directly from this charter.

Overview of the CS2013 Process

The ACM and IEEE-Computer Society respectively appointed the Steering Committee co-chairs,

who, in turn, recruited the other members of the Steering Committee in the latter half of 2010.

This group received its charter and began work in fall 2010, starting with a survey of Computer

Science department chairs (described below). The Steering Committee met for the first time in

February 2011, beginning work with a focus on revising the Body of Knowledge (BoK). This

initial focus was chosen because both the CS2008 report and the results of the survey of

department chairs pointed to a need for creation of new knowledge areas in the Body of

Knowledge.

The Steering Committee met in person roughly every 6 months throughout the process of

producing this volume and had conference call meetings at monthly intervals. Once the set of

areas in the new Body of Knowledge was determined, a subcommittee was appointed to revise or

create each Knowledge Area (KA). Each of these subcommittees was chaired by a member of

the Steering Committee and included at least two additional Steering Committee members as

well as other experts in the area chosen by the subcommittee chairs. As the subcommittees

produced drafts of their Knowledge Areas, others in the community were asked to provide

feedback, both through presentations at conferences and direct review requests. The Steering

Committee also collected community input through an online review and comment process. The

- 12 -

KA subcommittee Chairs (as members of the CS2013 Steering Committee) worked to resolve

conflicts, eliminate redundancies and appropriately categorize and cross-reference topics

between the various KAs. Thus, the computer science community beyond the Steering

Committee played a significant role in shaping the Body of Knowledge throughout the

development of CS2013. This two-year process ultimately converged on the version of the Body

of Knowledge presented here.

Beginning at its summer meeting in 2012, the Steering Committee turned much of its focus to

course and curricular exemplars. In this effort, a broad community engagement was once again a

key component of the process of collecting exemplars for inclusion in the volume. The results of

these efforts are seen in Appendix C which presents these exemplars.

Survey Input

To lay the groundwork for CS2013, the Steering Committee conducted a survey of the use of the

CC2001 and CS2008 volumes. The survey was sent to approximately 1500 Computer Science

(and related discipline) department chairs and directors of undergraduate studies in the United

States and an additional 2000 department chairs internationally. We received 201 responses,

representing a wide range of institutions (self-identified):

● Research-oriented universities (55%)

● Teaching-oriented universities (17.5%)

● Undergraduate-only colleges (22.5%)

● Community colleges (5%)

The institutions also varied considerably in size, with the following distribution:

● Less than 1,000 students (6.5%)

● 1,000 to 5,000 students (30%)

● 5,000 to 10,000 students (19%)

● More than 10,000 students (44.5%)

In response to questions about how they used the CC2001/CS2008 reports, survey respondents

reported that the Body of Knowledge (i.e., the outline of topics that should appear in

undergraduate Computer Science curricula) was the most used component of the reports. When

- 13 -

questioned about new topical areas that should be added to the Body of Knowledge, survey

respondents indicated a strong need to add the topics of Security as well as Parallel and

Distributed Computing. Indeed, feedback during the CS2008 review had also indicated the

importance of these two areas, but the CS2008 steering committee had felt that creating new

KAs was beyond their purview and deferred the development of those areas to the next full

curricular report. CS2013 includes these two new KAs (among others): Information Assurance

and Security, and Parallel and Distributed Computing.

High-level Themes

In developing CS2013, several high-level themes provided an overarching guide for the

development of this volume. The followings themes embody and reflect the CS2013 Principles

(described in detail in the next chapter of this volume):

● The “Big Tent” view of CS. As CS expands to include more cross-disciplinary work and
new programs of the form “Computational Biology,” “Computational Engineering,” and
“Computational X” are developed, it is important to embrace an outward-looking view
that sees CS as a discipline actively seeking to work with and integrate into other
disciplines.

● Managing the size of the curriculum. Although the field of computer science continues to
rapidly expand, it is not feasible to proportionately expand the size of the curriculum. As
a result, CS2013 seeks to re-evaluate the essential topics in computing to make room for
new topics without requiring more total instructional hours than the CS2008 guidelines.
At the same time, the circumscription of curriculum size promotes more flexible models
for curricula without losing the essence of a rigorous CS education.

● Actual course exemplars. CS2001 took on the significant challenge of providing
descriptions of six curriculum models and forty-seven possible course descriptions
variously incorporating the knowledge units as defined in that report. While this effort
was valiant, in retrospect such course guidance did not seem to have much impact on
actual course design. CS2013 takes a different approach: we identify and describe
existing successful courses and curricula to show how relevant knowledge units are
addressed and incorporated in actual programs.

● Institutional needs. CS2013 aims to be applicable in a broad range of geographic and
cultural contexts, understanding that curricula exist within specific institutional needs,
goals, and resource constraints. As a result, CS2013 allows for explicit flexibility in
curricular structure through a tiered set of core topics, where a small set of Core-Tier1
topics are considered essential for all CS programs, but individual programs choose their
coverage of Core-Tier2 topics. This tiered structure is described in more detail in
Chapter 4 of this report.

- 14 -

Knowledge Areas

The CS2013 Body of Knowledge is organized into a set of 18 Knowledge Areas (KAs),

corresponding to topical areas of study in computing. The Knowledge Areas are:

● AL - Algorithms and Complexity

● AR - Architecture and Organization

● CN - Computational Science

● DS - Discrete Structures

● GV - Graphics and Visualization

● HCI - Human-Computer Interaction

● IAS - Information Assurance and Security

● IM - Information Management

● IS - Intelligent Systems

● NC - Networking and Communications

● OS - Operating Systems

● PBD - Platform-based Development

● PD - Parallel and Distributed Computing

● PL - Programming Languages

● SDF - Software Development Fundamentals

● SE - Software Engineering

● SF - Systems Fundamentals

● SP - Social Issues and Professional Practice

Many of these Knowledge Areas are derived directly from CC2001/CS2008, but have been

revised—in some cases quite significantly—in CS2013; other KAs are new to CS2013. Some

represent new areas that have grown in significance since CC2001 and are now integral to

studies in computing. For example, the increased importance of computer and network security

in the past decade led to the development of Information Assurance and Security (IAS). Other

new KAs represent a restructuring of knowledge units from CC2001/CS2008, reorganized in a

way to make them more relevant to modern practices. For example, Software Development

Fundamentals (SDF) pulls together basic knowledge and skills related to software development,

- 15 -

including knowledge units that were formerly spread across Programming Fundamentals,

Software Engineering, Programming Languages, and Algorithms and Complexity. Similarly,

Systems Fundamentals (SF) brings together fundamental, cross-cutting systems concepts that can

serve as a foundation for more advanced work in a number of areas.

It is important to recognize that Knowledge Areas are interconnected and that concepts in one

KA may build upon or complement material from other KAs. The reader should take care in

reading the Body of Knowledge as a whole, rather than focusing on any given Knowledge Area

in isolation. Chapter 4 contains a more comprehensive overview of the KAs, including

motivations for the new additions.

Professional Practice

The education that undergraduates in computer science receive must adequately prepare them for

the workforce in a more holistic way than simply conveying technical facts. Indeed, soft skills

(such as teamwork, verbal and written communication, time management, problem solving, and

flexibility) and personal attributes (such as risk tolerance, collegiality, patience, work ethic,

identification of opportunity, sense of social responsibility, and appreciation for diversity) play a

critical role in the workplace. Successfully applying technical knowledge in practice often

requires an ability to tolerate ambiguity and to negotiate and work well with others from

different backgrounds and disciplines. These overarching considerations are important for

promoting successful professional practice in a variety of career paths.

Students will gain some soft skills and personal attributes through the general college experience

(e.g., patience, time management, work ethic, and an appreciation for diversity), and others

through specific curricula. CS2013 includes examples of ways in which an undergraduate

Computer Science program encourages the development of soft skills and personal attributes.

Core hours for teamwork and risk management are covered in the Software Engineering (SE)

Knowledge Area under Project Management. The ability to tolerate ambiguity is also core in

Software Engineering under Requirements Engineering. Written and verbal communications are

also part of the core in the Social Issues and Professional Practice (SP) Knowledge Area under

Professional Communication. The inclusion of core hours in the Social Issues and Professional

Practice KA under the Social Context knowledge unit helps to promote a greater understanding

- 16 -

of the implications of social responsibility among students. The importance of lifelong learning

as well as professional development is described in the preamble of the Social Issues and

Professional Practice Knowledge Area as well as in both Chapter 2 (Principles) and Chapter 3

(Characteristics of Graduates).

Exemplars of Curricula and Courses

The CS2013 report includes examples of actual fielded courses—from a variety of universities

and colleges—to illustrate how topics in the Knowledge Areas may be covered and combined in

diverse ways. The report also offers examples of CS curricula from a handful of institutions to

show different ways in which a larger collection of courses can be put together to form a

complete curriculum. Importantly, we believe that the presentation of exemplar courses and

curricula promotes greater sharing of educational ideas within the computing community. It also

promotes on-going engagement by encouraging educators to share new courses and curricula

from their own institutions (or other institutions with which they may be familiar) with the

broader community.

Community Involvement and Website

The CS2013 report benefitted from a broad engagement of members of the computing

community who reviewed and critiqued successive drafts of this document. Indeed, the

development of this report benefited from the input of more than 100 contributors beyond the

Steering Committee. More information about the CS2013 effort is available at the CS2013

website:

http://cs2013.org

Acknowledgments

The CS2013 draft reports have benefited from the input of many individuals, including: Alex

Aiken (Stanford University), Jeannie Albrecht (Williams College), Ross Anderson (Cambridge

University), Florence Appel (Saint Xavier University), Helen Armstrong (Curtin University),

Colin Armstrong (Curtin University), Krste Asanovic (UC Berkeley), Radu F. Babiceanu

- 17 -

(University of Arkansas at Little Rock), Duane Bailey (Williams College), Doug Baldwin

(SUNY Geneseo), Mike Barker (Massachusetts Institute of Technology), Michael Barker (Nara

Institute of Science and Technology), Paul Beame (University of Washington), Robert Beck

(Villanova University), Matt Bishop (University of California, Davis), Alan Blackwell

(Cambridge University), Don Blaheta (Longwood University), Olivier Bonaventure (Université

Catholique de Louvain), Roger Boyle (University of Leeds), Clay Breshears (Intel), Bo

Brinkman (Miami University), David Broman (Linkoping University), Dick Brown (St. Olaf

College), Kim Bruce (Pomona College), Jonathan Buss (University of Waterloo), Netiva Caftori

(Northeastern Illinois University, Chicago), Paul Cairns (University of York), Alison Clear

(Christchurch Polytechnic Institute of Technology), Curt Clifton (Rose-Hulman and The Omni

Group), Yvonne Cody (University of Victoria), Steve Cooper (Stanford University), Tony

Cowling (University of Sheffield), Joyce Currie-Little (Towson University), Ron Cytron

(Washington University in St. Louis), Melissa Dark (Purdue University), Janet Davis (Grinnell

College), Marie DesJardins (University of Maryland, Baltimore County), Zachary Dodds

(Harvey Mudd College), Paul Dourish (University of California, Irvine), Lynette Drevin (North-

West Universit), Scot Drysdale (Dartmouth College), Kathi Fisler (Worcester Polytechnic

Institute), Susan Fox (Macalester College), Edward Fox (Virginia Tech), Eric Freudenthal

(University of Texas El Paso), Stephen Freund (Williams College), Lynn Futcher (Nelson

Mandela Metropolitan University), Greg Gagne (Wesminister College), Dan Garcia (University

of California, Berkeley), Judy Gersting (Indiana University-Purdue University Indianapolis),

Yolanda Gil (University of Southern California), Michael Gleicher (University of Wisconsin,

Madison), Frances Grodzinsky (Sacred Heart University), Anshul Gupta (IBM), Mark Guzdial

(Georgia Tech), Brian Hay (University of Alaska, Fairbanks), Brent Heeringa (Williams

College), Peter Henderson (Butler University), Brian Henderson-Sellers (University of

Technology, Sydney), Matthew Hertz (Canisius College), Tom Hilburn (Embry-Riddle

Aeronautical University), Tony Hosking (Purdue University), Johan Jeuring (Utrecht

University), Yiming Ji (University of South Carolina Beaufort), Maggie Johnson (Google), Matt

Jones (Swansea University), Frans Kaashoek (Massachusetts Institute of Technology), Lisa

Kaczmarczyk (ACM Education Council), Jennifer Kay (Rowan University), Scott Klemmer

(Stanford University), Jim Kurose (University of Massachusetts, Amherst), Doug Lea (SUNY

Oswego), Terry Linkletter (Central Washington University), David Lubke (NVIDIA), Bill

- 18 -

Manaris (College of Charleston), Samuel Mann (Otago Polytechnic), C. Diane Martin (George

Washington University), Dorian McClenahan (IEEE-CS), Andrew McGettrick (University of

Strathclyde), Morgan McGuire (Williams College), Keith Miller (University of Illinois at

Springfield), Tom Murtagh (Williams College), Narayan Murthy (Pace University), Kara Nance

(University of Alaska, Fairbanks), Todd Neller (Gettysburg College), Reece Newman (Sinclair

Community College), Christine Nickell (Information Assurance Center for Computer Network

Operations, CyberSecurity, and Information Assurance), James Noble (Victoria University of

Wellington), Peter Norvig (Google), Joseph O'Rourke (Smith College), Jens Palsberg (UCLA),

Robert Panoff (Shodor.org), Sushil Prasad (Georgia State University), Michael Quinn (Seattle

University), Matt Ratto (University of Toronto), Samuel A. Rebelsky (Grinnell College), Penny

Rheingans (University of Maryland, Baltimore County), Carols Rieder (Lucerne University of

Applied Sciences), Eric Roberts (Stanford University), Arny Rosenberg (Northeastern and

Colorado State University), Ingrid Russell (University of Hartford), Dino Schweitzer (United

States Air Force Academy), Michael Scott (University of Rochester), Robert Sedgewick

(Princeton University), Helen Sharp (Open University), Robert Sloan (University of Illinois,

Chicago), Ann Sobel (Miami University), Carol Spradling (Northwest Missouri State

University), John Stone (Grinnell College), Michelle Strout (Colorado State University), Alan

Sussman (University of Maryland, College Park), Blair Taylor (Towson University), Simon

Thompson (University of Kent), Yan Timanovsky (ACM), Cindy Tucker (Bluegrass Community

and Technical College), Ian Utting (University of Kent), Gerrit van der Veer (Open University

Netherlands), Johan Vanniekerk (Nelson Mandela Metropolitan University), Christoph von

Praun (Georg-Simon-Ohm Hochschule Nürnberg), Rossouw Von Solms (Nelson Mandela

Metropolitan University), Henry Walker (Grinnell College), John Wawrzynek (University of

California, Berkeley), Charles Weems (University of Massachusetts, Amherst), Jerod Weinman

(Grinnell College), David Wetherall (University of Washington), Melanie Williamson

(Bluegrass Community and Technical College), Michael Wrinn (Intel) and Julie Zelenski

(Stanford University).

Additionally, review of various portions of draft CS2013 report took place in several venues,

including: the 42nd ACM Technical Symposium of the Special Interest Group on Computer

Science Education (SIGCSE-11); the 24th IEEE-CS Conference on Software Engineering

Education and Training (CSEET-11); the 2011 IEEE Frontiers in Education Conference (FIE-

- 19 -

11); the 2011 Federated Computing Research Conference (FCRC-11); the 2nd Symposium on

Educational Advances in Artificial Intelligence (EAAI-11); the Conference of ACM Special

Interest Group on Data Communication 2011 (SIGCOMM-11); the 2011 IEEE International

Joint Conference on Computer, Information, and Systems Sciences and Engineering (CISSE-11);

the 2011 Systems, Programming, Languages and Applications: Software for Humanity

Conference (SPLASH-11); the 15th Colloquium for Information Systems Security Education;

the 2011 National Centers of Academic Excellence in IA Education (CAE/IAE) Principles

meeting; the 7th IFIP TC 11.8 World Conference on Information Security Education (WISE); the

43rd ACM Technical Symposium of the Special Interest Group on Computer Science Education

(SIGCSE-12); the Special Session of the Special Interest Group on Computers and Society at

SIGCSE-12; the Computer Research Association Snowbird Conference 2012; and the 2012

IEEE Frontiers in Education Conference (FIE-12), among others.

A number of organizations and working groups also provided valuable feedback to the CS2013

effort, including: the ACM Education Board and Council; the IEEE-CS Educational Activities

Board; the ACM Practitioners Board; the ACM SIGPLAN Education Board; the ACM Special

Interest Group Computers and Society; the SIGCHI executive committee; the Liberal Arts

Computer Science Consortium (LACS); the NSF/IEEE-TCPP Curriculum Initiative on Parallel

and Distributed Computing Committee; the Intel/NSF sponsored workshop on Security; and the

NSF sponsored project on Curricular Guidelines for Cybersecurity. We are also indebted to all

the authors of course and curricular exemplars.

References

[1] ACM Curriculum Committee on Computer Science. 1968. Curriculum 68:
Recommendations for Academic Programs in Computer Science. Comm. ACM 11, 3
(Mar. 1968), 151-197.

[2] ACM/IEEE-CS Joint Task Force on Computing Curricula. 2001. ACM/IEEE Computing
Curricula 2001 Final Report. http://www.acm.org/sigcse/cc2001.

[3] ACM/IEEE-CS Joint Task Force for Computer Curricula 2005. Computing Curricula
2005: An Overview Report. http://www.acm.org/education/curric_vols/CC2005-
March06Final.pdf

[4] ACM/IEEE-CS Joint Interim Review Task Force. 2008. Computer Science Curriculum
2008: An Interim Revision of CS 2001, Report from the Interim Review Task Force.
http://www.acm.org/education/curricula/ComputerScience2008.pdf

Chapter 2: Principles
Early in its work, the 2013 Steering Committee agreed on a set of principles to guide the

development of this volume. The principles adopted for CS2013 overlap significantly with the

principles adopted for previous curricular efforts, most notably CC2001 and CS2008. As with

previous ACM/IEEE curricula volumes, there are a variety of constituencies for CS2013,

including individual faculty members and instructors at a wide range of colleges, universities,

and technical schools on any of six continents; CS programs and the departments, colleges, and

institutions housing them; accreditation and certification boards; authors; and researchers. Other

constituencies include pre-college preparatory schools and advanced placement curricula as well

as graduate programs in computer science. These principles were developed in consideration of

these constituencies, as well as consideration of issues related to student outcomes, development

of curricula, and the review process. The order of presentation is not intended to imply relative

importance.

1. Computer science curricula should be designed to provide students with the flexibility to

work across many disciplines. Computing is a broad field that connects to and draws from

many disciplines, including mathematics, electrical engineering, psychology, statistics, fine

arts, linguistics, and physical and life sciences. Computer Science students should develop

the flexibility to work across disciplines.

2. Computer science curricula should be designed to prepare graduates for a variety of

professions, attracting the full range of talent to the field. Computer science impacts nearly

every modern endeavor. CS2013 takes a broad view of the field that includes topics such as

“computational-x” (e.g., computational finance or computational chemistry) and “x-

informatics” (e.g., eco-informatics or bio-informatics). Well-rounded CS graduates will have

a balance of theory and application, as described in Chapter 3: Characteristics of Graduates.

3. CS2013 should provide guidance for the expected level of mastery of topics by graduates. It

should suggest outcomes indicating the intended level of mastery and provide exemplars of

instantiated courses and curricula that cover topics in the Body of Knowledge.

- 21 -

4. CS2013 must provide realistic, adoptable recommendations that provide guidance and

flexibility, allowing curricular designs that are innovative and track recent developments in

the field. The guidelines are intended to provide clear, implementable goals, while also

providing the flexibility that programs need in order to respond to a rapidly changing field.

CS2013 is intended as guidance, not as a minimal standard against which to evaluate a

program.

5. The CS2013 guidelines must be relevant to a variety of institutions. Given the wide range of

institutions and programs (including 2-year, 3-year, and 4-year programs; liberal arts,

technological, and research institutions; and institutions of every size), it is neither possible

nor desirable for these guidelines to dictate curricula for computing. Individual programs will

need to evaluate their constraints and environments to construct curricula.

6. The size of the essential knowledge must be managed. While the range of relevant topics has

expanded, the size of undergraduate education has not. Thus, CS2013 must carefully choose

among topics and recommend the essential elements.

7. Computer science curricula should be designed to prepare graduates to succeed in a rapidly

changing field. Computer Science is rapidly changing and will continue to change for the

foreseeable future. Curricula must prepare students for lifelong learning and must include

professional practice (e.g., communication skills, teamwork, ethics) as components of the

undergraduate experience. Computer science students must learn to integrate theory and

practice, to recognize the importance of abstraction, and to appreciate the value of good

engineering design.

8. CS2013 should identify the fundamental skills and knowledge that all computer science

graduates should possess while providing the greatest flexibility in selecting topics. To this

end, we have introduced three levels of knowledge description: Tier-1 Core, Tier-2 Core, and

Elective. For a full discussion of Tier-1 Core, Tier-2 Core, and Elective, see Chapter 4:

Introduction to the Body of Knowledge.

9. CS2013 should provide the greatest flexibility in organizing topics into courses and

curricula. Knowledge areas are not intended to describe specific courses. There are many

- 22 -

novel, interesting, and effective ways to combine topics from the Body of Knowledge into

courses.

10. The development and review of CS2013 must be broadly based. The CS2013 effort must

include participation from many different constituencies including industry, government, and

the full range of higher education institutions involved in computer science education. It must

take into account relevant feedback from these constituencies.

Chapter 3: Characteristics of Graduates
Graduates of computer science programs should have fundamental competency in the areas

described by the Body of Knowledge (see Chapter 4), particularly the core topics contained

there. However, there are also competences that graduates of CS programs should have that are

not explicitly listed in the Body of Knowledge. Professionals in the field typically embody a

characteristic style of thinking and problem solving, a style that emerges from the experiences

obtained through study of the field and professional practice. Below, we describe the

characteristics that we believe should be attained at least at an elementary level by graduates of

computer science programs. These characteristics will enable their success in the field and

further professional development. Some of these characteristics and skills also apply to other

fields. They are included here because the development of these skills and characteristics should

be explicitly addressed and encouraged by computer science programs. This list is based on a

similar list in CC2001 and CS2008. The substantive changes that led to this new version were

influenced by responses to a survey conducted by the CS2013 Steering Committee.

At a broad level, the expected characteristics of computer science graduates include the

following:

Technical understanding of computer science
Graduates should have a mastery of computer science as described by the core of the Body of

Knowledge.

Familiarity with common themes and principles
Graduates need understanding of a number of recurring themes, such as abstraction, complexity,

and evolutionary change, and a set of general principles, such as sharing a common resource,

security, and concurrency. Graduates should recognize that these themes and principles have

broad application to the field of computer science and should not consider them as relevant only

to the domains in which they were introduced.

- 24 -

Appreciation of the interplay between theory and practice
A fundamental aspect of computer science is understanding the interplay between theory and

practice and the essential links between them. Graduates of a computer science program need to

understand how theory and practice influence each other.

System-level perspective
Graduates of a computer science program need to think at multiple levels of detail and

abstraction. This understanding should transcend the implementation details of the various

components to encompass an appreciation for the structure of computer systems and the

processes involved in their construction and analysis. They need to recognize the context in

which a computer system may function, including its interactions with people and the physical

world.

Problem solving skills
Graduates need to understand how to apply the knowledge they have gained to solve real

problems, not just write code and move bits. They should to be able to design and improve a

system based on a quantitative and qualitative assessment of its functionality, usability and

performance. They should realize that there are multiple solutions to a given problem and that

selecting among them is not a purely technical activity, as these solutions will have a real impact

on people’s lives. Graduates also should be able to communicate their solution to others,

including why and how a solution solves the problem and what assumptions were made.

Project experience
To ensure that graduates can successfully apply the knowledge they have gained, all graduates of

computer science programs should have been involved in at least one substantial project. In most

cases, this experience will be a software development project, but other experiences are also

appropriate in particular circumstances. Such projects should challenge students by being

integrative, requiring evaluation of potential solutions, and requiring work on a larger scale than

typical course projects. Students should have opportunities to develop their interpersonal

communication skills as part of their project experience.

Commitment to life-long learning
Graduates should realize that the computing field advances at a rapid pace, and graduates must

possess a solid foundation that allows and encourages them to maintain relevant skills as the

- 25 -

field evolves. Specific languages and technology platforms change over time. Therefore,

graduates need to realize that they must continue to learn and adapt their skills throughout their

careers. To develop this ability, students should be exposed to multiple programming languages,

tools, paradigms, and technologies as well as the fundamental underlying principles throughout

their education. In addition, graduates are now expected to manage their own career

development and advancement. Graduates seeking career advancement often engage in

professional development activities, such as certifications, management training, or obtaining

domain-specific knowledge.

Commitment to professional responsibility
Graduates should recognize the social, legal, ethical, and cultural issues inherent in the discipline

of computing. They must further recognize that social, legal, and ethical standards vary

internationally. They should be knowledgeable about the interplay of ethical issues, technical

problems, and aesthetic values that play an important part in the development of computing

systems. Practitioners must understand their individual and collective responsibility and the

possible consequences of failure. They must understand their own limitations as well as the

limitations of their tools.

Communication and organizational skills
Graduates should have the ability to make effective presentations to a range of audiences about

technical problems and their solutions. This may involve face-to-face, written, or electronic

communication. They should be prepared to work effectively as members of teams. Graduates

should be able to manage their own learning and development, including managing time,

priorities, and progress.

Awareness of the broad applicability of computing
Platforms range from embedded micro-sensors to high-performance clusters and distributed

clouds. Computer applications impact nearly every aspect of modern life. Graduates should

understand the full range of opportunities available in computing.

Appreciation of domain-specific knowledge
Graduates should understand that computing interacts with many different domains. Solutions to

many problems require both computing skills and domain knowledge. Therefore, graduates need

- 26 -

to be able to communicate with, and learn from, experts from different domains throughout their

careers.

Chapter 4: Introduction to the Body of
Knowledge

This chapter provides an introduction to the structure and rationale for the Body of Knowledge.

It further describes the most substantial innovations in the Body of Knowledge. It does not

propose a particular set of courses or curriculum structure -- that is the role of the course and

curriculum exemplars. Rather, this chapter emphasizes the flexibility that the Body of

Knowledge allows in adapting curricula to institutional needs and the continual evolution of the

field. In Computer Science terms, one can view the Body of Knowledge as a specification of the

content to be covered and a curriculum as an implementation. A large variety of curricula can

meet the specification.

The following points are elaborated:

● Knowledge Areas are not intended to be in one-to-one correspondence with particular

courses in a curriculum: We expect curricula will have courses that incorporate topics

from multiple Knowledge Areas.

● Topics are identified as either “Core” or “Elective” with the core further subdivided into

“Tier-1” and “Tier-2.”

○ A curriculum should include all topics in the Tier-1 core and ensure that all

students cover this material.

○ A curriculum should include all or almost all topics in the Tier-2 core and ensure

that all students encounter the vast majority of this material.

○ A curriculum should include significant elective material: Covering only “Core”

topics is insufficient for a complete curriculum.

● Because it is a hierarchical outline, the Body of Knowledge under-emphasizes some key

issues that must be considered when constructing a curriculum, such as the ways in which

a curriculum allows students to develop the characteristics outlined in Chapter 3:

Characteristics of Graduates.

- 28 -

● The learning outcomes and hour counts in the Body of Knowledge provide guidance on

the depth of coverage towards which curricula should aim.

● There are several new Knowledge Areas that reflect important changes in the field.

Knowledge Areas are Not Necessarily Courses (and Important
Examples Thereof)

It is naturally tempting to associate each Knowledge Area with a course. We explicitly

discourage this practice in general, even though many curricula will have some courses

containing material from only one Knowledge Area or, conversely, all the material from one

Knowledge Area in one course. We view the hierarchical structure of the Body of Knowledge as

a useful way to group related information, not as a stricture for organizing material into courses.

Beyond this general flexibility, in several places we expect many curricula to integrate material

from multiple Knowledge Areas, in particular:

● Introductory courses: There are diverse successful approaches to introductory courses in

computer science. Many focus on the topics in Software Development Fundamentals

together with a subset of the topics in Programming Languages or Software Engineering,

while leaving most of the topics in these other Knowledge Areas to advanced courses.

But which topics from other Knowledge Areas are covered in introductory courses can

vary. Some courses use object-oriented programming; others, functional programming;

and others, platform-based development (thereby covering topics in the Platform-Based

Development Knowledge Area). Conversely, there is no requirement that all Software

Development Fundamentals be covered in a first or second course, though in practice

most topics will usually be covered in these early courses. A separate chapter discusses

introductory courses more generally.

● Systems courses: The topics in the Systems Fundamentals Knowledge Area can be

presented in courses designed to cover general systems principles or in those devoted to

particular systems areas such as computer architecture, operating systems, networking, or

distributed systems. For example, an Operating Systems course might be designed to

cover more general systems principles, such as low-level programming, concurrency and

- 29 -

synchronization, performance measurement, or computer security, in addition to topics

more specifically related to operating systems. Consequently, such courses will likely

draw on material in several Knowledge Areas. Certain fundamental systems topics like

latency or parallelism will likely arise in many places in a curriculum. While it is

important that such topics do arise, preferably in multiple settings, the Body of

Knowledge does not specify the particular settings in which to teach such topics. The

course exemplars in Appendix C show multiple ways that such material may be

organized into courses.

● Parallel computing: Among the changes to the Body of Knowledge from previous

reports is a new Knowledge Area in Parallel and Distributed Computing. An alternative

structure for the Body of Knowledge would place relevant topics in other Knowledge

Areas: parallel algorithms with algorithms, programming constructs in software-

development focused areas, multi-core design with computer architecture, and so forth.

We chose instead to provide guidance on the essential parallelism topics in one place.

Some, but not all, curricula will likely have courses dedicated to parallelism, at least in

the near term.

Core Tier-1, Core Tier-2, Elective: What These Terms Mean, What is
Required

As described at the beginning of this chapter, computer-science curricula should cover all the

Core Tier-1 topics, all or almost all of the Core Tier-2 topics, and significant depth in many of

the Elective topics (i.e., the core is not sufficient for an undergraduate degree in computer

science). Here we provide additional perspective on what “Core Tier-1,” “Core Tier-2”, and

“Elective” mean, including motivation for these distinctions.

Motivation for subdividing the core: Earlier curricular guidelines had only “Core” and

“Elective” with every topic in the former being required. We departed from this strict

interpretation of “everything in the core must be taught to every student” for these reasons:

- 30 -

● Many strong computer-science curricula were missing at least one hour of core material.

It is misleading to suggest that such curricula are outside the definition of an

undergraduate degree in computer science.

● As the field has grown, there is ever-increasing pressure to grow the core and to allow

students to specialize in areas of interest. Doing so simply becomes impossible within

the short time-frame of an undergraduate degree. Providing some flexibility on coverage

of core topics enables curricula and students to specialize if they choose to do so.

Conversely, we could have allowed for any core topic to be skipped provided that the vast

majority was part of every student’s education. By retaining a smaller Core Tier-1 of required

material, we provide additional guidance and structure for curriculum designers. In the Core

Tier-1 are the topics that are fundamental to the structure of any computer-science program.

On the meaning of Core Tier-1: A Core Tier-1 topic should be a required part of every

Computer Science curriculum. While Core Tier-2 and Elective topics are important, the Core

Tier-1 topics are those with widespread consensus for inclusion in every program. While most

Core Tier-1 topics will typically be covered in introductory courses, others may be covered in

later courses.

On the meaning of Core Tier-2: Core Tier-2 topics are generally essential in an

undergraduate computer-science degree. Requiring the vast majority of them is a minimum

expectation, and if a program prefers to cover all of the Core Tier-2 topics, we encourage them to

do so. That said, Computer Science programs can allow students to focus in certain areas in

which some Core Tier-2 topics are not required. We also acknowledge that resource constraints,

such as a small number of faculty or institutional limits on degree requirements, may make it

prohibitively difficult to cover every topic in the core while still providing advanced elective

material. A computer-science curriculum should aim to cover 90-100% of the Core Tier-2

topics, with 80% considered a minimum.

There is no expectation that Core Tier-1 topics necessarily precede all Core Tier-2 topics in a

curriculum. In particular, we expect introductory courses will draw on both Core Tier-1 and

- 31 -

Core Tier-2 (and possibly elective) material and that some core material will be delayed until

later courses.

On the meaning of Elective: A program covering only core material would provide

insufficient breadth and depth in computer science. Most programs will not cover all the elective

material in the Body of Knowledge and certainly few, if any, students will cover all of it within

an undergraduate program. Conversely, the Body of Knowledge is by no means exhaustive, and

advanced courses may often go beyond the topics and learning outcomes contained in it.

Nonetheless, the Body of Knowledge provides a useful guide on material appropriate for a

computer-science undergraduate degree, and all students of computer science should deepen

their understanding in multiple areas via the elective topics.

A curriculum may well require material designated elective in the Body of Knowledge. Many

curricula, especially those with a particular focus, will require some elective topics, by virtue of

them being covered in required courses.

The size of the core: The size of the core (Tier-1 plus Tier-2) is a few hours larger than in

previous curricular guidelines, but this is counterbalanced by our more flexible treatment of the

core. As a result, we are not increasing the number of required courses a curriculum should

need. Indeed, a curriculum covering 90% of the Tier-2 hours would have the same number of

core hours as a curriculum covering the core in the CS2008 volume, and a curriculum covering

80% of the Tier-2 hours would have fewer core hours than even a curriculum covering the core

in the CC2001 volume (the core grew from 2001 to 2008). A more thorough quantitative

comparison is presented at the end of this chapter.

A note on balance: Computer Science is an elegant interplay of theory, software, hardware,

and applications. The core in general and Tier-1 in particular, when viewed in isolation, may

seem to focus on programming, discrete structures, and algorithms. This focus results from the

fact that these topics typically come early in a curriculum so that advanced courses can use them

as prerequisites. Essential experience with systems and applications can be achieved in more

disparate ways using elective material in the Body of Knowledge. Because all curricula will

- 32 -

include appropriate elective material, an overall curriculum can and should achieve an

appropriate balance.

Further Considerations in Designing a Curriculum

As useful as the Body of Knowledge is, it is important to complement it with a thoughtful

understanding of cross-cutting themes in a curriculum, the “big ideas” of computer science. In

designing a curriculum, it is also valuable to identify curriculum-wide objectives, for which the

Principles and the Characteristics of Graduates chapters of this volume should prove useful.

In the last few years, two on-going trends have had deep effects on many curricula. First, the

continuing growth of computer science has led to many programs organizing their curricula to

allow for intradisciplinary specialization (using terms such as threads, tracks, and vectors).

Second, the importance of computing to almost every other field has increasingly led to the

creation of interdisciplinary programs (e.g., joint majors and double majors) and incorporating

interdisciplinary material into computer-science programs. We applaud both trends and believe

a flexible Body of Knowledge, including a flexible core, supports them. Conversely, such

specialization is not required: Many programs will continue to offer a broad yet thorough

coverage of computer science as a distinct and coherent discipline.

Organization of the Body of Knowledge

The CS2013 Body of Knowledge is presented as a set of Knowledge Areas (KAs), organized on

topical themes rather than by course boundaries. Each KA is further organized into a set of

Knowledge Units (KUs), which are summarized in a table at the head of each KA section. We

expect that the topics within the KAs will be organized into courses in different ways at different

institutions.

Curricular Hours

Continuing in the tradition of CC2001/CS2008, we define the unit of coverage in the Body of

Knowledge in terms of lecture hours, as being the sole unit that is understandable in (and

transferable to) cross-cultural contexts. An “hour” corresponds to the time required to present the

- 33 -

material in a traditional lecture-oriented format; the hour count does not include any additional

work that is associated with a lecture (e.g., in self-study, laboratory sessions, and assessments).

 Indeed, we expect students to spend a significant amount of additional time outside of class

developing facility with the material presented in class. As with previous reports, we maintain

the principle that the use of a lecture-hour as the unit of measurement does not require or endorse

the use of traditional lectures for the presentation of material.

The specification of topic hours represents the minimum amount of time we expect such

coverage to take. Any institution may opt to cover the same material in a longer period of time as

warranted by the individual needs of that institution.

Courses

Throughout the Body of Knowledge, when we refer to a “course” we mean an institutionally-

recognized unit of study. Depending on local circumstance, full-time students will take several

“courses” at any one time, typically several per academic year. While “course” is a common

term at some institutions, others will use other names, for example “module” or “paper.”

Guidance on Learning Outcomes

Each KU within a KA lists both a set of topics and the learning outcomes students are expected

to achieve with respect to the topics specified. Learning outcomes are not of equal size and do

not have a uniform mapping to curriculum hours; topics with the same number of hours may

have quite different numbers of associated learning outcomes. Each learning outcome has an

associated level of mastery. In defining different levels we drew from other curriculum

approaches, especially Bloom’s Taxonomy, which has been well explored within computer

science. We did not directly apply Bloom’s levels in part because several of them are driven by

pedagogic context, which would introduce too much plurality in a document of this kind; in part

because we intend the mastery levels to be indicative and not to impose theoretical constraint on

users of this document.

- 34 -

We use three levels of mastery, defined as:

● Familiarity: The student understands what a concept is or what it means. This level of
mastery concerns a basic awareness of a concept as opposed to expecting real facility
with its application. It provides an answer to the question “What do you know about
this?”

● Usage: The student is able to use or apply a concept in a concrete way. Using a concept
may include, for example, appropriately using a specific concept in a program, using a
particular proof technique, or performing a particular analysis. It provides an answer to
the question “What do you know how to do?”

● Assessment: The student is able to consider a concept from multiple viewpoints and/or
justify the selection of a particular approach to solve a problem. This level of mastery
implies more than using a concept; it involves the ability to select an appropriate
approach from understood alternatives. It provides an answer to the question “Why
would you do that?”

As a concrete, although admittedly simplistic, example of these levels of mastery, we consider

the notion of iteration in software development, for example for-loops, while-loops, and iterators.

At the level of “Familiarity,” a student would be expected to have a definition of the concept of

iteration in software development and know why it is a useful technique. In order to show

mastery at the “Usage” level, a student should be able to write a program properly using a form

of iteration. Understanding iteration at the “Assessment” level would require a student to

understand multiple methods for iteration and be able to appropriately select among them for

different applications.

The descriptions we have included for learning outcomes may not exactly match those used by

institutions, in either specifics or emphasis. Institutions may have different learning outcomes

that capture the same level of mastery and intent for a given topic. Nevertheless, we believe that

by giving descriptive learning outcomes, we both make our intention clear and facilitate

interpretation of what outcomes mean in the context of a particular curriculum.

Overview of New Knowledge Areas

While computer science encompasses technologies that change rapidly over time, it is defined by

essential concepts, perspectives, and methodologies that are constant. As a result, much of the

- 35 -

core Body of Knowledge remains unchanged from earlier curricular volumes. However, new

developments in computing technology and pedagogy mean that some aspects of the core evolve

over time, and some of the previous structures and organization may no longer be appropriate for

describing the discipline. As a result, CS2013 has modified the organization of the Body of

Knowledge in various ways, adding some new KAs and restructuring others. We highlight these

changes in the remainder of this section.

Information Assurance and Security (IAS)
IAS is a new KA in recognition of the world’s critical reliance on information technology and

computing. IAS as a domain is the set of controls and processes, both technical and policy,

intended to protect and defend information and information systems. IAS draws together topics

that are pervasive throughout other KAs. Topics germane to only IAS are presented in depth in

this KA, whereas other topics are noted and cross referenced to the KAs that contain them. As

such, this KA is prefaced with a detailed table of cross-references to other KAs.

Networking and Communication (NC)
CC2001 introduced a KA entitled “Net-Centric Computing”, which encompassed a combination

of topics including traditional networking, web development, and network security. Given the

growth and divergence in these topics since the last report, we renamed and re-factored this KA

to focus specifically on topics in networking and communication. Discussions of web

applications and mobile device development are now covered in the new Platform-Based

Development KA. Security is covered in the new Information Assurance and Security KA.

Platform-Based Development (PBD)
PBD is a new KA that recognizes the increasing use of platform-specific programming

environments, both at the introductory level and in upper-level electives. Platforms such as the

Web or mobile devices enable students to learn within and about environments constrained by

hardware, APIs, and special services (often in cross-disciplinary contexts). These environments

are sufficiently different from “general purpose” programming to warrant this new (wholly

elective) KA.

- 36 -

Parallel and Distributed Computing (PD)
Previous curricular volumes had parallelism topics distributed across disparate KAs as electives.

Given the vastly increased importance of parallel and distributed computing, it seemed crucial to

identify essential concepts in this area and to promote those topics to the core. To highlight and

coordinate this material, CS2013 dedicates a KA to this area. This new KA includes material on

programming models, programming pragmatics, algorithms, performance, computer architecture,

and distributed systems.

Software Development Fundamentals (SDF)
This new KA generalizes introductory programming to focus on more of the software

development process, identifying concepts and skills that should be mastered in the first year of a

computer-science program. As a result of its broad purpose, the SDF KA includes fundamental

concepts and skills that could appear in other software-oriented KAs (e.g., programming

constructs from Programming Languages, simple algorithm analysis from Algorithms and

Complexity, simple development methodologies from Software Engineering). Likewise, each of

those KAs will contain more advanced material that builds upon the fundamental concepts and

skills in SDF. Compared to previous volumes, key approaches to programming -- including

object-oriented programming, functional programming, and event-driven programming -- are

kept in one place, namely the Programming Languages KA, with an expectation that any

curriculum will cover some of these topics in introductory courses.

Systems Fundamentals (SF)
In previous curricular volumes, the interacting layers of a typical computing system, from

hardware building blocks, to architectural organization, to operating system services, to

application execution environments (particularly for parallel execution in a modern view of

applications), were presented in independent knowledge areas. The new Systems Fundamentals

KA presents a unified systems perspective and common conceptual foundation for other KAs

(notably Architecture and Organization, Network and Communications, Operating Systems, and

Parallel and Distributed Algorithms). An organizational principle is “programming for

performance”: what a programmer needs to understand about the underlying system to achieve

high performance, particularly in terms of exploiting parallelism.

- 37 -

Core Hours in Knowledge Areas
An overview of the number of core hours (both Tier-1 and Tier-2) by KA in the CS2013 Body of

Knowledge is provided below. For comparison, the number of core hours from both the

previous CS2008 and CC2001 reports are provided as well.

CS2013 CS2008 CC2001
Knowledge Area Tier1 Tier2 Core Core

AL-Algorithms and Complexity 19 9 31 31
AR-Architecture and Organization 0 16 36 36
CN-Computational Science 1 0 0 0
DS-Discrete Structures 37 4 43 43
GV-Graphics and Visualization 2 1 3 3
HCI-Human-Computer Interaction 4 4 8 8
IAS-Information Assurance and Security 3 6 -- --
IM-Information Management 1 9 11 10
IS-Intelligent Systems 0 10 10 10
NC-Networking and Communication 3 7 15 15
OS-Operating Systems 4 11 18 18
PBD-Platform-based Development 0 0 -- --
PD-Parallel and Distributed Computing 5 10 -- --
PL-Programming Languages 8 20 21 21
SDF-Software Development Fundamentals 43 0 47 38
SE-Software Engineering 6 22 31 31
SF-Systems Fundamentals 18 9 -- --
SP-Social Issues and Professional Practice 11 5 16 16

Total Core Hours 165 143 290 280

All Tier1 + All Tier2 Total 308

All Tier1 + 90% of Tier2 Total 293.7

All Tier1 + 80% of Tier2 Total 279.4

As seen above, in CS2013 the total Tier-1 hours together with the entirety of Tier-2 hours

slightly exceeds the total core hours from previous reports. However, it is important to note that

the tiered structure of the core in CS2013 explicitly provides the flexibility for institutions to

- 38 -

select topics from Tier-2 (to include at least 80%). As a result, it is possible to implement the

CS2013 guidelines with comparable hours to previous curricular guidelines.

Chapter 5: Introductory Courses
Computer science, unlike many technical disciplines, does not have a well-described list of

topics that appear in virtually all introductory courses. In considering the changing landscape of

introductory courses, we look at the evolution of such courses from CC2001 to CS2013.

CC2001 classified introductory course sequences into six general models: Imperative-first,

Objects-first, Functional-first, Breadth-first, Algorithms-first, and Hardware-first. While

introductory courses with these characteristic features certainly still exist today, we believe that

advances in the field have led to an even more diverse set of approaches in introductory courses

than the models set out in CC2001. Moreover, the approaches employed in introductory courses

are in a greater state of flux.

An important challenge for introductory courses, and a key reason the content of such courses

remains a vigorous discussion topic after decades of debate, is that not everything relevant to a

computer scientist (programming, software processes, algorithms, abstraction, performance,

security, professionalism, etc.) can be taught from day one. In other words, not everything can

come first and as a result some topics must be pushed further back in the curriculum, in some

cases significantly so. Many topics will not appear in a first course or even a second course,

meaning that students who do not continue further (for example, non-majors) will lose exposure

to these topics. Ultimately, choosing what to cover in introductory courses results in a set of

tradeoffs that must be considered when trying to decide what should be covered early in a

curriculum.

Design Dimensions

We structure this chapter as a set of design dimensions relevant to crafting introductory courses,

concluding each dimension with a summary of the trade-offs that are in tension along the

dimension. A given introductory course, or course sequence, in computer science will represent

a set of decisions within this multidimensional design space and achieve distinctive outcomes as

a result. We note that our discussion here focuses on introductory courses meant as part of an

undergraduate program in computer science. Notably, we do not discuss the increasingly

- 40 -

common“CS0” courses: precursor courses often focusing on computer fluency or computational

thinking. Such courses may include some introductory computer science concepts or material,

but are not part of this Body of Knowledge and are outside the scope of our consideration.

Pathways Through Introductory Courses

We recognize that introductory courses are not constructed in the abstract, but rather are

designed for specific target audiences and contexts. Departments know their institutional

contexts best and must be sensitive to their own students and their needs. Introductory courses

differ across institutions, especially with regard to the nature and length of an introductory

sequence (that is, the number of courses that a student must take before any branching is

allowed). A sequence of courses may also have different entry points to accommodate students

with significant differences in previous computing experience and/or who come from a wide

diversity of backgrounds. Having multiple pathways into and through the introductory course

sequence can help to better align students’ abilities with the appropriate level of coursework. It

can also help create more flexibility with articulation between two-year and four-year

institutions, and smooth the transition for students transferring from other colleges/programs.

Increasingly, computing in general and programming in particular are essential to students in

other fields. Courses for these non-majors may or may not be distinct from courses that lead to

years of computer science study. Additionally, having multiple pathways through introductory

courses may provide greater options to students who choose to start take courses in computing

late in their college programs.

Building courses for diverse audiences – not just students who are already sure of a major in

computer science – is essential for making computing accessible to a wide range of students.

Given the importance of computation across many disciplines, the appeal of introductory

programming courses has significantly broadened beyond the traditionally accommodated

engineering fields. For target audiences with different backgrounds, and different expectations,

the practice of having thematically-focused introductory courses (e.g., computational biology,

robotics, digital media manipulation, etc.) has become popular. In this way, material is made

relevant to the expectations and aspirations of students with a variety of disciplinary orientations.

- 41 -

Tradeoffs:

• Providing multiple pathways into and through introductory course sequences can make

computer science more accessible to different audiences, but requires greater investment

(in work and resources) by a department to construct such pathways and/or provide

different themed options to students. Moreover, care must be taken to give students

guidance with regard to choosing an appropriate introductory course pathway. (This is as

true for those students with extensive prior computing experience as for those with none.)

• By having longer introductory course sequences (i.e., longer or more structured pre-

requisite chains), educators can assume more prior knowledge in each course, but such

lengthy sequences sacrifice flexibility and increase the time before students are able to

take advanced courses more focused on their areas of interest.

Programming Focus

The vast majority of introductory courses are programming-focused, in which students learn

about concepts in computer science (e.g., abstraction, decomposition, etc.) through the explicit

tasks of learning a given programming language and building software artifacts. A programming

focus can provide early training in this crucial skill for computer science majors and help elevate

students with different backgrounds in computing to a more equal footing. Even given a

programming focus, there is a further subdivision between having students write whole programs

– to ensure understanding how the pieces fit together and give the full experience of program

construction – versus having students complete or modify existing programs and skeletons,

which can be more like real-world experience and allow creating larger and more complex

programs. Moving away from emphasizing programming, some introductory courses are

designed to provide a broader introduction to concepts in computing without the constraints of

learning the syntax of a programming language. They are consciously programming de-focused.

Such a perspective is roughly analogous to the “Breadth-first” model in CC2001. Whether or not

programming is the primary focus of their first course, it is important that students do not

perceive computer science as only learning the specifics of particular programming languages.

Care must be taken to emphasize the more general concepts in computing within the context of

learning how to program.

- 42 -

Tradeoffs: A programming-focused introductory course can help develop essential skills in

students early on and provide a lingua franca in which other computer science concepts can be

described. This programming focus may also be useful for students from other areas of study

who wish to use programming as a tool in cross-disciplinary work. However, too narrow a

programming focus in an introductory class, while giving immediate facility in a programming

language, can also give students a too-narrow (and misleading) view of the place of

programming in the field. Such a narrow perspective may limit the appeal of computer science

for some students.

Programming Paradigm and Choice of Language

A defining factor for many introductory courses is the choice of programming paradigm, which

then drives the choice of programming language. Indeed, half of the six introductory course

models listed in CC2001 were described by programming paradigm (Imperative-first, Objects-

first, Functional-first). Such paradigm-based introductory courses still exist and their relative

merits continue to be debated. We note that rather than a particular paradigm or language

coming to be favored over time, the past decade has only broadened the list of programming

languages now successfully used in introductory courses. There does, however, appear to be a

growing trend toward “safer” or more managed languages (for example, moving from C to Java)

as well as the use of more dynamic languages, such as Python or JavaScript. Visual

programming languages, such as Alice and Scratch, have also become popular choices to provide

a “syntax-light” introduction to programming; these are often (although not exclusively) used

with non-majors or at the start of an introductory course. Some introductory course sequences

choose to provide a presentation of alternative programming paradigms, such as scripting vs.

procedural programming or functional vs. object-oriented programming, to give students a

greater appreciation of the diverse perspectives in programming, to avoid language-feature

fixation, and to disabuse them of the notion that there is a single “correct” or “best”

programming language.

- 43 -

Tradeoffs: This is an area where there are numerous tradeoffs, including:

• The use of “safer” or more managed languages and environments can help scaffold

students’ learning. But, such languages may provide a level of abstraction that obscures

an understanding of actual machine execution and makes is difficult to evaluate

performance trade-offs. The decision as to whether to use a “lower-level” language to

promote a particular mental model of program execution that is closer to the actual

execution by the machine is often a matter of local audience needs.

• The use of a language or environment designed for introductory pedagogy can facilitate

student learning, but may be of limited use beyond CS1. Conversely, a language or

environment commonly used professionally may expose students to too much complexity

too soon.

Software Development Practices

While programming is the means by which software is constructed, an introductory course may

choose to present additional practices in software development to different extents. For example,

the use of software development best practices, such as unit testing, version control systems,

industrial integrated development environments (IDEs), and programming patterns may be

stressed to different extents in different introductory courses. The inclusion of such software

development practices can help students gain an early appreciation of some of the challenges in

developing real software projects. On the other hand, while all computer scientists should have

solid software development skills, those skills need not always be the primary focus of the first

introductory programming course, especially if the intended audience is not just computer

science majors. Care should be taken in introductory courses to balance the use of software

development best practices from the outset with making introductory courses accessible to a

broad population.

Tradeoffs: The inclusion of software development practices in introductory courses can help

students develop important aspects of real-world software development early on. The extent to

which such practices are included in introductory courses may impact and be impacted by the

target audience for the course, and the choice of programming language and development

environment.

- 44 -

Parallel Processing

Traditionally, introductory courses have assumed the availability of a single processor, a single

process, and a single thread, with the execution of the program being completely driven by the

programmer’s instructions and expectation of sequential execution. Recent hardware and

software developments have prompted educators to rethink these assumptions, even at the

introductory level — multicore processors are now ubiquitous, user interfaces lend themselves to

asynchronous event-driven processing, and “big data” requires parallel processing and

distributed storage. As a result, some introductory courses stress parallel processing from the

outset (with traditional single threaded execution models being considered a special case of the

more general parallel paradigm). While we believe this is an interesting model to consider in the

long-term, we anticipate that introductory courses will still be dominated by the “single thread of

execution” model (perhaps with the inclusion of GUI-based or robotic event-driven

programming) for the foreseeable future. As more successful pedagogical approaches are

developed to make parallel processing accessible to novice programmers, and paradigms for

parallel programming become more commonplace, we expect to see more elements of parallel

programming appearing in introductory courses.

Tradeoffs: Understanding parallel processing is becoming increasingly important for computer

science majors and learning such models early on can give students more practice in this arena.

On the other hand, parallel programming remains more difficult in most contemporary

programming environments.

Platform

While many introductory programming courses make use of traditional computing platforms

(e.g., desktop/laptop computers) and are, as a result, somewhat “hardware agnostic,” the past few

years have seen a growing diversity in the set of programmable devices that are employed in

such courses. For example, some introductory courses may choose to engage in web

development or mobile device (e.g., smartphone, tablet) programming. Others have examined

the use of specialty platforms, such as robots or game consoles, which may help generate more

- 45 -

enthusiasm for the subject among novices as well as emphasizing interaction with the external

world as an essential and natural focus. Recent developments have led to physically-small,

feature-restricted computational devices constructed specifically for the purpose of facilitating

learning programming (e.g., raspberry-pi). In any of these cases, the use of a particular platform

brings with it attendant choices for programming paradigms, component libraries, APIs, and

security. Working within the software/hardware constraints of a given platform is a useful

software-engineering skill, but also comes at the cost that the topics covered in the course may

likewise be limited by the choice of platform.

Tradeoffs: The use of specific platforms can bring compelling real-world contexts into the

classroom and platforms designed for pedagogy can have beneficial focus. However, it requires

considerable care to ensure that platform-specific details do not swamp pedagogic objectives.

Moreover, the specificity of the platform may impact the transferability of course content to

downstream courses.

Mapping to the Body of Knowledge

Practically speaking, an introductory course sequence should not be construed as simply

containing only the topics from the Software Development Fundamentals (SDF) Knowledge

Area. Rather we encourage implementers of the CS2013 guidelines to think about the design

space dimensions outlined above to draw on materials from multiple KAs for inclusion in an

introductory course sequence. For example, even a fairly straightforward introductory course

sequence will likely augment material from SDF with topics from the Programming Languages

Knowledge Area related to the choice of language used in the course and potentially some

concepts from Software Engineering. More broadly, a course using non-traditional platforms

will draw from topics in Platform-Based Development and those emphasizing multi-processing

will naturally include material from Parallel and Distributed Computing. We encourage readers

to think of the CS2013 Body of Knowledge as an invitation for the construction of creative new

introductory course sequences that best fit the needs of students at one’s local institution.

- 46 -

Chapter 6: Institutional Challenges
While the Body of Knowledge provides a detailed specification of what content should be

included in an undergraduate computer science curriculum, it is not to be taken as the sum total

of what an undergraduate curriculum in computing should impart. In a rapidly moving field such

as Computer Science, the particulars of what is taught are complementary to promoting a sense

of on-going inquiry, helping students construct a framework for the assimilation of new

knowledge, and advancing students’ development as responsible professionals. Critical thinking,

problem solving, and a foundation for life-long learning are skills that students need to develop

throughout their undergraduate career. Education is not just the transmission of information, but

at its best inspires passion for a subject, gives students encouragement to experiment and allows

them to experience excitement in achievement. These things, too, need to be reflected in

computer science curriculum and pedagogy.

Localizing CS2013

Successfully deploying an updated computer science curriculum at any individual institution

requires sensitivity to local needs. CS2013 should not be read as a set of topical “check-boxes”

to tick off, in a one-to-one mapping of classes to Knowledge Areas. Rather, we encourage

institutions to think about ways in which the Body of Knowledge may be best integrated into a

unique set of courses that reflect an institution’s mission, faculty strength, student needs, and

employer demands. Indeed, we created the two-tier structure of the Core precisely to provide

such flexibility, keeping the Core Tier-1 material to an essential minimum to allow institutions

greater leeway in selecting Core Tier-2 material to best suit their needs.

Actively Promoting Computer Science

Beyond coursework, we also stress the importance of advising, mentoring, and fostering

relationships among faculty and students. Many students, perhaps especially those coming from

disadvantaged backgrounds, may not appreciate the full breadth of career options that a degree in

computer science can provide. Advertising and promoting the possibilities opened by studying

- 47 -

computer science, especially when customized to local employer needs, provides two benefits.

First, it serves students by giving them information regarding career options they may not have

considered. Second, it serves the department by helping to attract more students (potentially

from a broader variety of backgrounds) into computer science courses. Offering a healthy

computer science program over time requires maintaining a commitment to attracting students to

the field regardless of current enrollment trends (which have ebbed and flowed quite widely in

recent decades).

It is important to note also that many students still feel that studying computer science is equated

with working as a “programmer,” which in turn raises negative and incorrect stereotypes of

isolated and rote work. At the same time, some students believe that if they do not already have

significant prior programming experience, they will not be competitive in pursuing a degree in

computer science. We strongly encourage departments to challenge both these perceptions.

Extra-curricular activities aimed at showcasing potential career paths opened by a degree in

computer science (for example, by inviting alumni to talk to current students) can help to show

both that there are many possibilities beyond “being a programmer” as well as that software

development is a significantly creative and collaborative process. In these efforts, an accessible

curriculum with multiple entry points, allowing students with or without prior experience to

smoothly transfer into a computer science degree program, is an important desideratum.

Broadening Participation

There is no doubt that there is a tremendous demand for students with computing skills. Indeed,

vast shortfalls in information technology workers in the coming decade have been predicted [3].

As a result, there is a pressing need to broaden participation in the study of computer science and

attract the full range of talent to the field, regardless of ethnicity, gender, or economic status.

Institutions should make efforts to bring a wide range of students into the computer science

pipeline and provide support structures to help all students successfully complete their programs.

- 48 -

Computer Science Across Campus

An argument can be made that computer science is becoming one of the core disciplines of a

21st century university education, that is, something that any educated individual must possess

some level of proficiency and understanding. This transcends its role as a tool and methodology

for research broadly across disciplines; it is likely that in the near future, at many universities,

every undergraduate student will take some instruction in computer science, in recognition of

computational thinking as being one of the fundamental skills desired of all graduates. There are

implications for institutional resources to support such a significant scaling up of the teaching

mission of computer science departments, particularly in terms of instructors and laboratories.

While CS2013 provides guidelines for undergraduate programs in computer science, we believe

it is important for departments to provide computing education across a broad range of subject

areas. To this end, computing departments may consider providing courses, especially at the

introductory level, which are accessible and attractive to students from many disciplines. This

also serves the dual purpose of attracting more students to the computing field who may not have

had an initial inclination otherwise.

More broadly, as computing becomes an essential tool in other disciplines, it benefits computer

science departments to be “outward facing,” building bridges to other departments and

curriculum areas, encouraging students to engage in multidisciplinary work, and promoting

programs that span computer science and other fields of study (for example, programs in

“Computational X,” where X represents other disciplines such as biology or economics).

Computer Science Minors

Further to positioning computer science as one of the core disciplines of the university,

departments may also consider providing minors in computer science. A minor should provide

flexible options for students to gain coherent knowledge of computer science beyond that

captured in one or two courses, yet encompass less than a full program. Indeed, the use of such

minors can provide yet another means to allow students majoring in other disciplines to gain a

solid foundation in computing for future work at the intersections of their fields.

- 49 -

It is well-known that students often make undergraduate major choices with highly varied levels

of actual knowledge about different programs. As a result some students choose to not pursue a

major in computer science simply as a result of knowing neither what computer science actually

entails nor whether they might like the discipline, due to lack of prior exposure. A minor in

computer science allows such students to still gain some credential in computing, if they

discover late in their academic career that they have an interest in computing and what it offers.

To give students the ability to major in computer science, “taster” courses should seek to reach

students as soon as possible in their undergraduate studies.

Mathematics Requirements in Computer Science

There is a deep and beautiful connection between mathematics and many areas of computer

science. While nearly all undergraduate programs in computer science include mathematics

courses in their curricula, the full set of such requirements varies broadly by institution due to a

number of factors. For example, whether or not a CS program is housed in a School of

Engineering can directly influence the requirements for courses on calculus and/or differential

equations, even if such courses include far more material in these areas than is generally needed

for most CS majors. Similarly, restrictions on the number of courses that may be included in a

major at some institutions—for example, at many liberal arts colleges—may lead to mathematics

requirements that are specially circumscribed for CS majors. As a result, CS2013 only specifies

mathematical requirements that we believe are directly relevant for the large majority of all CS

undergraduates (for example, elements of set theory, logic, and discrete probability, among

others). These mathematics requirements are specified in the Body of Knowledge primarily in

the Discrete Structures (DS) Knowledge Area.

We recognize that general facility with mathematics is an important requirement for all CS

students. Still, CS2013 distinguishes between the foundational mathematics that are likely to

impact many parts of computer science—and are included in the CS2013 Body of Knowledge—

from those that, while still important, may be most directly relevant to specific areas within

computing. For example, an understanding of linear algebra plays a critical role in some areas of

computing such as graphics and the analysis of graph algorithms. However, linear algebra would

not necessarily be a requirement for all areas of computing (indeed, many high quality CS

- 50 -

programs do not have an explicit linear algebra requirement). Similarly, while we do note a

growing trend in the use of probability and statistics in computing (reflected by the increased

number of core hours on these topics in the Body of Knowledge) and believe that this trend is

likely to continue in the future, we still believe it is not necessary for all CS programs to require

a full course in probability theory for all majors.

More generally, we believe that a CS program must provide students with a level of

“mathematical maturity.” For example, an understanding of arithmetic manipulations, including

simple summations and series is needed for analyzing algorithmic efficiency, but giving the

detailed specifications of the basic arithmetic necessary for college-level coursework in

computing is beyond the scope of CS2013. To wit, some programs use calculus requirements

not as a means for domain knowledge, but more as a method for helping develop such

mathematical maturity and clarity of mathematical thinking early in a college-level education.

Thus, while we do not specify such requirements, we note that undergraduate CS students need

enough mathematical maturity to have the basis on which to then build CS-specific mathematics

(for example, as specified in the Discrete Structures Knowledge Area), which, importantly, does

not explicitly require any significant college-level coursework in calculus, differential equations,

or linear algebra.

Students moving on to advanced coursework in specific areas of computing will likely need

focused mathematical coursework relevant to those areas. We believe that CS programs should

help facilitate options in mathematics beyond Discrete Structures, which allow CS students to get

the background needed for the specific areas in CS they choose to pursue. Such coursework

requirements are best left to the discretion of the individual programs and the areas of CS they

choose to emphasize.

Finally, we note that any mathematics requirements in a CS program must be mindful of the

length of pre-requisite course chains specified to complete such requirements. Indeed, the pre-

requisite structure of mathematics courses may not be in the purview of CS departments

themselves, but must still be considered when designing programs that allow students without

significant prior mathematics background to pursue a major in CS. Lengthy series of

mathematics classes needed as pre-requisites for coursework in CS will make it more difficult for

students to find CS accessible, to switch into a CS major at a later point in their college careers,

- 51 -

and/or to take CS-specific coursework early in their studies, which may discourage students from

the field.

Computing Resources

Programs in computer science have a need for adequate computing resources, both for students

and faculty. The needs of computer science programs often extend beyond traditional

infrastructure (general campus computing labs) and may include specialized hardware and

software, and/or large-scale computing infrastructure. Having adequate access to such resources

is especially important for project and capstone courses. Moreover, institutions need to consider

the growing heterogeneity of computing devices (e.g., smartphones, tablets) that can be used as a

platform for coursework.

Maintaining a Flexible and Healthy Faculty

A strong program in computer science is founded on a sufficient number of (and sufficiently

experienced) faculty to keep the department healthy and vibrant. Departmental hiring should

provide not only sufficient capacity to keep a program viable, but also allow for existing faculty

to have time for professional development and exploration of new ideas. To respond to rapid

changes in the field, computer science faculty must have the opportunities to build new skills,

learn about new areas, and stay abreast of new technologies. While there can be tension between

teaching new technologies versus fundamental principles, focusing too far on either extreme will

be a disservice to students. Faculty need to be given the time to acquire new ideas and

technologies and bring them into courses and curricula. In this way, departments can model the

value of professional and lifelong learning, as faculty incorporate new materials and approaches.

In addition to professional development, it is especially important for computer science programs

to maintain a healthy capacity to respond to enrollment fluctuations. Indeed, computer science

as a discipline has gone through several boom-and-bust cycles in the past decades that have

resulted in significant enrollment changes in programs all over the world and across virtually all

types of institutions. A department should take care to create structures to help it maintain

resilience in the face of enrollment downturns, for example by making courses more broadly

- 52 -

accessible, building interdisciplinary programs with other departments, and offering service

courses.

In the face of large sustained enrollment increases (as has been witnessed in recent years), the

need for sufficient faculty hiring can become acute. Without sufficient capacity, faculty can be

strained by larger course enrollments (each course requiring more sections and more student

assessment) and more teaching obligations (more courses must be taught by each faculty

member), which can result in lower quality instruction and potential faculty burn-out. The

former issue causes students to abandon computer science. These outcomes are highly

detrimental given the need to produce more, and more skilled, computing graduates as discussed

above. Excellent arguments for the need to maintain strong faculty capacity in the face of

growing enrollment have been extended, both in relation to the most recent boom [5] and

extending back more than three decades [2].

Teaching Faculty

Permanent faculty, whose primary criteria for evaluation is based on teaching and educational

contributions (broadly defined), can be instrumental in helping to build accessible courses,

engage in curricular experimentation and revision, and provide outreach efforts to bring more

students into the discipline. As with all institutional challenges, such appointments represent a

balance of political and pragmatic issues. The value of this type of position was originally

observed in CC2001 and that value has not diminished in the intervening decades, more recently

receiving additional endorsement [7].

- 53 -

Undergraduate Teaching Assistants

While research universities have traditionally drawn on postgraduate students to serve as

teaching assistants in the undergraduate curriculum, over the past 20 years growing numbers of

departments have found it valuable to engage advanced undergraduates as teaching assistants in

introductory computing courses. The reported benefits to the undergraduate teaching assistants

include learning the material themselves when they are put in the role of helping teach it to

someone else, better time management, improved ability dealing with organizational

responsibilities, and presentation skills [4, 6]. Students in the introductory courses also benefit

by having a larger course staff available, more accessible staff, and getting assistance from a

“near-peer,” someone with a recent familiarity in the kind of questions and struggles the student

is likely facing.

Online Education

It has been suggested that there is a tsunami coming to higher education, brought on by online

learning, and lately, Massive Open Online Courses (MOOCs) [1]. Discussing the full scope of

the potential and pitfalls of online education is well beyond the scope of this document. Rather,

we simply point out some aspects of online learning that may impact the ways in which

departments deploy these guidelines.

First, online educational materials need not be structured as just full term-long classes. As a

result, it may be possible to teach online mini-courses or modules (less than a term long,

somtimes significantly so), that nevertheless contain coherent portions of the CS2013 Body of

Knowledge. In this way, some departments, especially those with limited faculty resources, may

choose to seek out and leverage online materials offered elsewhere. Blended learning is another

model that has and can be pursued to accrue the benefits of both face-to-face and online learning

in the same course.

Part of the excitement that has been generated by MOOCs is that they allow for ready scaling to

large numbers of students. There are technological challenges in assessing programming

assignments at scale, and there are those who believe that this represents a significant new

research opportunity for computer science. The quantitative ability that MOOC platforms

- 54 -

provide for assessing the effectiveness of how students learn has the potential to transform the

teaching of computer science itself.

While we appreciate the value of scaling course availability, we also note that there are important

aspects of education that are not concerned with course content or the transmission of

information, e.g., pedagogy, scaffolding learning. Then again, while MOOCs are a powerful

medium for content delivery, we note that it is important to make sure that characteristics of CS

graduates are still developed.

References

[1] Auletta, K. April 30, 2012. “Get Rich U.”, The New Yorker.

[2] Curtis, K. Computer manpower: Is there a crisis? National Science Foundation, 1982.

[3] Microsoft Corporation. A National Talent Strategy: Ideas for Securing U.S.
Competitiveness and Economic Growth. 2012

[4] Reges, S., McGrory, J., and Smith, J. “The effective use of undergraduates to staff large
introductory CS courses,” Proceedings of the Nineteenth SIGCSE Technical Symposium
on Computer Science Education, Atlanta, Georgia, February 1988.

[5] Roberts, E., “Meeting the challenges of rising enrollments,” ACM Inroads, September
2011.

[6] Roberts, E., Lilly, J., and Rollins, B. “Using undergraduates as teaching assistants in
introductory programming courses: an update on the Stanford experience,” Proceedings
of the Twenty-sixth SIGCSE Technical Symposium on Computer Science Education,
Nashville, Tennessee, March 1995.

[7] Wolfman, S., Astrachan, O., Clancy, M., Eiselt, K., Forbes, J., Franklin, D., Kay, D.,
Scott, M., and Wayne, K. "Teaching-Oriented Faculty at Research Universities."
Communications of the ACM. November 2011, v. 54 (11), pp. 35-37.

Appendix A: The Body of Knowledge

Algorithms and Complexity (AL)

Algorithms are fundamental to computer science and software engineering. The real-world

performance of any software system depends on: (1) the algorithms chosen and (2) the suitability

and efficiency of the various layers of implementation. Good algorithm design is therefore

crucial for the performance of all software systems. Moreover, the study of algorithms provides

insight into the intrinsic nature of the problem as well as possible solution techniques

independent of programming language, programming paradigm, computer hardware, or any

other implementation aspect.

An important part of computing is the ability to select algorithms appropriate to particular

purposes and to apply them, recognizing the possibility that no suitable algorithm may exist. This

facility relies on understanding the range of algorithms that address an important set of well-

defined problems, recognizing their strengths and weaknesses, and their suitability in particular

contexts. Efficiency is a pervasive theme throughout this area.

This knowledge area defines the central concepts and skills required to design, implement, and

analyze algorithms for solving problems. Algorithms are essential in all advanced areas of

computer science: artificial intelligence, databases, distributed computing, graphics, networking,

operating systems, programming languages, security, and so on. Algorithms that have specific

utility in each of these are listed in the relevant knowledge areas. Cryptography, for example,

appears in the new Knowledge Area on Information Assurance and Security (IAS), while parallel

and distributed algorithms appear the Knowledge Area in Parallel and Distributed Computing

(PD).

As with all knowledge areas, the order of topics and their groupings do not necessarily correlate

to a specific order of presentation. Different programs will teach the topics in different courses

and should do so in the order they believe is most appropriate for their students.

- 56 -

AL. Algorithms and Complexity (19 Core-Tier1 hours, 9 Core-Tier2 hours)

 Core-Tier1
hours

Core-Tier2
hours

Includes
Electives

AL/Basic Analysis 2 2 N

AL/Algorithmic Strategies 5 1 N

AL/Fundamental Data Structures and
Algorithms

9 3 N

AL/Basic Automata, Computability and
Complexity

3 3 N

AL/Advanced Computational Complexity Y

AL/Advanced Automata Theory and
Computability

 Y

AL/Advanced Data Structures, Algorithms, and
Analysis

 Y

AL/Basic Analysis
[2 Core-Tier1 hours, 2 Core-Tier2 hours]
Topics:

[Core-Tier1]

• Differences among best, expected, and worst case behaviors of an algorithm
• Asymptotic analysis of upper and expected complexity bounds
• Big O notation: formal definition
• Complexity classes, such as constant, logarithmic, linear, quadratic, and exponential
• Empirical measurements of performance
• Time and space trade-offs in algorithms

[Core-Tier2]

• Big O notation: use
• Little o, big omega and big theta notation
• Recurrence relations
• Analysis of iterative and recursive algorithms
• Some version of a Master Theorem

Learning Outcomes:

[Core-Tier1]

1. Explain what is meant by “best”, “expected”, and “worst” case behavior of an algorithm. [Familiarity]
2. In the context of specific algorithms, identify the characteristics of data and/or other conditions or

assumptions that lead to different behaviors. [Assessment]
3. Determine informally the time and space complexity of simple algorithms. [Usage]

- 57 -

4. State the formal definition of big O. [Familiarity]
5. List and contrast standard complexity classes. [Familiarity]
6. Perform empirical studies to validate hypotheses about runtime stemming from mathematical analysis.

Run algorithms on input of various sizes and compare performance. [Assessment]
7. Give examples that illustrate time-space trade-offs of algorithms. [Familiarity]

[Core-Tier2]

8. Use big O notation formally to give asymptotic upper bounds on time and space complexity of algorithms.
[Usage]

9. Use big O notation formally to give expected case bounds on time complexity of algorithms. [Usage]
10. Explain the use of big omega, big theta, and little o notation to describe the amount of work done by an

algorithm. [Familiarity]
11. Use recurrence relations to determine the time complexity of recursively defined algorithms. [Usage]
12. Solve elementary recurrence relations, e.g., using some form of a Master Theorem. [Usage]

AL/Algorithmic Strategies
[5 Core-Tier1 hours, 1 Core-Tier2 hours]
An instructor might choose to cover these algorithmic strategies in the context of the algorithms
presented in “Fundamental Data Structures and Algorithms” below. While the total number of
hours for the two knowledge units (18) could be divided differently between them, our sense is
that the 1:2 ratio is reasonable.
Topics:

[Core-Tier1]

• Brute-force algorithms
• Greedy algorithms
• Divide-and-conquer (cross-reference SDF/Algorithms and Design/Problem-solving strategies)
• Recursive backtracking
• Dynamic Programming

[Core-Tier2]

• Branch-and-bound
• Heuristics
• Reduction: transform-and-conquer

Learning Outcomes:

[Core-Tier1]

1. For each of the strategies (brute-force, greedy, divide-and-conquer, recursive backtracking, and dynamic
programming), identify a practical example to which it would apply. [Familiarity]

2. Use a greedy approach to solve an appropriate problem and determine if the greedy rule chosen leads to an
optimal solution. [Assessment]

3. Use a divide-and-conquer algorithm to solve an appropriate problem. [Usage]
4. Use recursive backtracking to solve a problem such as navigating a maze. [Usage]
5. Use dynamic programming to solve an appropriate problem. [Usage]
6. Determine an appropriate algorithmic approach to a problem. [Assessment]

- 58 -

[Core-Tier2]

7. Describe various heuristic problem-solving methods. [Familiarity]
8. Use a heuristic approach to solve an appropriate problem. [Usage]
9. Describe the trade-offs between brute force and heuristic strategies. [Assessment]
10. Describe how a branch-and-bound approach may be used to improve the performance of a heuristic

method. [Familiarity]

AL/Fundamental Data Structures and Algorithms
[9 Core-Tier1 hours, 3 Core-Tier2 hours]
This knowledge unit builds directly on the foundation provided by Software Development
Fundamentals (SDF), particularly the material in SDF/Fundamental Data Structures and
SDF/Algorithms and Design.
Topics:

[Core-Tier1]

• Simple numerical algorithms, such as computing the average of a list of numbers, finding the min, max,
and mode in a list, approximating the square root of a number, or finding the greatest common divisor

• Sequential and binary search algorithms
• Worst case quadratic sorting algorithms (selection, insertion)
• Worst or average case O(N log N) sorting algorithms (quicksort, heapsort, mergesort)
• Hash tables, including strategies for avoiding and resolving collisions
• Binary search trees

o Common operations on binary search trees such as select min, max, insert, delete, iterate over tree
• Graphs and graph algorithms

o Representations of graphs (e.g., adjacency list, adjacency matrix)
o Depth- and breadth-first traversals

[Core-Tier2]

• Heaps
• Graphs and graph algorithms

o Shortest-path algorithms (Dijkstra’s and Floyd’s algorithms)
o Minimum spanning tree (Prim’s and Kruskal’s algorithms)

• Pattern matching and string/text algorithms (e.g., substring matching, regular expression matching, longest
common subsequence algorithms)

Learning Outcomes:

[Core-Tier1]
1. Implement basic numerical algorithms. [Usage]
2. Implement simple search algorithms and explain the differences in their time complexities. [Assessment]
3. Be able to implement common quadratic and O(N log N) sorting algorithms. [Usage]
4. Describe the implementation of hash tables, including collision avoidance and resolution. [Familiarity]
5. Discuss the runtime and memory efficiency of principal algorithms for sorting, searching, and hashing.

[Familiarity]
6. Discuss factors other than computational efficiency that influence the choice of algorithms, such as

programming time, maintainability, and the use of application-specific patterns in the input data.
[Familiarity]

7. Explain how tree balance affects the efficiency of various binary search tree operations. [Familiarity]
8. Solve problems using fundamental graph algorithms, including depth-first and breadth-first search. [Usage]

- 59 -

9. Demonstrate the ability to evaluate algorithms, to select from a range of possible options, to provide
justification for that selection, and to implement the algorithm in a particular context. [Assessment]

[Core-Tier2]

10. Describe the heap property and the use of heaps as an implementation of priority queues. [Familiarity]
11. Solve problems using graph algorithms, including single-source and all-pairs shortest paths, and at least

one minimum spanning tree algorithm. [Usage]
12. Trace and/or implement a string-matching algorithm. [Usage]

AL/Basic Automata Computability and Complexity
[3 Core-Tier1 hours, 3 Core-Tier2 hours]
Topics:

[Core-Tier1]

• Finite-state machines
• Regular expressions
• The halting problem

[Core-Tier2]

• Context-free grammars (cross-reference PL/Syntax Analysis)
• Introduction to the P and NP classes and the P vs. NP problem
• Introduction to the NP-complete class and exemplary NP-complete problems (e.g., SAT, Knapsack)

Learning Outcomes:

[Core-Tier1]

1. Discuss the concept of finite state machines. [Familiarity]
2. Design a deterministic finite state machine to accept a specified language. [Usage]
3. Generate a regular expression to represent a specified language. [Usage]
4. Explain why the halting problem has no algorithmic solution. [Familiarity]

[Core-Tier2]

5. Design a context-free grammar to represent a specified language. [Usage]
6. Define the classes P and NP. [Familiarity]
7. Explain the significance of NP-completeness. [Familiarity]

AL/Advanced Computational Complexity
[Elective]
Topics:

• Review of the classes P and NP; introduce P-space and EXP
• Polynomial hierarchy
• NP-completeness (Cook’s theorem)
• Classic NP-complete problems
• Reduction Techniques

- 60 -

Learning Outcomes:

1. Define the classes P and NP. (Also appears in AL/Basic Automata, Computability, and Complexity).
[Familiarity]

2. Define the P-space class and its relation to the EXP class. [Familiarity]
3. Explain the significance of NP-completeness. (Also appears in AL/Basic Automata, Computability, and

Complexity). [Familiarity]
4. Provide examples of classic NP-complete problems. [Familiarity]
5. Prove that a problem is NP-complete by reducing a classic known NP-complete problem to it. [Usage]

AL/Advanced Automata Theory and Computability
[Elective]
Topics:

• Sets and languages
o Regular languages
o Review of deterministic finite automata (DFAs)
o Nondeterministic finite automata (NFAs)
o Equivalence of DFAs and NFAs
o Review of regular expressions; their equivalence to finite automata
o Closure properties
o Proving languages non-regular, via the pumping lemma or alternative means

• Context-free languages
o Push-down automata (PDAs)
o Relationship of PDAs and context-free grammars
o Properties of context-free languages

• Turing machines, or an equivalent formal model of universal computation
• Nondeterministic Turing machines
• Chomsky hierarchy
• The Church-Turing thesis
• Computability
• Rice’s Theorem
• Examples of uncomputable functions
• Implications of uncomputability

Learning Outcomes:

1. Determine a language’s place in the Chomsky hierarchy (regular, context-free, recursively enumerable).
[Assessment]

2. Convert among equivalently powerful notations for a language, including among DFAs, NFAs, and regular
expressions, and between PDAs and CFGs. [Usage]

3. Explain the Church-Turing thesis and its significance. [Familiarity]
4. Explain Rice’s Theorem and its significance. [Familiarity]
5. Provide examples of uncomputable functions. [Familiarity]
6. Prove that a problem is uncomputable by reducing a classic known uncomputable problem to it. [Usage]

- 61 -

AL/Advanced Data Structures Algorithms and Analysis
[Elective]
Many programs will want their students to have exposure to more advanced algorithms or
methods of analysis. Below is a selection of possible advanced topics that are current and timely
but by no means exhaustive.
Topics:

• Balanced trees (e.g., AVL trees, red-black trees, splay trees, treaps)
• Graphs (e.g., topological sort, finding strongly connected components, matching)
• Advanced data structures (e.g., B-trees, Fibonacci heaps)
• String-based data structures and algorithms (e.g., suffix arrays, suffix trees, tries)
• Network flows (e.g., max flow [Ford-Fulkerson algorithm], max flow – min cut, maximum bipartite

matching)
• Linear Programming (e.g., duality, simplex method, interior point algorithms)
• Number-theoretic algorithms (e.g., modular arithmetic, primality testing, integer factorization)
• Geometric algorithms (e.g., points, line segments, polygons. [properties, intersections], finding convex hull,

spatial decomposition, collision detection, geometric search/proximity)
• Randomized algorithms
• Stochastic algorithms
• Approximation algorithms
• Amortized analysis
• Probabilistic analysis
• Online algorithms and competitive analysis

Learning Outcomes:

1. Understand the mapping of real-world problems to algorithmic solutions (e.g., as graph problems, linear
programs, etc.). [Assessment]

2. Select and apply advanced algorithmic techniques (e.g., randomization, approximation) to solve real
problems. [Assessment]

3. Select and apply advanced analysis techniques (e.g., amortized, probabilistic, etc.) to algorithms.
[Assessment]

Architecture and Organization (AR)

Computing professionals should not regard the computer as just a black box that executes

programs by magic. The knowledge area Architecture and Organization builds on Systems

Fundamentals (SF) to develop a deeper understanding of the hardware environment upon which

all computing is based, and the interface it provides to higher software layers. Students should

acquire an understanding and appreciation of a computer system’s functional components, their

characteristics, performance, and interactions, and, in particular, the challenge of harnessing

parallelism to sustain performance improvements now and into the future. Students need to

understand computer architecture to develop programs that can achieve high performance

through a programmer’s awareness of parallelism and latency. In selecting a system to use,

students should be able to understand the tradeoff among various components, such as CPU

clock speed, cycles per instruction, memory size, and average memory access time.

The learning outcomes specified for these topics correspond primarily to the core and are

intended to support programs that elect to require only the minimum 16 hours of computer

architecture of their students. For programs that want to teach more than the minimum, the same

AR topics can be treated at a more advanced level by implementing a two-course sequence. For

programs that want to cover the elective topics, those topics can be introduced within a two-

course sequence and/or be treated in a more comprehensive way in a third course.

- 63 -

AR. Architecture and Organization (0 Core-Tier1 hours, 16 Core-Tier2 hours)

 Core-Tier1
hours

Core-Tier2
Hours

Includes
Elective

AR/Digital Logic and Digital Systems 3 N

AR/Machine Level Representation of Data 3 N

AR/Assembly Level Machine Organization 6 N

AR/Memory System Organization and
Architecture

 3 N

AR/Interfacing and Communication 1 N

AR/Functional Organization Y

AR/Multiprocessing and Alternative
Architectures

 Y

AR/Performance Enhancements Y

AR/Digital Logic and Digital Systems
[3 Core-Tier2 hours]
Topics:

• Overview and history of computer architecture
• Combinational vs. sequential logic/Field programmable gate arrays as a fundamental combinational +

sequential logic building block
• Multiple representations/layers of interpretation (hardware is just another layer)
• Computer-aided design tools that process hardware and architectural representations
• Register transfer notation/Hardware Description Language (Verilog/VHDL)
• Physical constraints (gate delays, fan-in, fan-out, energy/power)

Learning outcomes:

1. Describe the progression of computer technology components from vacuum tubes to VLSI, from
mainframe computer architectures to the organization of warehouse-scale computers. [Familiarity]

2. Comprehend the trend of modern computer architectures towards multi-core and that parallelism is inherent
in all hardware systems. [Familiarity]

3. Explain the implications of the “power wall” in terms of further processor performance improvements and
the drive towards harnessing parallelism. [Familiarity]

4. Articulate that there are many equivalent representations of computer functionality, including logical
expressions and gates, and be able to use mathematical expressions to describe the functions of simple
combinational and sequential circuits. [Familiarity]

5. Design the basic building blocks of a computer: arithmetic-logic unit (gate-level), registers (gate-level),
central processing unit (register transfer-level), memory (register transfer-level). [Usage]

6. Use CAD tools for capture, synthesis, and simulation to evaluate simple building blocks (e.g., arithmetic-
logic unit, registers, movement between registers) of a simple computer design. [Usage]

- 64 -

7. Evaluate the functional and timing diagram behavior of a simple processor implemented at the logic circuit
level. [Assessment]

AR/Machine Level Representation of Data
[3 Core-Tier2 hours]
Topics:

• Bits, bytes, and words
• Numeric data representation and number bases
• Fixed- and floating-point systems
• Signed and twos-complement representations
• Representation of non-numeric data (character codes, graphical data)
• Representation of records and arrays

Learning outcomes:

1. Explain why everything is data, including instructions, in computers. [Familiarity]
2. Explain the reasons for using alternative formats to represent numerical data. [Familiarity]
3. Describe how negative integers are stored in sign-magnitude and twos-complement representations.

[Familiarity]
4. Explain how fixed-length number representations affect accuracy and precision. [Familiarity]
5. Describe the internal representation of non-numeric data, such as characters, strings, records, and arrays.

[Familiarity]
6. Convert numerical data from one format to another. [Usage]
7. Write simple programs at the assembly/machine level for string processing and manipulation. [Usage]

AR/Assembly Level Machine Organization
[6 Core-Tier2 hours]
Topics:

• Basic organization of the von Neumann machine
• Control unit; instruction fetch, decode, and execution
• Instruction sets and types (data manipulation, control, I/O)
• Assembly/machine language programming
• Instruction formats
• Addressing modes
• Subroutine call and return mechanisms (cross-reference PL/Language Translation and Execution)
• I/O and interrupts
• Heap vs. Static vs. Stack vs. Code segments
• Shared memory multiprocessors/multicore organization
• Introduction to SIMD vs. MIMD and the Flynn Taxonomy

Learning outcomes:

1. Explain the organization of the classical von Neumann machine and its major functional units. [Familiarity]
2. Describe how an instruction is executed in a classical von Neumann machine, with extensions for threads,

multiprocessor synchronization, and SIMD execution. [Familiarity]

- 65 -

3. Describe instruction level parallelism and hazards, and how they are managed in typical processor
pipelines. [Familiarity]

4. Summarize how instructions are represented at both the machine level and in the context of a symbolic
assembler. [Familiarity]

5. Demonstrate how to map between high-level language patterns into assembly/machine language notations.
[Familiarity]

6. Explain different instruction formats, such as addresses per instruction and variable length vs. fixed length
formats. [Familiarity]

7. Explain how subroutine calls are handled at the assembly level. [Familiarity]
8. Explain the basic concepts of interrupts and I/O operations. [Familiarity]
9. Write simple assembly language program segments. [Usage]
10. Show how fundamental high-level programming constructs are implemented at the machine-language

level. [Usage]

AR/Memory System Organization and Architecture
[3 Core-Tier2 hours]
Cross-reference OS/Memory Management/Virtual Machines

Topics:

• Storage systems and their technology
• Memory hierarchy: importance of temporal and spatial locality
• Main memory organization and operations
• Latency, cycle time, bandwidth, and interleaving
• Cache memories (address mapping, block size, replacement and store policy)
• Multiprocessor cache consistency/Using the memory system for inter-core synchronization/atomic memory

operations
• Virtual memory (page table, TLB)
• Fault handling and reliability
• Error coding, data compression, and data integrity (cross-reference SF/Reliability through Redundancy)

Learning outcomes:

1. Identify the main types of memory technology (e.g., SRAM, DRAM, Flash, magnetic disk) and their
relative cost and performance. [Familiarity]

2. Explain the effect of memory latency on running time. [Familiarity]
3. Describe how the use of memory hierarchy (cache, virtual memory) is used to reduce the effective memory

latency. [Familiarity]
4. Describe the principles of memory management. [Familiarity]
5. Explain the workings of a system with virtual memory management. [Familiarity]
6. Compute Average Memory Access Time under a variety of cache and memory configurations and mixes of

instruction and data references. [Usage]

- 66 -

AR/Interfacing and Communication
[1 Core-Tier2 hour]
Cross-reference Operating Systems (OS) Knowledge Area for a discussion of the operating
system view of input/output processing and management. The focus here is on the hardware
mechanisms for supporting device interfacing and processor-to-processor communications.
Topics:

• I/O fundamentals: handshaking, buffering, programmed I/O, interrupt-driven I/O
• Interrupt structures: vectored and prioritized, interrupt acknowledgment
• External storage, physical organization, and drives
• Buses: bus protocols, arbitration, direct-memory access (DMA)
• Introduction to networks: communications networks as another layer of remote access
• Multimedia support
• RAID architectures

Learning outcomes:

1. Explain how interrupts are used to implement I/O control and data transfers. [Familiarity]
2. Identify various types of buses in a computer system. [Familiarity]
3. Describe data access from a magnetic disk drive. [Familiarity]
4. Compare common network organizations, such as ethernet/bus, ring, switched vs. routed. [Familiarity]
5. Identify the cross-layer interfaces needed for multimedia access and presentation, from image fetch from

remote storage, through transport over a communications network, to staging into local memory, and final
presentation to a graphical display. [Familiarity]

6. Describe the advantages and limitations of RAID architectures. [Familiarity]

AR/Functional Organization
[Elective]
Note: elective for computer scientist; would be core for computer engineering curriculum.
Topics:

• Implementation of simple datapaths, including instruction pipelining, hazard detection and resolution
• Control unit: hardwired realization vs. microprogrammed realization
• Instruction pipelining
• Introduction to instruction-level parallelism (ILP)

Learning outcomes:

1. Compare alternative implementation of datapaths. [Familiarity]
2. Discuss the concept of control points and the generation of control signals using hardwired or

microprogrammed implementations. [Familiarity]
3. Explain basic instruction level parallelism using pipelining and the major hazards that may occur.

[Familiarity]
4. Design and implement a complete processor, including datapath and control. [Usage]
5. Determine, for a given processor and memory system implementation, the average cycles per instruction.

[Assessment]

- 67 -

AR/Multiprocessing and Alternative Architectures
[Elective]
The view here is on the hardware implementation of SIMD and MIMD architectures.

Cross-reference PD/Parallel Architecture.
Topics:

• Power Law
• Example SIMD and MIMD instruction sets and architectures
• Interconnection networks (hypercube, shuffle-exchange, mesh, crossbar)
• Shared multiprocessor memory systems and memory consistency
• Multiprocessor cache coherence

Learning outcomes:

1. Discuss the concept of parallel processing beyond the classical von Neumann model. [Familiarity]
2. Describe alternative parallel architectures such as SIMD and MIMD. [Familiarity]
3. Explain the concept of interconnection networks and characterize different approaches. [Familiarity]
4. Discuss the special concerns that multiprocessing systems present with respect to memory management and

describe how these are addressed. [Familiarity]
5. Describe the differences between memory backplane, processor memory interconnect, and remote memory

via networks, their implications for access latency and impact on program performance. [Familiarity]

AR/Performance Enhancements
[Elective]
Topics:

• Superscalar architecture
• Branch prediction, Speculative execution, Out-of-order execution
• Prefetching
• Vector processors and GPUs
• Hardware support for multithreading
• Scalability
• Alternative architectures, such as VLIW/EPIC, and Accelerators and other kinds of Special-Purpose

Processors

Learning outcomes:

1. Describe superscalar architectures and their advantages. [Familiarity]
2. Explain the concept of branch prediction and its utility. [Familiarity]
3. Characterize the costs and benefits of prefetching. [Familiarity]
4. Explain speculative execution and identify the conditions that justify it. [Familiarity]
5. Discuss the performance advantages that multithreading offered in an architecture along with the factors

that make it difficult to derive maximum benefits from this approach. [Familiarity]
6. Describe the relevance of scalability to performance. [Familiarity]

Computational Science (CN)

Computational Science is a field of applied computer science, that is, the application of computer

science to solve problems across a range of disciplines. In the book Introduction to

Computational Science [3], the authors offer the following definition: “the field of computational

science combines computer simulation, scientific visualization, mathematical modeling,

computer programming and data structures, networking, database design, symbolic computation,

and high performance computing with various disciplines.” Computer science, which largely

focuses on the theory, design, and implementation of algorithms for manipulating data and

information, can trace its roots to the earliest devices used to assist people in computation over

four thousand years ago. Various systems were created and used to calculate astronomical

positions. Ada Lovelace’s programming achievement was intended to calculate Bernoulli

numbers. In the late nineteenth century, mechanical calculators became available, and were

immediately put to use by scientists. The needs of scientists and engineers for computation have

long driven research and innovation in computing. As computers increase in their problem-

solving power, computational science has grown in both breadth and importance. It is a

discipline in its own right [2] and is considered to be “one of the five college majors on the rise

[1].” An amazing assortment of sub-fields have arisen under the umbrella of Computational

Science, including computational biology, computational chemistry, computational mechanics,

computational archeology, computational finance, computational sociology and computational

forensics.

Some fundamental concepts of computational science are germane to every computer scientist

(e.g., modeling and simulation), and computational science topics are extremely valuable

components of an undergraduate program in computer science. This area offers exposure to

many valuable ideas and techniques, including precision of numerical representation, error

analysis, numerical techniques, parallel architectures and algorithms, modeling and simulation,

information visualization, software engineering, and optimization. Topics relevant to

computational science include fundamental concepts in program construction (SDF/Fundamental

Programming Concepts), algorithm design (SDF/Algorithms and Design), program testing

(SDF/Development Methods), data representations (AR/Machine Representation of Data), and

basic computer architecture (AR/Memory System Organization and Architecture). At the same

- 69 -

time, students who take courses in this area have an opportunity to apply these techniques in a

wide range of application areas, such as molecular and fluid dynamics, celestial mechanics,

economics, biology, geology, medicine, and social network analysis. Many of the techniques

used in these areas require advanced mathematics such as calculus, differential equations, and

linear algebra. The descriptions here assume that students have acquired the needed

mathematical background elsewhere.

 In the computational science community, the terms run, modify, and create are often used to

describe levels of understanding. This chapter follows the conventions of other chapters in this

volume and uses the terms familiarity, usage, and assessment.

References
[1] Fischer, K. and Glenn, D., “5 College Majors on the Rise,” The Chronicle of Higher

Education, August 31, 2009.

[2] President’s Information Technology Advisory Committee, 2005: p. 13.
http://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf

[3] Shiflet, A. B. and Shiflet, G. W. Introduction to Computational Science: Modeling and
Simulation for the Sciences, Princeton University Press, 2006: p. 3.

CN. Computational Science (1 Core-Tier1 hours, 0 Core-Tier2 hours)

 Core-Tier1 hours Core-Tier2 hours Includes
Electives

CN/Introduction to Modeling and
Simulation

1 N

CN/Modeling and Simulation Y

CN/Processing Y

CN/Interactive Visualization Y

CN/Data, Information, and
Knowledge

 Y

CN/Numerical Analysis Y

- 70 -

CN/Introduction to Modeling and Simulation
[1 Core-Tier1 hours]
Abstraction is a fundamental concept in computer science. A principal approach to computing is
to abstract the real world, create a model that can be simulated on a machine. The roots of
computer science can be traced to this approach, modeling things such as trajectories of artillery
shells and the modeling cryptographic protocols, both of which pushed the development of early
computing systems in the early and mid-1940’s.

Modeling and simulation of real world systems represent essential knowledge for computer
scientists and provide a foundation for computational sciences. Any introduction to modeling
and simulation would either include or presume an introduction to computing. In addition, a
general set of modeling and simulation techniques, data visualization methods, and software
testing and evaluation mechanisms are also important.
Topics:

• Models as abstractions of situations
• Simulations as dynamic modeling
• Simulation techniques and tools, such as physical simulations, human-in-the-loop guided simulations, and

virtual reality
• Foundational approaches to validating models (e.g., comparing a simulation’s output to real data or the

output of another model)
• Presentation of results in a form relevant to the system being modeled

Learning Outcomes:

1. Explain the concept of modeling and the use of abstraction that allows the use of a machine to solve a
problem. [Familiarity]

2. Describe the relationship between modeling and simulation, i.e., thinking of simulation as dynamic
modeling. [Familiarity]

3. Create a simple, formal mathematical model of a real-world situation and use that model in a simulation.
[Usage]

4. Differentiate among the different types of simulations, including physical simulations, human-guided
simulations, and virtual reality. [Familiarity]

5. Describe several approaches to validating models. [Familiarity]
6. Create a simple display of the results of a simulation. [Usage]

CN/Modeling and Simulation
[Elective]
Topics:

• Purpose of modeling and simulation including optimization; supporting decision making, forecasting,
safety considerations; for training and education

• Tradeoffs including performance, accuracy, validity, and complexity
• The simulation process; identification of key characteristics or behaviors, simplifying assumptions;

validation of outcomes
• Model building: use of mathematical formulas or equations, graphs, constraints; methodologies and

techniques; use of time stepping for dynamic systems

- 71 -

• Formal models and modeling techniques: mathematical descriptions involving simplifying assumptions
and avoiding detail. Examples of techniques include:

o Monte Carlo methods
o Stochastic processes
o Queuing theory
o Petri nets and colored Petri nets
o Graph structures such as directed graphs, trees, networks
o Games, game theory, the modeling of things using game theory
o Linear programming and its extensions
o Dynamic programming
o Differential equations: ODE, PDE
o Non-linear techniques
o State spaces and transitions

• Assessing and evaluating models and simulations in a variety of contexts; verification and validation of
models and simulations

• Important application areas including health care and diagnostics, economics and finance, city and urban
planning, science, and engineering

• Software in support of simulation and modeling; packages, languages

Learning Outcomes:

1. Explain and give examples of the benefits of simulation and modeling in a range of important application
areas. [Familiarity]

2. Demonstrate the ability to apply the techniques of modeling and simulation to a range of problem areas.
[Usage]

3. Explain the constructs and concepts of a particular modeling approach. [Familiarity]
4. Explain the difference between validation and verification of a model; demonstrate the difference with

specific examples1

5. Verify and validate the results of a simulation. [Assessment]
. [Assessment]

6. Evaluate a simulation, highlighting the benefits and the drawbacks. [Assessment]
7. Choose an appropriate modeling approach for a given problem or situation. [Assessment]
8. Compare results from different simulations of the same situation and explain any differences. [Assessment]
9. Infer the behavior of a system from the results of a simulation of the system. [Assessment]
10. Extend or adapt an existing model to a new situation. [Assessment]

1 Verification means that the computations of the model are correct. If we claim to compute total time, for example,

the computation actually does that. Validation asks whether the model matches the real situation.

- 72 -

CN/Processing
[Elective]
The processing topic area includes numerous topics from other knowledge areas. Specifically,
coverage of processing should include a discussion of hardware architectures, including parallel
systems, memory hierarchies, and interconnections among processors. These are covered in
AR/Interfacing and Communication, AR/Multiprocessing and Alternative Architectures,
AR/Performance Enhancements.
Topics:

• Fundamental programming concepts:
o The concept of an algorithm consisting of a finite number of well-defined steps, each of which

completes in a finite amount of time, as does the entire process.
o Examples of well-known algorithms such as sorting and searching.
o The concept of analysis as understanding what the problem is really asking, how a problem can be

approached using an algorithm, and how information is represented so that a machine can process
it.

o The development or identification of a workflow.
o The process of converting an algorithm to machine-executable code.
o Software processes including lifecycle models, requirements, design, implementation, verification

and maintenance.
o Machine representation of data computer arithmetic.

• Numerical methods
o Algorithms for numerically fitting data (e.g., Newton’s method)
o Architectures for numerical computation, including parallel architectures

• Fundamental properties of parallel and distributed computation:
o Bandwidth.
o Latency.
o Scalability.
o Granularity.
o Parallelism including task, data, and event parallelism.
o Parallel architectures including processor architectures, memory and caching.
o Parallel programming paradigms including threading, message passing, event driven techniques,

parallel software architectures, and MapReduce.
o Grid computing.
o The impact of architecture on computational time.
o Total time to science curve for parallelism: continuum of things.

• Computing costs, e.g., the cost of re-computing a value vs. the cost of storing and lookup.

Learning Outcomes:

1. Explain the characteristics and defining properties of algorithms and how they relate to machine
processing. [Familiarity]

2. Analyze simple problem statements to identify relevant information and select appropriate processing to
solve the problem. [Assessment]

3. Identify or sketch a workflow for an existing computational process such as the creation of a graph based
on experimental data. [Familiarity]

4. Describe the process of converting an algorithm to machine-executable code. [Familiarity]
5. Summarize the phases of software development and compare several common lifecycle models.

[Familiarity]
6. Explain how data is represented in a machine. Compare representations of integers to floating point

numbers. Describe underflow, overflow, round off, and truncation errors in data representations.
[Familiarity]

- 73 -

7. Apply standard numerical algorithms to solve ODEs and PDEs. Use computing systems to solve systems of
equations. [Usage]

8. Describe the basic properties of bandwidth, latency, scalability and granularity. [Familiarity]
9. Describe the levels of parallelism including task, data, and event parallelism. [Familiarity]
10. Compare and contrast parallel programming paradigms recognizing the strengths and weaknesses of each.

[Assessment]
11. Identify the issues impacting correctness and efficiency of a computation. [Familiarity]
12. Design, code, test and debug programs for a parallel computation. [Usage]

CN/Interactive Visualization
[Elective]
This sub-area is related to modeling and simulation. Most topics are discussed in detail in other
knowledge areas in this document. There are many ways to present data and information,
including immersion, realism, variable perspectives; haptics and heads-up displays, sonification,
and gesture mapping.

Interactive visualization in general requires understanding of human perception (GV/Basics);
graphics pipelines, geometric representations and data structures (GV/Fundamental Concepts);
2D and 3D rendering, surface and volume rendering (GV/Rendering, GV/Modeling, and
GV/Advanced Rendering); and the use of APIs for developing user interfaces using standard
input components such as menus, sliders, and buttons; and standard output components for data
display, including charts, graphs, tables, and histograms (HCI/GUI Construction, HCI/GUI
Programming).
Topics:

• Principles of data visualization
• Graphing and visualization algorithms
• Image processing techniques
• Scalability concerns

Learning Outcomes:

1. Compare common computer interface mechanisms with respect to ease-of-use, learnability, and cost.
[Assessment]

2. Use standard APIs and tools to create visual displays of data, including graphs, charts, tables, and
histograms. [Usage]

3. Describe several approaches to using a computer as a means for interacting with and processing data.
[Familiarity]

4. Extract useful information from a dataset. [Assessment]
5. Analyze and select visualization techniques for specific problems. [Assessment]
6. Describe issues related to scaling data analysis from small to large data sets. [Familiarity]

- 74 -

CN/Data, Information, and Knowledge
[Elective]
Many topics are discussed in detail in other knowledge areas in this document, specifically
Information Management (IM/Information Management Concepts, IM/Database Systems, and
IM/Data Modeling), Algorithms and Complexity (AL/Basic Analysis, AL/Fundamental Data
Structures and Algorithms), and Software Development Fundamentals (SDF/Fundamental
Programming Concepts, SDF/Development Methods).
Topics:

• Content management models, frameworks, systems, design methods (as in IM. Information Management)
• Digital representations of content including numbers, text, images (e.g., raster and vector), video (e.g.,

QuickTime, MPEG2, MPEG4), audio (e.g., written score, MIDI, sampled digitized sound track) and
animations; complex/composite/aggregate objects; FRBR

• Digital content creation/capture and preservation, including digitization, sampling, compression,
conversion, transformation/translation, migration/emulation, crawling, harvesting

• Content structure / management, including digital libraries and static/dynamic/stream aspects for:
o Data: data structures, databases
o Information: document collections, multimedia pools, hyperbases (hypertext, hypermedia),

catalogs, repositories
o Knowledge: ontologies, triple stores, semantic networks, rules

• Processing and pattern recognition, including indexing, searching (including: queries and query languages;
central / federated / P2P), retrieving, clustering, classifying/categorizing, analyzing/mining/extracting,
rendering, reporting, handling transactions

• User / society support for presentation and interaction, including browse, search, filter, route, visualize,
share, collaborate, rate, annotate, personalize, recommend

• Modeling, design, logical and physical implementation, using relevant systems/software

Learning Outcomes:

1. Identify all of the data, information, and knowledge elements and related organizations, for a computational
science application. [Assessment]

2. Describe how to represent data and information for processing. [Familiarity]
3. Describe typical user requirements regarding that data, information, and knowledge. [Familiarity]
4. Select a suitable system or software implementation to manage data, information, and knowledge.

[Assessment]
5. List and describe the reports, transactions, and other processing needed for a computational science

application. [Familiarity]
6. Compare and contrast database management, information retrieval, and digital library systems with regard

to handling typical computational science applications. [Assessment]
7. Design a digital library for some computational science users/societies, with appropriate content and

services. [Usage]

CN/Numerical Analysis
[Elective]
Cross-reference AR/Machine Level Representation of Data

Topics:

• Error, stability, convergence, including truncation and round-off
• Function approximation including Taylor’s series, interpolation, extrapolation, and regression

- 75 -

• Numerical differentiation and integration (Simpson’s Rule, explicit and implicit methods)
• Differential equations (Euler’s Method, finite differences)

Learning Outcomes:

1. Define error, stability, machine precision concepts and the inexactness of computational approximations.
[Familiarity]

2. Implement Taylor series, interpolation, extrapolation, and regression algorithms for approximating
functions. [Usage]

3. Implement algorithms for differentiation and integration. [Usage]
4. Implement algorithms for solving differential equations. [Usage]

Discrete Structures (DS)

Discrete structures are foundational material for computer science. By foundational we mean that

relatively few computer scientists will be working primarily on discrete structures, but that many

other areas of computer science require the ability to work with concepts from discrete

structures. Discrete structures include important material from such areas as set theory, logic,

graph theory, and probability theory.

The material in discrete structures is pervasive in the areas of data structures and algorithms but

appears elsewhere in computer science as well. For example, an ability to create and understand

a proof—either a formal symbolic proof or a less formal but still mathematically rigorous

argument—is important in virtually every area of computer science, including (to name just a

few) formal specification, verification, databases, and cryptography. Graph theory concepts are

used in networks, operating systems, and compilers. Set theory concepts are used in software

engineering and in databases. Probability theory is used in intelligent systems, networking, and a

number of computing applications.

Given that discrete structures serves as a foundation for many other areas in computing, it is

worth noting that the boundary between discrete structures and other areas, particularly

Algorithms and Complexity, Software Development Fundamentals, Programming Languages,

and Intelligent Systems, may not always be crisp. Indeed, different institutions may choose to

organize the courses in which they cover this material in very different ways. Some institutions

may cover these topics in one or two focused courses with titles like "discrete structures" or

"discrete mathematics," whereas others may integrate these topics in courses on programming,

algorithms, and/or artificial intelligence. Combinations of these approaches are also prevalent

(e.g., covering many of these topics in a single focused introductory course and covering the

remaining topics in more advanced topical courses).

- 77 -

DS. Discrete Structures (37 Core-Tier1 hours, 4 Core-Tier2 hours)

 Core-Tier1 hours Core-Tier2 hours Includes Electives

DS/Sets, Relations, and Functions 4 N

DS/Basic Logic 9 N

DS/Proof Techniques 10 1 N

DS/Basics of Counting 5 N

DS/Graphs and Trees 3 1 N

DS/Discrete Probability 6 2 N

DS/Sets, Relations, and Functions
[4 Core-Tier1 hours]
Topics:

• Sets
o Venn diagrams
o Union, intersection, complement
o Cartesian product
o Power sets
o Cardinality of finite sets

• Relations
o Reflexivity, symmetry, transitivity
o Equivalence relations, partial orders

• Functions
o Surjections, injections, bijections
o Inverses
o Composition

Learning Outcomes:

1. Explain with examples the basic terminology of functions, relations, and sets. [Familiarity]
2. Perform the operations associated with sets, functions, and relations. [Usage]
3. Relate practical examples to the appropriate set, function, or relation model, and interpret the associated

operations and terminology in context. [Assessment]

- 78 -

DS/Basic Logic
[9 Core-Tier1 hours]
Topics:

• Propositional logic (cross-reference: Propositional logic is also reviewed in IS/Knowledge Based
Reasoning)

• Logical connectives
• Truth tables
• Normal forms (conjunctive and disjunctive)
• Validity of well-formed formula
• Propositional inference rules (concepts of modus ponens and modus tollens)
• Predicate logic

o Universal and existential quantification
• Limitations of propositional and predicate logic (e.g., expressiveness issues)

Learning Outcomes:

1. Convert logical statements from informal language to propositional and predicate logic expressions.
[Usage]

2. Apply formal methods of symbolic propositional and predicate logic, such as calculating validity of
formulae and computing normal forms. [Usage]

3. Use the rules of inference to construct proofs in propositional and predicate logic. [Usage]
4. Describe how symbolic logic can be used to model real-life situations or applications, including those

arising in computing contexts such as software analysis (e.g., program correctness), database queries, and
algorithms. [Usage]

5. Apply formal logic proofs and/or informal, but rigorous, logical reasoning to real problems, such as
predicting the behavior of software or solving problems such as puzzles. [Usage]

6. Describe the strengths and limitations of propositional and predicate logic. [Familiarity]

DS/Proof Techniques
[10 Core-Tier1 hours, 1 Core-Tier2 hour]
Topics:

[Core-Tier1]

• Notions of implication, equivalence, converse, inverse, contrapositive, negation, and contradiction
• The structure of mathematical proofs
• Direct proofs
• Disproving by counterexample
• Proof by contradiction
• Induction over natural numbers
• Structural induction
• Weak and strong induction (i.e., First and Second Principle of Induction)
• Recursive mathematical definitions

[Core-Tier2]

• Well orderings

- 79 -

Learning Outcomes:

[Core-Tier1]

1. Identify the proof technique used in a given proof. [Familiarity]
2. Outline the basic structure of each proof technique (direct proof, proof by contradiction, and induction)

described in this unit. [Usage]
3. Apply each of the proof techniques (direct proof, proof by contradiction, and induction) correctly in the

construction of a sound argument. [Usage]
4. Determine which type of proof is best for a given problem. [Assessment]
5. Explain the parallels between ideas of mathematical and/or structural induction to recursion and recursively

defined structures. [Assessment]
6. Explain the relationship between weak and strong induction and give examples of the appropriate use of

each. [Assessment]

[Core-Tier2]

7. State the well-ordering principle and its relationship to mathematical induction. [Familiarity]

DS/Basics of Counting
[5 Core-Tier1 hours]
Topics:

• Counting arguments
o Set cardinality and counting
o Sum and product rule
o Inclusion-exclusion principle
o Arithmetic and geometric progressions

• The pigeonhole principle
• Permutations and combinations

o Basic definitions
o Pascal’s identity
o The binomial theorem

• Solving recurrence relations (cross-reference: AL/Basic Analysis)
o An example of a simple recurrence relation, such as Fibonacci numbers
o Other examples, showing a variety of solutions

• Basic modular arithmetic

Learning Outcomes:

1. Apply counting arguments, including sum and product rules, inclusion-exclusion principle and
arithmetic/geometric progressions. [Usage]

2. Apply the pigeonhole principle in the context of a formal proof. [Usage]
3. Compute permutations and combinations of a set, and interpret the meaning in the context of the particular

application. [Usage]
4. Map real-world applications to appropriate counting formalisms, such as determining the number of ways

to arrange people around a table, subject to constraints on the seating arrangement, or the number of ways
to determine certain hands in cards (e.g., a full house). [Usage]

5. Solve a variety of basic recurrence relations. [Usage]
6. Analyze a problem to determine underlying recurrence relations. [Usage]
7. Perform computations involving modular arithmetic. [Usage]

- 80 -

DS/Graphs and Trees
[3 Core-Tier1 hours, 1 Core-Tier2 hour]
Cross-reference: AL/Fundamental Data Structures and Algorithms, especially with relation to
graph traversal strategies.
Topics:

[Core-Tier1]

• Trees
o Properties
o Traversal strategies

• Undirected graphs
• Directed graphs
• Weighted graphs

[Core-Tier2]

• Spanning trees/forests
• Graph isomorphism

Learning Outcomes:

[Core-Tier1]

1. Illustrate by example the basic terminology of graph theory, as well as some of the properties and special
cases of each type of graph/tree. [Familiarity]

2. Demonstrate different traversal methods for trees and graphs, including pre-, post-, and in-order traversal of
trees. [Usage]

3. Model a variety of real-world problems in computer science using appropriate forms of graphs and trees,
such as representing a network topology or the organization of a hierarchical file system. [Usage]

4. Show how concepts from graphs and trees appear in data structures, algorithms, proof techniques
(structural induction), and counting. [Usage]

[Core-Tier2]

5. Explain how to construct a spanning tree of a graph. [Usage]
6. Determine if two graphs are isomorphic. [Usage]

- 81 -

DS/Discrete Probability
[6 Core-Tier1 hours, 2 Core-Tier2 hour]
Topics:

[Core-Tier1]

• Finite probability space, events
• Axioms of probability and probability measures
• Conditional probability, Bayes’ theorem
• Independence
• Integer random variables (Bernoulli, binomial)
• Expectation, including Linearity of Expectation

[Core-Tier2]

• Variance
• Conditional Independence

Learning Outcomes:

[Core-Tier1]

1. Calculate probabilities of events and expectations of random variables for elementary problems such as
games of chance. [Usage]

2. Differentiate between dependent and independent events. [Usage]
3. Identify a case of the binomial distribution and compute a probability using that distribution. [Usage]
4. Apply Bayes theorem to determine conditional probabilities in a problem. [Usage]
5. Apply the tools of probability to solve problems such as the average case analysis of algorithms or

analyzing hashing. [Usage]

[Core-Tier2]

6. Compute the variance for a given probability distribution. [Usage]
7. Explain how events that are independent can be conditionally dependent (and vice-versa). Identify real-

world examples of such cases. [Usage]

Graphics and Visualization (GV)

Computer graphics is the term commonly used to describe the computer generation and

manipulation of images. It is the science of enabling visual communication through computation.

Its uses include cartoons, film special effects, video games, medical imaging, engineering, as

well as scientific, information, and knowledge visualization. Traditionally, graphics at the

undergraduate level has focused on rendering, linear algebra, and phenomenological approaches.

More recently, the focus has begun to include physics, numerical integration, scalability, and

special-purpose hardware. In order for students to become adept at the use and generation of

computer graphics, many implementation-specific issues must be addressed, such as file formats,

hardware interfaces, and application program interfaces. These issues change rapidly, and the

description that follows attempts to avoid being overly prescriptive about them. The area

encompassed by Graphics and Visualization is divided into several interrelated fields:

• Fundamentals: Computer graphics depends on an understanding of how humans use

vision to perceive information and how information can be rendered on a display device.

Every computer scientist should have some understanding of where and how graphics can

be appropriately applied as well as the fundamental processes involved in display

rendering.

• Modeling: Information to be displayed must be encoded in computer memory in some

form, often in the form of a mathematical specification of shape and form.

• Rendering: Rendering is the process of displaying the information contained in a model.

• Animation: Animation is the rendering in a manner that makes images appear to move

and the synthesis or acquisition of the time variations of models.

• Visualization: The field of visualization seeks to determine and present underlying

correlated structures and relationships in data sets from a wide variety of application

areas. The prime objective of the presentation should be to communicate the information

in a dataset so as to enhance understanding

• Computational Geometry: Computational Geometry is the study of algorithms that are

stated in terms of geometry.

- 83 -

Graphics and Visualization is related to machine vision and image processing, which are found

in the Intelligent Systems (IS) KA, and algorithms such as computational geometry, which are

found in the Algorithms and Complexity (AL) KA. Topics in virtual reality are found in the

Human-Computer Interaction (HCI) KA.

This description assumes students are familiar with fundamental concepts of data representation,

abstraction, and program implementation.

GV. Graphics and Visualization (2 Core-Tier1 hours, 1 Core-Tier2 hours)

 Core-Tier1 hours Core-Tier2 hours Includes
Electives

GV/Fundamental Concepts 2 1 Y

GV/Basic Rendering Y

GV/Geometric Modeling Y

GV/Advanced Rendering Y

GV/Computer Animation Y

GV/Visualization Y

- 84 -

GV/Fundamental Concepts
[2 Core-Tier1 and 1 Core-Tier2 hours]
For nearly every computer scientist and software developer, an understanding of how humans
interact with machines is essential. While these topics may be covered in a standard
undergraduate graphics course, they may also be covered in introductory computer science and
programming courses. Part of our motivation for including immediate and retained modes is that
these modes are analogous to polling vs. event driven programming. This is a fundamental
question in computer science: Is there a button object, or is there just the display of a button on
the screen? Note that most of the outcomes in this section are at the knowledge level, and many
of these topics are revisited in greater depth in later sections.
Topics:

[Core-Tier1]

• Media applications including user interfaces, audio and video editing, game engines, cad, visualization,
virtual reality

• Digitization of analog data, resolution, and the limits of human perception, e.g., pixels for visual display,
dots for laser printers, and samples for audio (HCI/Foundations)

• Use of standard APIs for the construction of UIs and display of standard media formats (see HCI/GUI
construction)

• Standard media formats, including lossless and lossy formats

[Core-Tier2]

• Additive and subtractive color models (CMYK and RGB) and why these provide a range of colors
• Tradeoffs between storing data and re-computing data as embodied by vector and raster representations of

images
• Animation as a sequence of still images

[Elective]

• Double buffering

Learning Outcomes:

[Core-Tier1]

1. Identify common uses of digital presentation to humans (e.g., computer graphics, sound). [Familiarity]
2. Explain in general terms how analog signals can be reasonably represented by discrete samples, for

example, how images can be represented by pixels. [Familiarity]
3. Explain how the limits of human perception affect choices about the digital representation of analog

signals. [Familiarity]
4. Construct a simple user interface using a standard API. [Usage]
5. Describe the differences between lossy and lossless image compression techniques, for example as

reflected in common graphics image file formats such as JPG, PNG, MP3, MP4, and GIF. [Familiarity]

[Core-Tier2]

6. Describe color models and their use in graphics display devices. [Familiarity]
7. Describe the tradeoffs between storing information vs. storing enough information to reproduce the

information, as in the difference between vector and raster rendering. [Familiarity]

- 85 -

[Elective]

8. Describe the basic process of producing continuous motion from a sequence of discrete frames (sometimes
called “flicker fusion”). [Familiarity]

9. Describe how double-buffering can remove flicker from animation. [Familiarity]

GV/Basic Rendering
[Elective]

This section describes basic rendering and fundamental graphics techniques that nearly every
undergraduate course in graphics will cover and that are essential for further study in graphics.
Sampling and anti-aliasing are related to the effect of digitization and appear in other areas of
computing, for example, in audio sampling.
Topics:

• Rendering in nature, e.g., the emission and scattering of light and its relation to numerical integration
• Forward and backward rendering (i.e., ray-casting and rasterization)
• Polygonal representation
• Basic radiometry, similar triangles, and projection model
• Affine and coordinate system transformations
• Ray tracing
• Visibility and occlusion, including solutions to this problem such as depth buffering, Painter’s algorithm,

and ray tracing
• The forward and backward rendering equation
• Simple triangle rasterization
• Rendering with a shader-based API
• Texture mapping, including minification and magnification (e.g., trilinear MIP-mapping)
• Application of spatial data structures to rendering
• Sampling and anti-aliasing
• Scene graphs and the graphics pipeline

Learning Outcomes:

1. Discuss the light transport problem and its relation to numerical integration i.e., light is emitted, scatters
around the scene, and is measured by the eye. [Familiarity]

2. Describe the basic graphics pipeline and how forward and backward rendering factor in this. [Familiarity]
3. Create a program to display 3D models of simple graphics images. [Usage]
4. Derive linear perspective from similar triangles by converting points (x, y, z) to points (x/z, y/z, 1). [Usage]
5. Obtain 2-dimensional and 3-dimensional points by applying affine transformations. [Usage]
6. Apply 3-dimensional coordinate system and the changes required to extend 2D transformation operations to

handle transformations in 3D. [Usage]
7. Contrast forward and backward rendering. [Assessment]
8. Explain the concept and applications of texture mapping, sampling, and anti-aliasing. [Familiarity]
9. Explain the ray tracing/rasterization duality for the visibility problem. [Familiarity]
10. Implement simple procedures that perform transformation and clipping operations on simple 2-dimensional

images. [Usage]
11. Implement a simple real-time renderer using a rasterization API (e.g., OpenGL) using vertex buffers and

shaders. [Usage]
12. Compare and contrast the different rendering techniques. [Assessment]
13. Compute space requirements based on resolution and color coding. [Assessment]
14. Compute time requirements based on refresh rates, rasterization techniques. [Assessment]

- 86 -

GV/Geometric Modeling
[Elective]
Topics:

• Basic geometric operations such as intersection calculation and proximity tests
• Volumes, voxels, and point-based representations
• Parametric polynomial curves and surfaces
• Implicit representation of curves and surfaces
• Approximation techniques such as polynomial curves, Bezier curves, spline curves and surfaces, and non-

uniform rational basis (NURB) spines, and level set method
• Surface representation techniques including tessellation, mesh representation, mesh fairing, and mesh

generation techniques such as Delaunay triangulation, marching cubes
• Spatial subdivision techniques
• Procedural models such as fractals, generative modeling, and L-systems
• Graftals, cross referenced with programming languages (grammars to generated pictures)
• Elastically deformable and freeform deformable models
• Subdivision surfaces
• Multiresolution modeling
• Reconstruction
• Constructive Solid Geometry (CSG) representation

Learning Outcomes:

1. Represent curves and surfaces using both implicit and parametric forms. [Usage]
2. Create simple polyhedral models by surface tessellation. [Usage]
3. Generate a mesh representation from an implicit surface. [Usage]
4. Generate a fractal model or terrain using a procedural method. [Usage]
5. Generate a mesh from data points acquired with a laser scanner. [Usage]
6. Construct CSG models from simple primitives, such as cubes and quadric surfaces. [Usage]
7. Contrast modeling approaches with respect to space and time complexity and quality of image.

[Assessment]

GV/Advanced Rendering
[Elective]
Topics:

• Solutions and approximations to the rendering equation, for example:
o Distribution ray tracing and path tracing
o Photon mapping
o Bidirectional path tracing
o Reyes (micropolygon) rendering
o Metropolis light transport

• Time (motion blur), lens position (focus), and continuous frequency (color) and their impact on rendering
• Shadow mapping
• Occlusion culling
• Bidirectional Scattering Distribution function (BSDF) theory and microfacets
• Subsurface scattering
• Area light sources
• Hierarchical depth buffering
• The Light Field, image-based rendering

- 87 -

• Non-photorealistic rendering
• GPU architecture
• Human visual systems including adaptation to light, sensitivity to noise, and flicker fusion

Learning Outcomes:

1. Demonstrate how an algorithm estimates a solution to the rendering equation. [Assessment]
2. Prove the properties of a rendering algorithm, e.g., complete, consistent, and unbiased. [Assessment]
3. Analyze the bandwidth and computation demands of a simple algorithm. [Assessment]
4. Implement a non-trivial shading algorithm (e.g., toon shading, cascaded shadow maps) under a rasterization

API. [Usage]
5. Discuss how a particular artistic technique might be implemented in a renderer. [Familiarity]
6. Explain how to recognize the graphics techniques used to create a particular image. [Familiarity]
7. Implement any of the specified graphics techniques using a primitive graphics system at the individual

pixel level. [Usage]
8. Implement a ray tracer for scenes using a simple (e.g., Phong model) BRDF plus reflection and refraction.

[Usage]

GV/Computer Animation
[Elective]
Topics:

• Forward and inverse kinematics
• Collision detection and response
• Procedural animation using noise, rules (boids/crowds), and particle systems
• Skinning algorithms
• Physics based motions including rigid body dynamics, physical particle systems, mass-spring networks for

cloth and flesh and hair
• Key-frame animation
• Splines
• Data structures for rotations, such as quaternions
• Camera animation
• Motion capture

Learning Outcomes:

1. Compute the location and orientation of model parts using a forward kinematic approach. [Usage]
2. Compute the orientation of articulated parts of a model from a location and orientation using an inverse

kinematic approach. [Usage]
3. Describe the tradeoffs in different representations of rotations. [Assessment]
4. Implement the spline interpolation method for producing in-between positions and orientations. [Usage]
5. Implement algorithms for physical modeling of particle dynamics using simple Newtonian mechanics, for

example Witkin & Kass, snakes and worms, symplectic Euler, Stormer/Verlet, or midpoint Euler methods.
[Usage]

6. Discuss the basic ideas behind some methods for fluid dynamics for modeling ballistic trajectories, for
example for splashes, dust, fire, or smoke. [Familiarity]

7. Use common animation software to construct simple organic forms using metaball and skeleton. [Usage]

- 88 -

GV/Visualization
[Elective]
Visualization has strong ties to the Human-Computer Interaction (HCI) knowledge area as well
as Computational Science (CN). Readers should refer to the HCI and CN KAs for additional
topics related to user population and interface evaluations.
Topics:

• Visualization of 2D/3D scalar fields: color mapping, isosurfaces
• Direct volume data rendering: ray-casting, transfer functions, segmentation
• Visualization of:

o Vector fields and flow data
o Time-varying data
o High-dimensional data: dimension reduction, parallel coordinates,
o Non-spatial data: multi-variate, tree/graph structured, text

• Perceptual and cognitive foundations that drive visual abstractions
• Visualization design
• Evaluation of visualization methods
• Applications of visualization

Learning Outcomes:

1. Describe the basic algorithms for scalar and vector visualization. [Familiarity]
2. Describe the tradeoffs of visualization algorithms in terms of accuracy and performance. [Assessment]
3. Propose a suitable visualization design for a particular combination of data characteristics and application

tasks. [Assessment]
4. Analyze the effectiveness of a given visualization for a particular task. [Assessment]
5. Design a process to evaluate the utility of a visualization algorithm or system. [Assessment]
6. Recognize a variety of applications of visualization including representations of scientific, medical, and

mathematical data; flow visualization; and spatial analysis. [Familiarity]

Human-Computer Interaction (HCI)

Human-computer interaction (HCI) is concerned with designing interactions between human

activities and the computational systems that support them, and with constructing interfaces to

afford those interactions.

Interaction between users and computational artefacts occurs at an interface that includes both

software and hardware. Thus interface design impacts the software life-cycle in that it should

occur early; the design and implementation of core functionality can influence the user interface

– for better or worse.

Because it deals with people as well as computational systems, as a knowledge area HCI

demands the consideration of cultural, social, organizational, cognitive and perceptual issues.

Consequently it draws on a variety of disciplinary traditions, including psychology, ergonomics,

computer science, graphic and product design, anthropology and engineering.

HCI: Human Computer Interaction (4 Core-Tier1 hours, 4 Core-Tier2 hours)

 Core-Tier1
hours

Core-Tier2
hours

Includes
Electives

HCI/Foundations 4 N

HCI/Designing Interaction 4 N

HCI/Programming Interactive Systems Y

HCI/User-Centered Design & Testing Y

HCI/New Interactive Technologies Y

HCI/Collaboration & Communication Y

HCI/Statistical Methods for HCI Y

HCI/Human Factors & Security Y

HCI/Design-Oriented HCI Y

HCI/Mixed, Augmented and Virtual
Reality

 Y

- 90 -

HCI/Foundations
[4 Core-Tier1 hours]
Motivation: For end-users, the interface is the system. So design in this domain must be
interaction-focused and human-centered. Students need a different repertoire of techniques to
address this than is provided elsewhere in the curriculum.
Topics:

• Contexts for HCI (anything with a user interface, e.g., webpage, business applications, mobile applications,
and games)

• Processes for user-centered development, e.g., early focus on users, empirical testing, iterative design
• Different measures for evaluation, e.g., utility, efficiency, learnability, user satisfaction
• Usability heuristics and the principles of usability testing
• Physical capabilities that inform interaction design, e.g., color perception, ergonomics
• Cognitive models that inform interaction design, e.g., attention, perception and recognition, movement, and

memory; gulfs of expectation and execution
• Social models that inform interaction design, e.g., culture, communication, networks and organizations
• Principles of good design and good designers; engineering tradeoffs
• Accessibility, e.g., interfaces for differently-abled populations (e.g., blind, motion-impaired)
• Interfaces for differently-aged population groups (e.g., children, 80+)

Learning Outcomes:

1. Discuss why human-centered software development is important. [Familiarity]
2. Summarize the basic precepts of psychological and social interaction. [Familiarity]
3. Develop and use a conceptual vocabulary for analyzing human interaction with software: affordance,

conceptual model, feedback, and so forth. [Usage]
4. Define a user-centered design process that explicitly takes account of the fact that the user is not like the

developer or their acquaintances. [Usage]
5. Create and conduct a simple usability test for an existing software application. [Assessment]

HCI/Designing Interaction
[4 Core-Tier2 hours]
Motivation: CS students need a minimal set of well-established methods and tools to bring to
interface construction.
Topics:

• Principles of graphical user interfaces (GUIs)
• Elements of visual design (layout, color, fonts, labeling)
• Task analysis, including qualitative aspects of generating task analytic models
• Low-fidelity (paper) prototyping
• Quantitative evaluation techniques, e.g., keystroke-level evaluation
• Help and documentation
• Handling human/system failure
• User interface standards

- 91 -

Learning Outcomes:

1. For an identified user group, undertake and document an analysis of their needs. [Assessment]
2. Create a simple application, together with help and documentation, that supports a graphical user

interface. [Usage]
3. Conduct a quantitative evaluation and discuss/report the results. [Usage]
4. Discuss at least one national or international user interface design standard. [Familiarity]

HCI/Programming Interactive Systems
[Elective]
Motivation: To take a user-experience-centered view of software development and then cover
approaches and technologies to make that happen.
Topics:

• Software Architecture Patterns, e.g., Model-View controller; command objects, online, offline (cross
reference PL/Event Driven and Reactive Programming, where MVC is used in the context of event-driven
programming)

• Interaction Design Patterns: visual hierarchy, navigational distance
• Event management and user interaction
• Geometry management (cross-reference GV/Geometric Modelling)
• Choosing interaction styles and interaction techniques
• Presenting information: navigation, representation, manipulation
• Interface animation techniques (e.g., scene graphs)
• Widget classes and libraries
• Modern GUI libraries (e.g. iOS, Android, JavaFX) GUI builders and UI programming environments (cross-

reference PBD/Mobile Platforms)
• Declarative Interface Specification: Stylesheets and DOMs
• Data-driven applications (database-backed web pages)
• Cross-platform design
• Design for resource-constrained devices (e.g. small, mobile devices)

Learning Outcomes:

1. Explain the importance of Model-View controller to interface programming. [Familiarity]
2. Create an application with a modern graphical user interface. [Usage]
3. Identify commonalities and differences in UIs across different platforms. [Familiarity]
4. Explain and use GUI programming concepts: event handling, constraint-based layout management, etc.

[Familiarity]

- 92 -

HCI/User-Centered Design and Testing
[Elective]
Motivation: An exploration of techniques to ensure that end-users are fully considered at all
stages of the design process, from inception to implementation.
Topics:

• Approaches to, and characteristics of, the design process
• Functionality and usability requirements (cross-reference to SE/Requirements Engineering)
• Techniques for gathering requirements, e.g., interviews, surveys, ethnographic and contextual enquiry
• Techniques and tools for the analysis and presentation of requirements, e.g., reports, personas
• Prototyping techniques and tools, e.g., sketching, storyboards, low-fidelity prototyping, wireframes
• Evaluation without users, using both qualitative and quantitative techniques, e.g., walkthroughs, GOMS,

expert-based analysis, heuristics, guidelines, and standards
• Evaluation with users, e.g., observation, think-aloud, interview, survey, experiment
• Challenges to effective evaluation, e.g., sampling, generalization
• Reporting the results of evaluations
• Internationalization, designing for users from other cultures, cross-cultural

Learning Outcomes:

1. Explain how user-centered design complements other software process models. [Familiarity]
2. Use lo-fi (low fidelity) prototyping techniques to gather, and report, user responses. [Usage]
3. Choose appropriate methods to support the development of a specific UI. [Assessment]
4. Use a variety of techniques to evaluate a given UI. [Assessment]
5. Compare the constraints and benefits of different evaluative methods. [Assessment]

HCI/New Interactive Technologies
[Elective]
Motivation: As technologies evolve, new interaction styles are made possible. This knowledge
unit should be considered extensible, to track emergent technology.
Topics:

• Choosing interaction styles and interaction techniques
• Representing information to users: navigation, representation, manipulation
• Approaches to design, implementation and evaluation of non-mouse interaction

o Touch and multi-touch interfaces
o Shared, embodied, and large interfaces
o New input modalities (such as sensor and location data)
o New Windows, e.g., iPhone, Android
o Speech recognition and natural language processing (cross reference IS/Natural Language

Processing)
o Wearable and tangible interfaces
o Persuasive interaction and emotion
o Ubiquitous and context-aware interaction technologies (Ubicomp)
o Bayesian inference (e.g. predictive text, guided pointing)
o Ambient/peripheral display and interaction

- 93 -

Learning Outcomes:

1. Describe when non-mouse interfaces are appropriate. [Familiarity]
2. Understand the interaction possibilities beyond mouse-and-pointer interfaces. [Familiarity]
3. Discuss the advantages (and disadvantages) of non-mouse interfaces. [Assessment]

HCI/Collaboration and Communication
[Elective]
Motivation: Computer interfaces not only support users in achieving their individual goals but
also in their interaction with others, whether that is task-focused (work or gaming) or task-
unfocused (social networking).
Topics:

• Asynchronous group communication, e.g., e-mail, forums, social networks
• Synchronous group communication, e.g., chat rooms, conferencing, online games
• Social media, social computing, and social network analysis
• Online collaboration, 'smart' spaces, and social coordination aspects of workflow technologies
• Online communities
• Software characters and intelligent agents, virtual worlds and avatars (cross-reference IS/Agents)
• Social psychology

Learning Outcomes:

1. Describe the difference between synchronous and asynchronous communication. [Familiarity]
2. Compare the HCI issues in individual interaction with group interaction. [Assessment]
3. Discuss several issues of social concern raised by collaborative software. [Familiarity]
4. Discuss the HCI issues in software that embodies human intention. [Familiarity]

HCI/Statistical Methods for HCI
[Elective]
Motivation: Much HCI work depends on the proper use, understanding and application of
statistics. This knowledge is often held by students who join the field from psychology, but less
common in students with a CS background.
Topics:

• t-tests
• ANOVA
• Randomization (non-parametric) testing, within vs. between-subjects design
• Calculating effect size
• Exploratory data analysis
• Presenting statistical data
• Combining qualitative and quantitative results

- 94 -

Learning Outcomes:

1. Explain basic statistical concepts and their areas of application. [Familiarity]
2. Extract and articulate the statistical arguments used in papers that quantitatively report user studies.

[Usage]
3. Design a user study that will yield quantitative results. [Usage]
4. Conduct and report on a study that utilizes both qualitative and quantitative evaluation. [Usage]

HCI/Human Factors and Security
[Elective]
Motivation: Effective interface design requires basic knowledge of security psychology. Many
attacks do not have a technological basis, but exploit human propensities and vulnerabilities.
“Only amateurs attack machines; professionals target people” (Bruce Schneier,
https://www.schneier.com/blog/archives/2013/03/phishing_has_go.h.)
Topics:

• Applied psychology and security policies
• Security economics
• Regulatory environments – responsibility, liability and self-determination
• Organizational vulnerabilities and threats
• Usability design and security
• Pretext, impersonation and fraud, e.g., phishing and spear phishing (cross-reference IAS/Threats and

Attacks)
• Trust, privacy and deception
• Biometric authentication (camera, voice)
• Identity management

Learning Outcomes:

1. Explain the concepts of phishing and spear phishing, and how to recognize them. [Familiarity]
2. Describe the issues of trust in interface design with an example of a high and low trust system.

[Assessment]
3. Design a user interface for a security mechanism. [Assessment]
4. Explain the concept of identity management and its importance. [Familiarity]
5. Analyze a security policy and/or procedures to show where they consider, or fail to consider, human

factors. [Usage]

- 95 -

HCI/Design-Oriented HCI
[Elective]
Motivation: Some curricula will want to emphasize an understanding of the norms and values of
HCI work itself as emerging from, and deployed within specific historical, disciplinary and
cultural contexts.
Topics:

• Intellectual styles and perspectives to technology and its interfaces
• Consideration of HCI as a design discipline

o Sketching
o Participatory design

• Critically reflective HCI
o Critical technical practice
o Technologies for political activism
o Philosophy of user experience
o Ethnography and ethnomethodology

• Indicative domains of application
o Sustainability
o Arts-informed computing

Learning Outcomes:

1. Explain what is meant by “HCI is a design-oriented discipline”. [Familiarity]
2. Detail the processes of design appropriate to specific design orientations. [Familiarity]
3. Apply a variety of design methods to a given problem. [Usage]

HCI/Mixed, Augmented and Virtual Reality
[Elective]
Motivation: A detailed consideration of the interface components required for the creation and
development of immersive environments, especially games.
Topics:

• Output
o Sound
o Stereoscopic display
o Force feedback simulation, haptic devices

• User input
o Viewer and object tracking
o Pose and gesture recognition
o Accelerometers
o Fiducial markers
o User interface issues

• Physical modelling and rendering
o Physical simulation: collision detection & response, animation
o Visibility computation
o Time-critical rendering, multiple levels of details (LOD)

• System architectures

- 96 -

o Game engines
o Mobile augmented reality
o Flight simulators
o CAVEs
o Medical imaging

• Networking
o p2p, client-server, dead reckoning, encryption, synchronization
o Distributed collaboration

Learning Outcomes:

1. Describe the optical model realized by a computer graphics system to synthesize stereoscopic view.
[Familiarity]

2. Describe the principles of different viewer tracking technologies. [Familiarity]
3. Describe the differences between geometry- and image-based virtual reality. [Familiarity]
4. Describe the issues of user action synchronization and data consistency in a networked environment.

[Familiarity]
5. Determine the basic requirements on interface, hardware, and software configurations of a VR system for a

specified application. [Usage]
6. Describe several possible uses for games engines, including their potential and their limitations.

[Familiarity]

Information Assurance and Security (IAS)

In CS2013, the Information Assurance and Security KA is added to the Body of Knowledge in

recognition of the world’s reliance on information technology and its critical role in computer

science education. Information assurance and security as a domain is the set of controls and

processes both technical and policy intended to protect and defend information and information

systems by ensuring their confidentiality, integrity, and availability, and by providing for

authentication and non-repudiation. The concept of assurance also carries an attestation that

current and past processes and data are valid. Both assurance and security concepts are needed

to ensure a complete perspective. Information assurance and security education, then, includes

all efforts to prepare a workforce with the needed knowledge, skills, and abilities to protect our

information systems and attest to the assurance of the past and current state of processes and

data. The importance of security concepts and topics has emerged as a core requirement in the

Computer Science discipline, much like the importance of performance concepts has been for

many years.

The Information Assurance and Security KA is unique among the set of KAs presented here

given the manner in which the topics are pervasive throughout other Knowledge Areas. The

topics germane to only IAS are presented in the IAS section; other topics are noted and cross-

referenced in the IAS KA. In the IAS KA the many topics are represented with only 9 hours of

Core-Tier1 and Tier2 coverage. This is balanced with the level of mastery primarily at the

familiarity level and the more indepth coverage distributed in the referenced KAs where they are

applied. The broad application of the IAS KA concepts (63.5 hours) across all other KAs

provides the depth of coverage and mastery for an undergraduate computer science student.

The IAS KA is shown in two groups: (1) concepts where the depth is unique to Information

Assurance and Security and (2) IAS topics that are integrated into other KAs that reflect

naturally implied or specified topics with a strong role in security concepts and topics. For

completeness, the total distribution of hours is summarized in the table below.

- 98 -

IAS. Information Assurance and Security “Core” and Distributed

 Core-Tier1 hours Core-Tier2 hours Elective Topics

IAS 3 6 Y

IAS distributed in other KA’s 32 31.5 Y

IAS. Information Assurance and Security (3 Core-Tier1 hours, 6 Core-Tier2 hours)

 Core-Tier1 hours Core-Tier2 hours Includes Electives

IAS/Foundational
Concepts in Security

1 N

IAS/Principles of Secure
Design

1 1 N

IAS/Defensive
Programming

1 1 Y

IAS/Threats and Attacks 1 N

IAS/Network Security 2 Y

IAS/Cryptography 1 N

IAS/Web Security Y

IAS/Platform Security Y

IAS/Security Policy and
Governance

 Y

IAS/Digital Forensics Y

IAS/Secure Software
Engineering

 Y

The following table shows the distribution of hours throughout all other KA’s in CS2013 where

security is appropriately addressed either as fundamental to the KU topics (for example,

OS/Security or Protection or SE/Software Construction) or as a supportive use case for the topic

(for example, HCI/Foundations or NC/Routing and Forwarding or SP/Intellectual Property). The

hours represent the set of hours in that KA/KU where the topics are particularly relevant to

Information Assurance and Security.

- 99 -

IAS. Information Assurance and Security (distributed) (32 Core-Tier1 hours, 31.5
Core-Tier2 hours)

Knowledge Area and
Topic

Core-Tier1 hours Core-Tier2 hours Includes Electives

AR/Assembly Level
Machine Organization

 1

AR/Memory System
Organization and
Architecture

 0.5

AR/Multiprocessing and
Alternative
Architectures

 Y

HCI/Foundations 1

HCI/Human Factors and
Security

 Y

IM/Information
Management Concepts

0.5 0.5

IM/Transaction
Processing

 Y

IM/Distributed
Databases

 Y

IS/Reasoning Under
Uncertainty

 Y

NC/Introduction 1

NC/Networked
Applications

0.5

NC/Reliable Data
Delivery

 1.5

NC/Routing and
Forwarding

 1

NC/Local Area Networks 1

NC/Resource Allocation 0.5

NC/Mobility 1

OS/Overview of OS 2

OS/OS Principles 1

- 100 -

OS/Concurrency 1.5

OS/Scheduling and
Dispatch

 2

OS/Memory
Management

 2

OS/Security and
Protection

 2

OS/Virtual Machines Y

OS/Device Management Y

OS/File Systems Y

OS/Real Time and
Embedded Systems

 Y

OS/Fault Tolerance Y

OS/System
Performance Evaluation

 Y

PBD/Web Platforms Y

PBD/Mobile Platforms Y

PBD/Industrial
Platforms

 Y

PD/Parallelism
Fundamentals

1

PD/Parallel
Decomposition

0.5

PD/Communication and
Coordination

1 1 Y

PD/Parallel Architecture 0.5 Y

PD/Distributed Systems Y

PD/Cloud Computing Y

PL/Object-Oriented
Programming

1 3

PL/Functional
Programming

1

- 101 -

PL/Basic Type Systems 0.5 2

PL/Language
Translation and
Execution

 1

PL/Runtime Systems Y

PL/Static Analysis Y

PL/Concurrency and
Parallelism

 Y

PL/Type Systems Y

SDF/Fundamental
Programming Concepts

1

SDF/Development
Methods

8

SE/Software Processes 1

SE/Software Project
Management

 1 Y

SE/Tools and
Environments

 1

SE/Software
Construction

 2 Y

SE/Software Verification
and Validation

 1 Y

SE/Software Evolution 1.5

SE/Software Reliability 1

SF/Cross-Layer
Communications

3

SF/Parallelism 1

SF/Resource Allocation
and Scheduling

0.5

SF/Virtualization and
Isolation

 1

SF/Reliability through
Redundancy

 2

- 102 -

SP/Social Context 0.5

SP/Analytical Tools 1

SP/Professional Ethics 1 0.5

SP/Intellectual Property 2 Y

SP/Privacy and Civil
Liberties

0.5

SP/Security Policies,
Laws and Computer
Crimes

 Y

IAS/Foundational Concepts in Security
[1 Core-Tier1 hour]
Topics:

• CIA (Confidentiality, Integrity, Availability)
• Concepts of risk, threats, vulnerabilities, and attack vectors (cros- reference SE/Software Project

Management/Risk)
• Authentication and authorization, access control (mandatory vs. discretionary)
• Concept of trust and trustworthiness
• Ethics (responsible disclosure). (cross-reference SP/Professional Ethics/Accountability, responsibility and

liability)

Learning outcomes:

1. Analyze the tradeoffs of balancing key security properties (Confidentiality, Integrity, and Availability).
[Usage]

2. Describe the concepts of risk, threats, vulnerabilities and attack vectors (including the fact that there is no
such thing as perfect security). [Familiarity]

3. Explain the concepts of authentication, authorization, access control. [Familiarity]
4. Explain the concept of trust and trustworthiness. [Familiarity]
5. Describe important ethical issues to consider in computer security, including ethical issues associated with

fixing or not fixing vulnerabilities and disclosing or not disclosing vulnerabilities. [Familiarity]

- 103 -

IAS/Principles of Secure Design
[1 Core-Tier1 hour, 1 Core-Tier2 hour]
Topics:

. [Core-Tier1]

• Least privilege and isolation (cross-reference OS/Security and Protection/Policy/mechanism separation
and SF/Virtualization and Isolation/Rationale for protection and predictable performance and PL/Language
Translation and Execution/Memory management)

• Fail-safe defaults (cross-reference SE/Software Construction/ Coding practices: techniques,
idioms/patterns, mechanisms for building quality programs and SDF/Development Methods/Programming
correctness)

• Open design (cross-reference SE/Software Evolution/ Software development in the context of large, pre-
existing code bases)

• End-to-end security (cross-reference SF/Reliability through Redundancy/ How errors increase the longer
the distance between the communicating entities; the end-to-end principle)

• Defense in depth (e.g., defensive programming, layered defense)
• Security by design (cross-reference SE/Software Design/System design principles)
• Tensions between security and other design goals

[Core-Tier2]

• Complete mediation
• Use of vetted security components
• Economy of mechanism (reducing trusted computing base, minimize attack surface) (cross-reference

SE/Software Design/System design principles and SE/Software Construction/Development context: “green
field” vs. existing code base)

• Usable security (cross-reference HCI/Foundations/Cognitive models that inform interaction design)
• Security composability
• Prevention, detection, and deterrence (cross-reference SF/Reliability through Redundancy/Distinction

between bugs and faults and NC/Reliable Data Delivery/Error control and NC/Reliable Data Delivery/Flow
control)

Learning outcomes:

[Core-Tier1]

1. Describe the principle of least privilege and isolation as applied to system design. [Familiarity]
2. Summarize the principle of fail-safe and deny-by-default. [Familiarity]
3. Discuss the implications of relying on open design or the secrecy of design for security. [Familiarity]
4. Explain the goals of end-to-end data security. [Familiarity]
5. Discuss the benefits of having multiple layers of defenses. [Familiarity]
6. For each stage in the lifecycle of a product, describe what security considerations should be evaluated.

[Familiarity]
7. Describe the cost and tradeoffs associated with designing security into a product. [Familiarity]

[Core-Tier2]

8. Describe the concept of mediation and the principle of complete mediation. [Familiarity]
9. Describe standard components for security operations, and explain the benefits of their use instead of re-

inventing fundamentals operations. [Familiarity]
10. Explain the concept of trusted computing including trusted computing base and attack surface and the

principle of minimizing trusted computing base. [Familiarity]

- 104 -

11. Discuss the importance of usability in security mechanism design. [Familiarity]
12. Describe security issues that arise at boundaries between multiple components. [Familiarity]
13. Identify the different roles of prevention mechanisms and detection/deterrence mechanisms. [Familiarity]

IAS/Defensive Programming
[1 Core-Tier1 hour, 1 Core-Tier2 hour]
Topics in defensive programming are generally not thought about in isolation, but applied to
other topics particularly in SDF, SE and PD Knowledge Areas.

Topics:

[Core-Tier1]

• Input validation and data sanitization (cross-reference SDF/Development Methods/Program Correctness)
• Choice of programming language and type-safe languages
• Examples of input validation and data sanitization errors (cross-reference SDF/Development

Methods/Program Correctness and SE/Software Construction/Coding Practices)
o Buffer overflows
o Integer errors
o SQL injection
o XSS vulnerability

• Race conditions (cross-reference SF/Parallelism/Parallel programming and PD/Parallel Architecture/Shared
vs. distributed memory and PD/Communication and Coordination/Shared Memory and PD/Parallelism
Fundamentals/Programming errors not found in sequential programming)

• Correct handling of exceptions and unexpected behaviors (cross-reference SDF/Development
Methods/program correctness)

[Core-Tier2]

• Correct usage of third-party components (cross-reference SDF/Development Methods/program correctness
and Operating System Principles/Concepts of application program interfaces (APIs)

• Effectively deploying security updates (cross-reference OS/Security and Protection/Security methods and
devices)

[Electives]

• Information flow control
• Correctly generating randomness for security purposes
• Mechanisms for detecting and mitigating input and data sanitization errors
• Fuzzing
• Static analysis and dynamic analysis
• Program verification
• Operating system support (e.g., address space randomization, canaries)
• Hardware support (e.g., DEP, TPM)

- 105 -

Learning outcomes:

[Core-Tier1]

1. Explain why input validation and data sanitization is necessary in the face of adversarial control of the
input channel. [Familiarity]

2. Explain why you might choose to develop a program in a type-safe language like Java, in contrast to an
unsafe programming language like C/C++. [Familiarity]

3. Classify common input validation errors, and write correct input validation code. [Usage]
4. Demonstrate using a high-level programming language how to prevent a race condition from occurring and

how to handle an exception. [Usage]
5. Demonstrate the identification and graceful handling of error conditions. [Usage]

[Core-Tier2]

6. Explain the risks with misusing interfaces with third-party code and how to correctly use third-party code.
[Familiarity]

7. Discuss the need to update software to fix security vulnerabilities and the lifecycle management of the fix.
[Familiarity]

[Elective]
8. List examples of direct and indirect information flows. [Familiarity]
9. Explain the role of random numbers in security, beyond just cryptography (e.g. password generation,

randomized algorithms to avoid algorithmic denial of service attacks). [Familiarity]
10. Explain the different types of mechanisms for detecting and mitigating data sanitization errors.

[Familiarity]
11. Demonstrate how programs are tested for input handling errors. [Usage]
12. Use static and dynamic tools to identify programming faults. [Usage]
13. Describe how memory architecture is used to protect runtime attacks. [Familiarity]

IAS/Threats and Attacks
[1 Core-Tier2 hour]
Topics:

[Core-Tier2]

• Attacker goals, capabilities, and motivations (such as underground economy, digital espionage,
cyberwarfare, insider threats, hacktivism, advanced persistent threats)

• Examples of malware (e.g., viruses, worms, spyware, botnets, Trojan horses or rootkits)
• Denial of Service (DoS) and Distributed Denial of Service (DDoS)
• Social engineering (e.g., phishing) (cross-reference SP/Social Context/Social implications of computing in

a networked world and HCI/Designing Interaction/Handling human/system failure)

[Elective]

• Attacks on privacy and anonymity (cross-reference HCI/Foundations/Social models that inform interaction
design: culture, communication, networks and organizations (cross-reference SP/Privacy and Civil
Liberties/technology-based solutions for privacy protection)

• Malware/unwanted communication such as covert channels and steganography

- 106 -

Learning outcomes:

[Core-Tier2]

1. Describe likely attacker types against a particular system. [Familiarity]
2. Discuss the limitations of malware countermeasures (e.g., signature-based detection, behavioral detection).

[Familiarity]
3. Identify instances of social engineering attacks and Denial of Service attacks. [Familiarity]
4. Discuss how Denial of Service attacks can be identified and mitigated. [Familiarity]

[Elective]

5. Describe risks to privacy and anonymity in commonly used applications. [Familiarity]
6. Discuss the concepts of covert channels and other data leakage procedures. [Familiarity]

IAS/Network Security
[2 Core-Tier2 hours]
Discussion of network security relies on previous understanding on fundamental concepts of
networking, including protocols, such as TCP/IP, and network architecture/organization (cross-
reference NC/Network Communication).
Topics:

[Core-Tier2]

• Network specific threats and attack types (e.g., denial of service, spoofing, sniffing and traffic redirection,
man-in-the-middle, message integrity attacks, routing attacks, and traffic analysis)

• Use of cryptography for data and network security
• Architectures for secure networks (e.g., secure channels, secure routing protocols, secure DNS, VPNs,

anonymous communication protocols, isolation)
• Defense mechanisms and countermeasures (e.g., network monitoring, intrusion detection, firewalls,

spoofing and DoS protection, honeypots, tracebacks)

. [Elective]

• Security for wireless, cellular networks (cross-reference NC/Mobility/Principles of cellular networks;
cross-reference NC/Mobility/802.11)

• Other non-wired networks (e.g., ad hoc, sensor, and vehicular networks)
• Censorship resistance
• Operational network security management (e.g., configure network access control)

Learning outcomes:

[Core-Tier2]

1. Describe the different categories of network threats and attacks. [Familiarity]
2. Describe the architecture for public and private key cryptography and how public key infrastructure (PKI)

supports network security. [Familiarity]
3. Describe virtues and limitations of security technologies at each layer of the network stack. [Familiarity]
4. Identify the appropriate defense mechanism(s) and its limitations given a network threat. [Familiarity]

[Elective]

5. Discuss security properties and limitations of other non-wired networks. [Familiarity]
6. Identify the additional threats faced by non-wired networks. [Familiarity]

- 107 -

7. Describe threats that can and cannot be protected against using secure communication channels.
[Familiarity]

8. Summarize defenses against network censorship. [Familiarity]
9. Diagram a network for security. [Familiarity]

IAS/Cryptography
[1 Core-Tier2 hour]
Topics:

[Core-Tier2]

• Basic Cryptography Terminology covering notions pertaining to the different (communication) partners,
secure/unsecure channel, attackers and their capabilities, encryption, decryption, keys and their
characteristics, signatures

• Cipher types (e.g., Caesar cipher, affine cipher) together with typical attack methods such as frequency
analysis

• Public Key Infrastructure support for digital signature and encryption and its challenges

[Elective]

• Mathematical Preliminaries essential for cryptography, including topics in linear algebra, number theory,
probability theory, and statistics

• Cryptographic primitives:
o pseudo-random generators and stream ciphers
o block ciphers (pseudo-random permutations), e.g., AES
o pseudo-random functions
o hash functions, e.g., SHA2, collision resistance
o message authentication codes
o key derivations functions

• Symmetric key cryptography
o Perfect secrecy and the one time pad
o Modes of operation for semantic security and authenticated encryption (e.g., encrypt-then-MAC,

OCB, GCM)
o Message integrity (e.g., CMAC, HMAC)

• Public key cryptography:
o Trapdoor permutation, e.g., RSA
o Public key encryption, e.g., RSA encryption, EI Gamal encryption
o Digital signatures
o Public-key infrastructure (PKI) and certificates
o Hardness assumptions, e.g., Diffie-Hellman, integer factoring

• Authenticated key exchange protocols, e.g., TLS
• Cryptographic protocols: challenge-response authentication, zero-knowledge protocols, commitment,

oblivious transfer, secure 2-party or multi-party computation, secret sharing, and applications
• Motivate concepts using real-world applications, e.g., electronic cash, secure channels between clients and

servers, secure electronic mail, entity authentication, device pairing, voting systems.
• Security definitions and attacks on cryptographic primitives:

o Goals: indistinguishability, unforgeability, collision-resistance
o Attacker capabilities: chosen-message attack (for signatures), birthday attacks, side channel

attacks, fault injection attacks.
• Cryptographic standards and references implementations
• Quantum cryptography

- 108 -

Learning outcomes:

[Core-Tier2]

1. Describe the purpose of cryptography and list ways it is used in data communications. [Familiarity]
2. Define the following terms: cipher, cryptanalysis, cryptographic algorithm, and cryptology, and describe

the two basic methods (ciphers) for transforming plain text in cipher text. [Familiarity]
3. Discuss the importance of prime numbers in cryptography and explain their use in cryptographic

algorithms. [Familiarity]
4. Explain how public key infrastructure supports digital signing and encryption and discuss the

limitations/vulnerabilities. [Familiarity]

[Elective]

5. Use cryptographic primitives and describe their basic properties. [Usage]
6. Illustrate how to measure entropy and how to generate cryptographic randomness. [Usage]
7. Use public-key primitives and their applications. [Usage]
8. Explain how key exchange protocols work and how they fail. [Familiarity]
9. Discuss cryptographic protocols and their properties. [Familiarity]
10. Describe real-world applications of cryptographic primitives and protocols. [Familiarity]
11. Summarize security definitions related to attacks on cryptographic primitives, including attacker

capabilities and goals.[Familiarity]
12. Apply appropriate known cryptographic techniques for a given scenario. [Usage]
13. Appreciate the dangers of inventing one’s own cryptographic methods. [Familiarity]
14. Describe quantum cryptography and the impact of quantum computing on cryptographic algorithms.

[Familiarity]

IAS/Web Security

[Elective]
Topics:

• Web security model
o Browser security model including same-origin policy
o Client-server trust boundaries, e.g., cannot rely on secure execution in the client

• Session management, authentication
o Single sign-on
o HTTPS and certificates

• Application vulnerabilities and defenses
o SQL injection
o XSS
o CSRF

• Client-side security
o Cookies security policy
o HTTP security extensions, e.g. HSTS
o Plugins, extensions, and web apps
o Web user tracking

• Server-side security tools, e.g. Web Application Firewalls (WAFs) and fuzzers

Learning outcomes:

1. Describe the browser security model including same-origin policy and threat models in web security.
[Familiarity]

- 109 -

2. Discuss the concept of web sessions, secure communication channels such as TLS and importance of
secure certificates, authentication including single sign-on such as OAuth and SAML. [Familiarity]

3. Describe common types of vulnerabilities and attacks in web applications, and defenses against them.
[Familiarity]

4. Use client-side security capabilities in an application. [Usage]

IAS/Platform Security

[Elective]
Topics:

• Code integrity and code signing
• Secure boot, measured boot, and root of trust
• Attestation
• TPM and secure co-processors
• Security threats from peripherals, e.g., DMA, IOMMU
• Physical attacks: hardware Trojans, memory probes, cold boot attacks
• Security of embedded devices, e.g., medical devices, cars
• Trusted path

Learning outcomes:

1. Explain the concept of code integrity and code signing and the scope it applies to. [Familiarity]
2. Discuss the concept of root of trust and the process of secure boot and secure loading. [Familiarity]
3. Describe the mechanism of remote attestation of system integrity. [Familiarity]
4. Summarize the goals and key primitives of TPM. [Familiarity]
5. Identify the threats of plugging peripherals into a device. [Familiarity]
6. Identify physical attacks and countermeasures. [Familiarity]
7. Identify attacks on non-PC hardware platforms. [Familiarity]
8. Discuss the concept and importance of trusted path. [Familiarity]

IAS/Security Policy and Governance

[Elective]
See general cross-referencing with the SP/Security Policies, Laws and Computer Crimes.

Topics:

• Privacy policy (cross-reference SP/Social Context/Social implications of computing in a networked world;
cross-reference SP/Professional Ethics/Accountability, responsibility and liability; cross-reference
SP/Privacy and Civil Liberties/Legal foundations of privacy protection)

• Inference controls/statistical disclosure limitation
• Backup policy, password refresh policy
• Breach disclosure policy
• Data collection and retention policies
• Supply chain policy
• Cloud security tradeoffs

- 110 -

Learning outcomes:

1. Describe the concept of privacy including personally private information, potential violations of privacy
due to security mechanisms, and describe how privacy protection mechanisms run in conflict with security
mechanisms. [Familiarity]

2. Describe how an attacker can infer a secret by interacting with a database. [Familiarity]
3. Explain how to set a data backup policy or password refresh policy. [Familiarity]
4. Discuss how to set a breach disclosure policy. [Familiarity]
5. Describe the consequences of data retention policies. [Familiarity]
6. Identify the risks of relying on outsourced manufacturing. [Familiarity]
7. Identify the risks and benefits of outsourcing to the cloud. [Familiarity]

IAS/Digital Forensics

[Elective]
Topics:

• Basic Principles and methodologies for digital forensics
• Design systems with forensic needs in mind
• Rules of Evidence – general concepts and differences between jurisdictions and Chain of Custody
• Search and Seizure of evidence: legal and procedural requirements
• Digital Evidence methods and standards
• Techniques and standards for Preservation of Data
• Legal and Reporting Issues including working as an expert witness
• OS/File System Forensics
• Application Forensics
• Web Forensics
• Network Forensics
• Mobile Device Forensics
• Computer/network/system attacks
• Attack detection and investigation
• Anti-forensics

Learning outcomes:

1. Describe what a digital investigation is, the sources of digital evidence, and the limitations of forensics.
[Familiarity]

2. Explain how to design software to support forensics. [Familiarity]
3. Describe the legal requirements for use of seized data. [Familiarity]
4. Describe the process of evidence seizure from the time when the requirement was identified to the

disposition of the data. [Familiarity]
5. Describe how data collection is accomplished and the proper storage of the original and forensics copy.

[Familiarity]
6. Conduct data collection on a hard drive. [Usage]
7. Describe a person’s responsibility and liability while testifying as a forensics examiner. [Familiarity]
8. Recover data based on a given search term from an imaged system. [Usage]
9. Reconstruct application history from application artifacts. [Usage]
10. Reconstruct web browsing history from web artifacts. [Usage]
11. Capture and interpret network traffic. [Usage]
12. Discuss the challenges associated with mobile device forensics. [Familiarity]
13. Inspect a system (network, computer, or application) for the presence of malware or malicious activity.

[Usage]
14. Apply forensics tools to investigate security breaches. [Usage]
15. Identify anti-forensic methods. [Familiarity]

- 111 -

IAS/Secure Software Engineering
[Elective]
Fundamentals of secure coding practices covered in other knowledge areas, including SDF and
SE. For example, see SE/Software Construction; Software Verification and Validation.

Topics:

• Building security into the software development lifecycle (cross-reference SE/Software Processes)
• Secure design principles and patterns
• Secure software specifications and requirements
• Secure software development practices (cross-reference SE/Software Construction)
• Secure testing - the process of testing that security requirements are met (including static and dynamic

analysis).
• Software quality assurance and benchmarking measurements

Learning outcomes:

1. Describe the requirements for integrating security into the software development lifecycle. [Familiarity]
2. Apply the concepts of the Design Principles for Protection Mechanisms, the Principles for Software

Security [2], and the Principles for Secure Design [1] on a software development project. [Usage]
3. Develop specifications for a software development effort that fully specify functional requirements and

identifies the expected execution paths. [Usage]
4. Describe software development best practices for minimizing vulnerabilities in programming code.

[Familiarity]
5. Conduct a security verification and assessment (static and dynamic) of a software application. [Usage]

References

[1] Gasser, M. Building a Secure Computer System, Van Nostrand Reinhold, 1988.

[2] Viega, J. and McGraw, G. Building Secure Software: How to Avoid Security Problems
the Right Way, Addison-Wesley, 2002.

Information Management (IM)

Information Management is primarily concerned with the capture, digitization, representation,

organization, transformation, and presentation of information; algorithms for efficient and

effective access and updating of stored information; data modeling and abstraction; and physical

file storage techniques. The student needs to be able to develop conceptual and physical data

models, determine which IM methods and techniques are appropriate for a given problem, and be

able to select and implement an appropriate IM solution that addresses relevant design concerns

including scalability, accessibility and usability.

We also note that IM is related to fundamental information security concepts that are described

in the Information Assurance and Security (IAS) topic area, IAS/Fundamental Concepts.

IM. Information Management (1 Core-Tier1 hour; 9 Core-Tier2 hours)

 Core-Tier1 hours Core-Tier2 hours Includes Electives

IM/Information Management Concepts 1 2 N

IM/Database Systems 3 Y

IM/Data Modeling 4 N

IM/Indexing Y

IM/Relational Databases Y

IM/Query Languages Y

IM/Transaction Processing Y

IM/Distributed Databases Y

IM/Physical Database Design Y

IM/Data Mining Y

IM/Information Storage And Retrieval Y

IM/MultiMedia Systems Y

IM. Information Management-related topics (distributed) (1 Core-Tier1 hour, 2
Core-Tier2 hours)

 Core-Tier1 hours Core-Tier2 hours Includes Electives

IAS/Fundamental Concepts* 1 2 N
* See Information Assurance and Security Knowledge Area for a description of this topic area.

- 113 -

IM/Information Management Concepts
[1 Core-Tier1 hour; 2 Core-Tier2 hours]
Topics:

[Core-Tier1]

• Information systems as socio-technical systems
• Basic information storage and retrieval (IS&R) concepts
• Information capture and representation
• Supporting human needs: searching, retrieving, linking, browsing, navigating

[Core-Tier2]

• Information management applications
• Declarative and navigational queries, use of links
• Analysis and indexing
• Quality issues: reliability, scalability, efficiency, and effectiveness

Learning Outcomes:

[Core-Tier1]

1. Describe how humans gain access to information and data to support their needs. [Familiarity]
2. Describe the advantages and disadvantages of central organizational control over data. [Assessment]
3. Identify the careers/roles associated with information management (e.g., database administrator, data

modeler, application developer, end-user). [Familiarity]
4. Compare and contrast information with data and knowledge. [Assessment]
5. Demonstrate uses of explicitly stored metadata/schema associated with data. [Usage]
6. Identify issues of data persistence for an organization. [Familiarity]

[Core-Tier2]

7. Critique an information application with regard to satisfying user information needs. [Assessment]
8. Explain uses of declarative queries. [Familiarity]
9. Give a declarative version for a navigational query. [Familiarity]
10. Describe several technical solutions to the problems related to information privacy, integrity, security, and

preservation. [Familiarity]
11. Explain measures of efficiency (throughput, response time) and effectiveness (recall, precision).

[Familiarity]
12. Describe approaches to scale up information systems. [Familiarity]
13. Identify vulnerabilities and failure scenarios in common forms of information systems. [Usage]

IM/Database Systems
[3 Core-Tier2 hours]
Topics:

[Core-Tier2]

• Approaches to and evolution of database systems
• Components of database systems

- 114 -

• Design of core DBMS functions (e.g., query mechanisms, transaction management, buffer management,
access methods)

• Database architecture and data independence
• Use of a declarative query language
• Systems supporting structured and/or stream content

[Elective]

• Approaches for managing large volumes of data (e.g., noSQL database systems, use of MapReduce).

Learning Outcomes:

[Core-Tier2]

1. Explain the characteristics that distinguish the database approach from the approach of programming with
data files. [Familiarity]

2. Describe the most common designs for core database system components including the query optimizer,
query executor, storage manager, access methods, and transaction processor. [Familiarity]

3. Cite the basic goals, functions, and models of database systems. [Familiarity]
4. Describe the components of a database system and give examples of their use. [Familiarity]
5. Identify major DBMS functions and describe their role in a database system. [Familiarity]
6. Explain the concept of data independence and its importance in a database system. [Familiarity]
7. Use a declarative query language to elicit information from a database. [Usage]
8. Describe facilities that datatbases provide supporting structures and/or stream (sequence) data, e.g., text.

[Familiarity]

[Elective]

9. Describe major approaches to storing and processing large volumes of data. [Familiarity]

IM/Data Modeling
[4 Core-Tier2 hours]
Topics:

• Data modeling
• Conceptual models (e.g., entity-relationship, UML diagrams)
• Spreadsheet models
• Relational data models
• Object-oriented models (cross-reference PL/Object-Oriented Programming)
• Semi-structured data model (expressed using DTD or XML Schema, for example)

Learning Outcomes:

1. Compare and contrast appropriate data models, including internal structures, for different types of data.
[Assessment]

2. Describe concepts in modeling notation (e.g., Entity-Relation Diagrams or UML) and how they would be
used. [Familiarity]

3. Define the fundamental terminology used in the relational data model. [Familiarity]
4. Describe the basic principles of the relational data model. [Familiarity]
5. Apply the modeling concepts and notation of the relational data model. [Usage]
6. Describe the main concepts of the OO model such as object identity, type constructors, encapsulation,

inheritance, polymorphism, and versioning. [Familiarity]

- 115 -

7. Describe the differences between relational and semi-structured data models. [Assessment]
8. Give a semi-structured equivalent (e.g., in DTD or XML Schema) for a given relational schema. [Usage]

IM/Indexing
[Elective]
Topics:

• The impact of indices on query performance
• The basic structure of an index
• Keeping a buffer of data in memory
• Creating indexes with SQL
• Indexing text
• Indexing the web (e.g., web crawling)

Learning Outcomes:

1. Generate an index file for a collection of resources. [Usage]
2. Explain the role of an inverted index in locating a document in a collection. [Familiarity]
3. Explain how stemming and stop words affect indexing. [Familiarity]
4. Identify appropriate indices for given relational schema and query set. [Usage]
5. Estimate time to retrieve information, when indices are used compared to when they are not used. [Usage]
6. Describe key challenges in web crawling, e.g., detecting duplicate documents, determining the crawling

frontier. [Familiarity]

IM/Relational Databases
[Elective]
Topics:

• Mapping conceptual schema to a relational schema
• Entity and referential integrity
• Relational algebra and relational calculus
• Relational Database design
• Functional dependency
• Decomposition of a schema; lossless-join and dependency-preservation properties of a decomposition
• Candidate keys, superkeys, and closure of a set of attributes
• Normal forms (BCNF)
• Multi-valued dependency (4NF)
• Join dependency (PJNF, 5NF)
• Representation theory

Learning Outcomes:

1. Prepare a relational schema from a conceptual model developed using the entity- relationship model.
[Usage]

2. Explain and demonstrate the concepts of entity integrity constraint and referential integrity constraint
(including definition of the concept of a foreign key). [Usage]

- 116 -

3. Demonstrate use of the relational algebra operations from mathematical set theory (union, intersection,
difference, and Cartesian product) and the relational algebra operations developed specifically for relational
databases (select (restrict), project, join, and division). [Usage]

4. Write queries in the relational algebra. [Usage]
5. Write queries in the tuple relational calculus. [Usage]
6. Determine the functional dependency between two or more attributes that are a subset of a relation.

[Assessment]
7. Connect constraints expressed as primary key and foreign key, with functional dependencies. [Usage]
8. Compute the closure of a set of attributes under given functional dependencies. [Usage]
9. Determine whether a set of attributes form a superkey and/or candidate key for a relation with given

functional dependencies. [Assessment]
10. Evaluate a proposed decomposition, to say whether it has lossless-join and dependency-preservation.

[Assessment]
11. Describe the properties of BCNF, PJNF, 5NF. [Familiarity]
12. Explain the impact of normalization on the efficiency of database operations especially query optimization.

[Familiarity]
13. Describe what is a multi-valued dependency and what type of constraints it specifies. [Familiarity]

IM/Query Languages
[Elective]
Topics:

• Overview of database languages
• SQL (data definition, query formulation, update sublanguage, constraints, integrity)
• Selections
• Projections
• Select-project-join
• Aggregates and group-by
• Subqueries
• QBE and 4th-generation environments
• Different ways to invoke non-procedural queries in conventional languages
• Introduction to other major query languages (e.g., XPATH, SPARQL)
• Stored procedures

Learning Outcomes:

1. Create a relational database schema in SQL that incorporates key, entity integrity, and referential integrity
constraints. [Usage]

2. Use SQL to create tables and retrieve (SELECT) information from a database. [Usage]
3. Evaluate a set of query processing strategies and select the optimal strategy. [Assessment]
4. Create a non-procedural query by filling in templates of relations to construct an example of the desired

query result. [Usage]
5. Embed object-oriented queries into a stand-alone language such as C++ or Java (e.g., SELECT

Col.Method() FROM Object). [Usage]
6. Write a stored procedure that deals with parameters and has some control flow, to provide a given

functionality. [Usage]

- 117 -

IM/Transaction Processing
[Elective]
Topics:

• Transactions
• Failure and recovery
• Concurrency control
• Interaction of transaction management with storage, especially buffering

Learning Outcomes:

1. Create a transaction by embedding SQL into an application program. [Usage]
2. Explain the concept of implicit commits. [Familiarity]
3. Describe the issues specific to efficient transaction execution. [Familiarity]
4. Explain when and why rollback is needed and how logging assures proper rollback. [Assessment]
5. Explain the effect of different isolation levels on the concurrency control mechanisms. [Assessment]
6. Choose the proper isolation level for implementing a specified transaction protocol. [Assessment]
7. Identify appropriate transaction boundaries in application programs. [Assessment]

IM/Distributed Databases
[Elective]
Topics:

• Distributed DBMS
o Distributed data storage
o Distributed query processing
o Distributed transaction model
o Homogeneous and heterogeneous solutions
o Client-server distributed databases (cross-reference SF/Computational Paradigms)

• Parallel DBMS
o Parallel DBMS architectures: shared memory, shared disk, shared nothing;
o Speedup and scale-up, e.g., use of the MapReduce processing model (cross-reference

CN/Processing, PD/Parallel Decomposition)
o Data replication and weak consistency models

Learning Outcomes:

1. Explain the techniques used for data fragmentation, replication, and allocation during the distributed
database design process. [Familiarity]

2. Evaluate simple strategies for executing a distributed query to select the strategy that minimizes the amount
of data transfer. [Assessment]

3. Explain how the two-phase commit protocol is used to deal with committing a transaction that accesses
databases stored on multiple nodes. [Familiarity]

4. Describe distributed concurrency control based on the distinguished copy techniques and the voting
method. [Familiarity]

5. Describe the three levels of software in the client-server model. [Familiarity]

- 118 -

IM/Physical Database Design
[Elective]
Topics:

• Storage and file structure
• Indexed files
• Hashed files
• Signature files
• B-trees
• Files with dense index
• Files with variable length records
• Database efficiency and tuning

Learning Outcomes:

1. Explain the concepts of records, record types, and files, as well as the different techniques for placing file
records on disk. [Familiarity]

2. Give examples of the application of primary, secondary, and clustering indexes. [Familiarity]
3. Distinguish between a non-dense index and a dense index. [Assessment]
4. Implement dynamic multilevel indexes using B-trees. [Usage]
5. Explain the theory and application of internal and external hashing techniques. [Familiarity]
6. Use hashing to facilitate dynamic file expansion. [Usage]
7. Describe the relationships among hashing, compression, and efficient database searches. [Familiarity]
8. Evaluate costs and benefits of various hashing schemes. [Assessment]
9. Explain how physical database design affects database transaction efficiency. [Familiarity]

IM/Data Mining
[Elective]
Topics:

• Uses of data mining
• Data mining algorithms
• Associative and sequential patterns
• Data clustering
• Market basket analysis
• Data cleaning
• Data visualization (cross-reference GV/Visualization and CN/Interactive Visualization)

Learning Outcomes:

1. Compare and contrast different uses of data mining as evidenced in both research and application.
[Assessment]

2. Explain the value of finding associations in market basket data. [Familiarity]
3. Characterize the kinds of patterns that can be discovered by association rule mining. [Assessment]
4. Describe how to extend a relational system to find patterns using association rules. [Familiarity]
5. Evaluate different methodologies for effective application of data mining. [Assessment]
6. Identify and characterize sources of noise, redundancy, and outliers in presented data. [Assessment]
7. Identify mechanisms (on-line aggregation, anytime behavior, interactive visualization) to close the loop in

the data mining process. [Familiarity]
8. Describe why the various close-the-loop processes improve the effectiveness of data mining. [Familiarity]

- 119 -

IM/Information Storage and Retrieval
[Elective]
Topics:

• Documents, electronic publishing, markup, and markup languages
• Tries, inverted files, PAT trees, signature files, indexing
• Morphological analysis, stemming, phrases, stop lists
• Term frequency distributions, uncertainty, fuzziness, weighting
• Vector space, probabilistic, logical, and advanced models
• Information needs, relevance, evaluation, effectiveness
• Thesauri, ontologies, classification and categorization, metadata
• Bibliographic information, bibliometrics, citations
• Routing and (community) filtering
• Multimedia search, information seeking behavior, user modeling, feedback
• Information summarization and visualization
• Faceted search (e.g., using citations, keywords, classification schemes)
• Digital libraries
• Digitization, storage, interchange, digital objects, composites, and packages
• Metadata and cataloging
• Naming, repositories, archives
• Archiving and preservation, integrity
• Spaces (conceptual, geographical, 2/3D, VR)
• Architectures (agents, buses, wrappers/mediators), interoperability
• Services (searching, linking, browsing, and so forth)
• Intellectual property rights management, privacy, and protection (watermarking)

Learning Outcomes:

1. Explain basic information storage and retrieval concepts. [Familiarity]
2. Describe what issues are specific to efficient information retrieval. [Familiarity]
3. Give applications of alternative search strategies and explain why the particular search strategy is

appropriate for the application. [Assessment]
4. Design and implement a small to medium size information storage and retrieval system, or digital library.

[Usage]
5. Describe some of the technical solutions to the problems related to archiving and preserving information in

a digital library. [Familiarity]

IM/Multimedia Systems

[Elective]
Topics:

• Input and output devices, device drivers, control signals and protocols, DSPs
• Standards (e.g., audio, graphics, video)
• Applications, media editors, authoring systems, and authoring
• Streams/structures, capture/represent/transform, spaces/domains, compression/coding
• Content-based analysis, indexing, and retrieval of audio, images, animation, and video

- 120 -

• Presentation, rendering, synchronization, multi-modal integration/interfaces
• Real-time delivery, quality of service (including performance), capacity planning, audio/video

conferencing, video-on-demand

Learning Outcomes:

1. Describe the media and supporting devices commonly associated with multimedia information and
systems. [Familiarity]

2. Demonstrate the use of content-based information analysis in a multimedia information system. [Usage]
3. Critique multimedia presentations in terms of their appropriate use of audio, video, graphics, color, and

other information presentation concepts. [Assessment]
4. Implement a multimedia application using an authoring system. [Usage]
5. For each of several media or multimedia standards, describe in non-technical language what the standard

calls for, and explain how aspects of human perception might be sensitive to the limitations of that
standard. [Familiarity]

6. Describe the characteristics of a computer system (including identification of support tools and appropriate
standards) that has to host the implementation of one of a range of possible multimedia applications.
[Familiarity]

Intelligent Systems (IS)

Artificial intelligence (AI) is the study of solutions for problems that are difficult or impractical

to solve with traditional methods. It is used pervasively in support of everyday applications such

as email, word-processing and search, as well as in the design and analysis of autonomous agents

that perceive their environment and interact rationally with the environment.

The solutions rely on a broad set of general and specialized knowledge representation schemes,

problem solving mechanisms and learning techniques. They deal with sensing (e.g., speech

recognition, natural language understanding, computer vision), problem-solving (e.g., search,

planning), and acting (e.g., robotics) and the architectures needed to support them (e.g., agents,

multi-agents). The study of Artificial Intelligence prepares the student to determine when an AI

approach is appropriate for a given problem, identify the appropriate representation and

reasoning mechanism, and implement and evaluate it.

IS. Intelligent Systems (10 Core-Tier2 hours)

 Core-Tier1
hours

Core-Tier2
hours

Includes
Electives

IS/Fundamental Issues 1 Y

IS/Basic Search Strategies 4 N

IS/Basic Knowledge Representation and
Reasoning

 3 N

IS/Basic Machine Learning 2 N

IS/Advanced Search Y

IS/Advanced Representation and Reasoning Y

IS/Reasoning Under Uncertainty Y

IS/Agents Y

IS/Natural Language Processing Y

IS/Advanced Machine Learning Y

IS/Robotics Y

IS/Perception and Computer Vision Y

- 122 -

IS/Fundamental Issues
[1 Core-Tier2 hours]
Topics:

• Overview of AI problems, examples of successful recent AI applications
• What is intelligent behavior?

o The Turing test
o Rational versus non-rational reasoning

• Problem characteristics
o Fully versus partially observable
o Single versus multi-agent
o Deterministic versus stochastic
o Static versus dynamic
o Discrete versus continuous

• Nature of agents
o Autonomous versus semi-autonomous
o Reflexive, goal-based, and utility-based
o The importance of perception and environmental interactions

• Philosophical and ethical issues. [elective]

Learning Outcomes:

1. Describe Turing test and the “Chinese Room” thought experiment. [Familiarity]
2. Differentiate between the concepts of optimal reasoning/behavior and human-like reasoning/behavior.

[Familiarity]
3. Determine the characteristics of a given problem that an intelligent system must solve. [Assessment]

IS/Basic Search Strategies
[4 Core-Tier2 hours]
Cross-reference AL/Basic Analysis, AL/Algorithmic Strategies, AL/Fundamental Data
Structures and Algorithms
Topics:

• Problem spaces (states, goals and operators), problem solving by search
• Factored representation (factoring state into variables)
• Uninformed search (breadth-first, depth-first, depth-first with iterative deepening)
• Heuristics and informed search (hill-climbing, generic best-first, A*)
• Space and time efficiency of search
• Two-player games (introduction to minimax search)
• Constraint satisfaction (backtracking and local search methods)

- 123 -

Learning Outcomes:

1. Formulate an efficient problem space for a problem expressed in natural language (e.g., English) in terms
of initial and goal states, and operators. [Usage]

2. Describe the role of heuristics and describe the trade-offs among completeness, optimality, time
complexity, and space complexity. [Familiarity]

3. Describe the problem of combinatorial explosion of search space and its consequences. [Familiarity]
4. Select and implement an appropriate uninformed search algorithm for a problem, and characterize its time

and space complexities. [Usage]
5. Select and implement an appropriate informed search algorithm for a problem by designing the necessary

heuristic evaluation function. [Usage]
6. Evaluate whether a heuristic for a given problem is admissible/can guarantee optimal solution.

[Assessment]
7. Formulate a problem specified in natural language (e.g., English) as a constraint satisfaction problem and

implement it using a chronological backtracking algorithm or stochastic local search. [Usage]
8. Compare and contrast basic search issues with game playing issues. [Familiarity]

IS/Basic Knowledge Representation and Reasoning
[3 Core-Tier2 hours]
Topics:

• Review of propositional and predicate logic (cross-reference DS/Basic Logic)
• Resolution and theorem proving (propositional logic only)
• Forward chaining, backward chaining
• Review of probabilistic reasoning, Bayes theorem (cross-reference with DS/Discrete Probability)

Learning Outcomes:

1. Translate a natural language (e.g., English) sentence into predicate logic statement. [Usage]
2. Convert a logic statement into clause form. [Usage]
3. Apply resolution to a set of logic statements to answer a query. [Usage]
4. Make a probabilistic inference in a real-world problem using Bayes’ theorem to determine the probability

of a hypothesis given evidence. [Usage]

IS/Basic Machine Learning
[2 Core-Tier2 hours]
Topics:

• Definition and examples of broad variety of machine learning tasks, including classification
• Inductive learning
• Simple statistical-based learning, such as Naive Bayesian Classifier, decision trees
• The over-fitting problem
• Measuring classifier accuracy

Learning Outcomes:

1. List the differences among the three main styles of learning: supervised, reinforcement, and unsupervised.
[Familiarity]

2. Identify examples of classification tasks, including the available input features and output to be predicted.
[Familiarity]

3. Explain the difference between inductive and deductive learning. [Familiarity]

- 124 -

4. Describe over-fitting in the context of a problem. [Familiarity]
5. Apply the simple statistical learning algorithm such as Naive Bayesian Classifier to a classification task and

measure the classifier's accuracy. [Usage]

IS/Advanced Search
[Elective]
Note that the general topics of Branch-and-bound and Dynamic Programing are listed in
AL/Algorithmic Strategies.
Topics:

• Constructing search trees, dynamic search space, combinatorial explosion of search space
• Stochastic search

o Simulated annealing
o Genetic algorithms
o Monte-Carlo tree search

• Implementation of A* search, beam search
• Minimax search, alpha-beta pruning
• Expectimax search (MDP-solving) and chance nodes

Learning Outcomes:

1. Design and implement a genetic algorithm solution to a problem. [Usage]
2. Design and implement a simulated annealing schedule to avoid local minima in a problem. [Usage]
3. Design and implement A*/beam search to solve a problem. [Usage]
4. Apply minimax search with alpha-beta pruning to prune search space in a two-player game. [Usage]
5. Compare and contrast genetic algorithms with classic search techniques. [Assessment]
6. Compare and contrast various heuristic searches vis-a-vis applicability to a given problem. [Assessment]

IS/Advanced Representation and Reasoning
[Elective]
Topics:

• Knowledge representation issues
o Description logics
o Ontology engineering

• Non-monotonic reasoning (e.g., non-classical logics, default reasoning)
• Argumentation
• Reasoning about action and change (e.g., situation and event calculus)
• Temporal and spatial reasoning
• Rule-based Expert Systems
• Semantic networks
• Model-based and Case-based reasoning
• Planning:

o Partial and totally ordered planning
o Plan graphs
o Hierarchical planning
o Planning and execution including conditional planning and continuous planning
o Mobile agent/Multi-agent planning

- 125 -

Learning Outcomes:

1. Compare and contrast the most common models used for structured knowledge representation, highlighting
their strengths and weaknesses. [Assessment]

2. Identify the components of non-monotonic reasoning and its usefulness as a representational mechanism
for belief systems. [Familiarity]

3. Compare and contrast the basic techniques for representing uncertainty. [Assessment]
4. Compare and contrast the basic techniques for qualitative representation. [Assessment]
5. Apply situation and event calculus to problems of action and change. [Usage]
6. Explain the distinction between temporal and spatial reasoning, and how they interrelate. [Familiarity]
7. Explain the difference between rule-based, case-based and model-based reasoning techniques. [Familiarity]
8. Define the concept of a planning system and how it differs from classical search techniques. [Familiarity]
9. Describe the differences between planning as search, operator-based planning, and propositional planning,

providing examples of domains where each is most applicable. [Familiarity]
10. Explain the distinction between monotonic and non-monotonic inference. [Familiarity]

IS/Reasoning Under Uncertainty
[Elective]
Topics:

• Review of basic probability (cross-reference DS/Discrete Probability)
• Random variables and probability distributions

o Axioms of probability
o Probabilistic inference
o Bayes’ Rule

• Conditional Independence
• Knowledge representations

o Bayesian Networks
 Exact inference and its complexity
 Randomized sampling (Monte Carlo) methods (e.g. Gibbs sampling)

o Markov Networks
o Relational probability models
o Hidden Markov Models

• Decision Theory
o Preferences and utility functions
o Maximizing expected utility

Learning Outcomes:

1. Apply Bayes’ rule to determine the probability of a hypothesis given evidence. [Usage]
2. Explain how conditional independence assertions allow for greater efficiency of probabilistic systems.

[Assessment]
3. Identify examples of knowledge representations for reasoning under uncertainty. [Familiarity]
4. State the complexity of exact inference. Identify methods for approximate inference. [Familiarity]
5. Design and implement at least one knowledge representation for reasoning under uncertainty. [Usage]
6. Describe the complexities of temporal probabilistic reasoning. [Familiarity]
7. Design and implement an HMM as one example of a temporal probabilistic system. [Usage]
8. Describe the relationship between preferences and utility functions. [Familiarity]
9. Explain how utility functions and probabilistic reasoning can be combined to make rational decisions.

[Assessment]

- 126 -

IS/Agents
[Elective]
Cross-reference HCI/Collaboration and Communication
Topics:

• Definitions of agents
• Agent architectures (e.g., reactive, layered, cognitive)
• Agent theory
• Rationality, game theory

o Decision-theoretic agents
o Markov decision processes (MDP)

• Software agents, personal assistants, and information access
o Collaborative agents
o Information-gathering agents
o Believable agents (synthetic characters, modeling emotions in agents)

• Learning agents
• Multi-agent systems

o Collaborating agents
o Agent teams
o Competitive agents (e.g., auctions, voting)
o Swarm systems and biologically inspired models

Learning Outcomes:

1. List the defining characteristics of an intelligent agent. [Familiarity]
2. Characterize and contrast the standard agent architectures. [Assessment]
3. Describe the applications of agent theory to domains such as software agents, personal assistants, and

believable agents. [Familiarity]
4. Describe the primary paradigms used by learning agents. [Familiarity]
5. Demonstrate using appropriate examples how multi-agent systems support agent interaction. [Usage]

IS/Natural Language Processing
[Elective]
Cross-reference HCI/New Interactive Technologies
Topics:

• Deterministic and stochastic grammars
• Parsing algorithms

o CFGs and chart parsers (e.g. CYK)
o Probabilistic CFGs and weighted CYK

• Representing meaning / Semantics
o Logic-based knowledge representations
o Semantic roles
o Temporal representations
o Beliefs, desires, and intentions

• Corpus-based methods
• N-grams and HMMs
• Smoothing and backoff

- 127 -

• Examples of use: POS tagging and morphology
• Information retrieval (Cross-reference IM/Information Storage and Retrieval)

o Vector space model
 TF & IDF

o Precision and recall
• Information extraction
• Language translation
• Text classification, categorization

o Bag of words model

Learning Outcomes:

1. Define and contrast deterministic and stochastic grammars, providing examples to show the adequacy of
each. [Assessment]

2. Simulate, apply, or implement classic and stochastic algorithms for parsing natural language. [Usage]
3. Identify the challenges of representing meaning. [Familiarity]
4. List the advantages of using standard corpora. Identify examples of current corpora for a variety of NLP

tasks. [Familiarity]
5. Identify techniques for information retrieval, language translation, and text classification. [Familiarity]

IS/Advanced Machine Learning
[Elective]
Topics:

• Definition and examples of broad variety of machine learning tasks
• General statistical-based learning, parameter estimation (maximum likelihood)
• Inductive logic programming (ILP)
• Supervised learning

o Learning decision trees
o Learning neural networks
o Support vector machines (SVMs)

• Ensembles
• Nearest-neighbor algorithms
• Unsupervised Learning and clustering

o EM
o K-means
o Self-organizing maps

• Semi-supervised learning
• Learning graphical models (Cross-reference IS/Reasoning under Uncertainty)
• Performance evaluation (such as cross-validation, area under ROC curve)
• Learning theory
• The problem of overfitting, the curse of dimensionality
• Reinforcement learning

o Exploration vs. exploitation trade-off
o Markov decision processes
o Value and policy iteration

• Application of Machine Learning algorithms to Data Mining (cross-reference IM/Data Mining)

- 128 -

Learning Outcomes:

1. Explain the differences among the three main styles of learning: supervised, reinforcement, and
unsupervised. [Familiarity]

2. Implement simple algorithms for supervised learning, reinforcement learning, and unsupervised learning.
[Usage]

3. Determine which of the three learning styles is appropriate to a particular problem domain. [Usage]
4. Compare and contrast each of the following techniques, providing examples of when each strategy is

superior: decision trees, neural networks, and belief networks. [Assessment]
5. Evaluate the performance of a simple learning system on a real-world dataset. [Assessment]
6. Characterize the state of the art in learning theory, including its achievements and its shortcomings.

[Familiarity]
7. Explain the problem of overfitting, along with techniques for detecting and managing the problem. [Usage]

IS/Robotics
[Elective]
Topics:

• Overview: problems and progress
o State-of-the-art robot systems, including their sensors and an overview of their sensor processing
o Robot control architectures, e.g., deliberative vs. reactive control and Braitenberg vehicles
o World modeling and world models
o Inherent uncertainty in sensing and in control

• Configuration space and environmental maps
• Interpreting uncertain sensor data
• Localizing and mapping
• Navigation and control
• Motion planning
• Multiple-robot coordination

Learning Outcomes:

1. List capabilities and limitations of today's state-of-the-art robot systems, including their sensors and the
crucial sensor processing that informs those systems. [Familiarity]

2. Integrate sensors, actuators, and software into a robot designed to undertake some task. [Usage]
3. Program a robot to accomplish simple tasks using deliberative, reactive, and/or hybrid control architectures.

[Usage]
4. Implement fundamental motion planning algorithms within a robot configuration space. [Usage]
5. Characterize the uncertainties associated with common robot sensors and actuators; articulate strategies for

mitigating these uncertainties. [Familiarity]
6. List the differences among robots' representations of their external environment, including their strengths

and shortcomings. [Familiarity]
7. Compare and contrast at least three strategies for robot navigation within known and/or unknown

environments, including their strengths and shortcomings. [Assessment]
8. Describe at least one approach for coordinating the actions and sensing of several robots to accomplish a

single task. [Familiarity]

- 129 -

IS/Perception and Computer Vision
[Elective]
Topics:

• Computer vision
o Image acquisition, representation, processing and properties
o Shape representation, object recognition and segmentation
o Motion analysis

• Audio and speech recognition
• Modularity in recognition
• Approaches to pattern recognition (cross-reference IS/Advanced Machine Learning)

o Classification algorithms and measures of classification quality
o Statistical techniques

Learning Outcomes:

1. Summarize the importance of image and object recognition in AI and indicate several significant
applications of this technology. [Familiarity]

2. List at least three image-segmentation approaches, such as thresholding, edge-based and region-based
algorithms, along with their defining characteristics, strengths, and weaknesses. [Familiarity]

3. Implement 2d object recognition based on contour- and/or region-based shape representations. [Usage]
4. Distinguish the goals of sound-recognition, speech-recognition, and speaker-recognition and identify how

the raw audio signal will be handled differently in each of these cases. [Familiarity]
5. Provide at least two examples of a transformation of a data source from one sensory domain to another,

e.g., tactile data interpreted as single-band 2d images. [Familiarity]
6. Implement a feature-extraction algorithm on real data, e.g., an edge or corner detector for images or vectors

of Fourier coefficients describing a short slice of audio signal. [Usage]
7. Implement an algorithm combining features into higher-level percepts, e.g., a contour or polygon from

visual primitives or phoneme hypotheses from an audio signal. [Usage]
8. Implement a classification algorithm that segments input percepts into output categories and quantitatively

evaluates the resulting classification. [Usage]
9. Evaluate the performance of the underlying feature-extraction, relative to at least one alternative possible

approach (whether implemented or not) in its contribution to the classification task (8), above.
[Assessment]

10. Describe at least three classification approaches, their prerequisites for applicability, their strengths, and
their shortcomings. [Familiarity]

Networking and Communication (NC)

The Internet and computer networks are now ubiquitous and a growing number of computing

activities strongly depend on the correct operation of the underlying network. Networks, both

fixed and mobile, are a key part of the computing environment of today and tomorrow. Many

computing applications that are used today would not be possible without networks. This

dependency on the underlying network is likely to increase in the future.

The high-level learning objective of this module can be summarized as follows:

• Thinking in a networked world. The world is more and more interconnected and the use

of networks will continue to increase. Students must understand how the networks

behave and the key principles behind the organization and operation of the networks.

• Continued study. The networking domain is rapidly evolving and a first networking

course should be a starting point to other more advanced courses on network design,

network management, sensor networks, etc.

• Principles and practice interact. Networking is real and many of the design choices that

involve networks also depend on practical constraints. Students should be exposed to

these practical constraints by experimenting with networking, using tools, and writing

networked software.

There are different ways of organizing a networking course. Some educators prefer a top-down

approach, i.e., the course starts from the applications and then explains reliable delivery, routing

and forwarding. Other educators prefer a bottom-up approach where the students start with the

lower layers and build their understanding of the network, transport and application layers later.

- 131 -

NC. Networking and Communication (3 Core-Tier1 hours, 7 Core-Tier2 hours)

 Core-Tier1 hours Core-Tier2 hours Includes Electives

NC/Introduction 1.5 N

NC/Networked Applications 1.5 N

NC/Reliable Data Delivery 2 N

NC/Routing And Forwarding 1.5 N

NC/Local Area Networks 1.5 N

NC/Resource Allocation 1 N

NC/Mobility 1 N

NC/Social Networking Y

NC/Introduction
[1.5 Core-Tier1 hours]
Cross-reference IAS/Network Security, which discusses network security and its applications.

Topics:

• Organization of the Internet (Internet Service Providers, Content Providers, etc.)
• Switching techniques (e.g., circuit, packet)
• Physical pieces of a network, including hosts, routers, switches, ISPs, wireless, LAN, access point, and

firewalls
• Layering principles (encapsulation, multiplexing)
• Roles of the different layers (application, transport, network, datalink, physical)

Learning Outcomes:

1. Articulate the organization of the Internet. [Familiarity]
2. List and define the appropriate network terminology. [Familiarity]
3. Describe the layered structure of a typical networked architecture. [Familiarity]
4. Identify the different types of complexity in a network (edges, core, etc.). [Familiarity]

- 132 -

NC/Networked Applications
[1.5 Core-Tier1 hours]
Topics:

• Naming and address schemes (DNS, IP addresses, Uniform Resource Identifiers, etc.)
• Distributed applications (client/server, peer-to-peer, cloud, etc.)
• HTTP as an application layer protocol
• Multiplexing with TCP and UDP
• Socket APIs

Learning Outcomes:

1. List the differences and the relations between names and addresses in a network. [Familiarity]
2. Define the principles behind naming schemes and resource location. [Familiarity]
3. Implement a simple client-server socket-based application. [Usage]

NC/Reliable Data Delivery
[2 Core-Tier2 hours]
This knowledge unit is related to Systems Fundamentals (SF). Cross-reference SF/State and
State Machines and SF/Reliability through Redundancy.
Topics:

• Error control (retransmission techniques, timers)
• Flow control (acknowledgements, sliding window)
• Performance issues (pipelining)
• TCP

Learning Outcomes:

1. Describe the operation of reliable delivery protocols. [Familiarity]
2. List the factors that affect the performance of reliable delivery protocols. [Familiarity]
3. Design and implement a simple reliable protocol. [Usage]

NC/Routing and Forwarding
[1.5 Core-Tier2 hours]
Topics:

• Routing versus forwarding
• Static routing
• Internet Protocol (IP)
• Scalability issues (hierarchical addressing)

Learning Outcomes:

1. Describe the organization of the network layer. [Familiarity]
2. Describe how packets are forwarded in an IP network. [Familiarity]
3. List the scalability benefits of hierarchical addressing. [Familiarity]

- 133 -

NC/Local Area Networks
[1.5 Core-Tier2 hours]
Topics:

• Multiple Access Problem
• Common approaches to multiple access (exponential-backoff, time division multiplexing, etc)
• Local Area Networks
• Ethernet
• Switching

Learning Outcomes:

1. Describe how frames are forwarded in an Ethernet network. [Familiarity]
2. Describe the differences between IP and Ethernet. [Familiarity]
3. Describe the interrelations between IP and Ethernet. [Familiarity]
4. Describe the steps used in one common approach to the multiple access problem. [Familiarity]

NC/Resource Allocation
[1 Core-Tier2 hours]
Topics:

• Need for resource allocation
• Fixed allocation (TDM, FDM, WDM) versus dynamic allocation
• End-to-end versus network assisted approaches
• Fairness
• Principles of congestion control
• Approaches to Congestion (e.g., Content Distribution Networks)

Learning Outcomes:

1. Describe how resources can be allocated in a network. [Familiarity]
2. Describe the congestion problem in a large network. [Familiarity]
3. Compare and contrast fixed and dynamic allocation techniques. [Assessment]
4. Compare and contrast current approaches to congestion. [Assessment]

NC/Mobility
[1 Core-Tier2 hours]
Topics:

• Principles of cellular networks
• 802.11 networks
• Issues in supporting mobile nodes (home agents)

Learning Outcomes:

1. Describe the organization of a wireless network. [Familiarity]
2. Describe how wireless networks support mobile users. [Familiarity]

- 134 -

NC/Social Networking
[Elective]
Topics:

• Social networks overview
• Example social network platforms
• Structure of social network graphs
• Social network analysis

Learning Outcomes:

1. Discuss the key principles (such as membership, trust) of social networking. [Familiarity]
2. Describe how existing social networks operate. [Familiarity]
3. Construct a social network graph from network data. [Usage]
4. Analyze a social network to determine who the key people are. [Usage]
5. Evaluate a given interpretation of a social network question with associated data. [Assessment]

Operating Systems (OS)

An operating system defines an abstraction of hardware and manages resource sharing among

the computer’s users. The topics in this area explain the most basic knowledge of operating

systems in the sense of interfacing an operating system to networks, teaching the difference

between the kernel and user modes, and developing key approaches to operating system design

and implementation. This knowledge area is structured to be complementary to the Systems

Fundamentals (SF), Networking and Communication (NC), Information Assurance and Security

(IAS), and the Parallel and Distributed Computing (PD) knowledge areas. The Systems

Fundamentals and Information Assurance and Security knowledge areas are the new ones to

include contemporary issues. For example, Systems Fundamentals includes topics such as

performance, virtualization and isolation, and resource allocation and scheduling; Parallel and

Distributed Systems includes parallelism fundamentals; and and Information Assurance and

Security includes forensics and security issues in depth. Many courses in Operating Systems

will draw material from across these knowledge areas.

OS. Operating Systems (4 Core-Tier1 hours; 11 Core Tier2 hours)

 Core-Tier1 hours Core-Tier2 hours Includes Electives

OS/Overview of Operating Systems 2 N

OS/Operating System Principles 2 N

OS/Concurrency 3 N

OS/Scheduling and Dispatch 3 N

OS/Memory Management 3 N

OS/Security and Protection 2 N

OS/Virtual Machines Y

OS/Device Management Y

OS/File Systems Y

OS/Real Time and Embedded Systems Y

OS/Fault Tolerance Y

OS/System Performance Evaluation Y

- 136 -

OS/Overview of Operating Systems
[2 Core-Tier1 hours]
Topics:

• Role and purpose of the operating system
• Functionality of a typical operating system
• Mechanisms to support client-server models, hand-held devices
• Design issues (efficiency, robustness, flexibility, portability, security, compatibility)
• Influences of security, networking, multimedia, windowing systems

Learning Outcomes:

1. Explain the objectives and functions of modern operating systems. [Familiarity]
2. Analyze the tradeoffs inherent in operating system design. [Usage]
3. Describe the functions of a contemporary operating system with respect to convenience, efficiency, and the

ability to evolve. [Familiarity]
4. Discuss networked, client-server, distributed operating systems and how they differ from single user

operating systems. [Familiarity]
5. Identify potential threats to operating systems and the security features design to guard against them.

[Familiarity]

OS/Operating System Principles
[2 Core-Tier1 hours]
Topics:

• Structuring methods (monolithic, layered, modular, micro-kernel models)
• Abstractions, processes, and resources
• Concepts of application program interfaces (APIs)
• The evolution of hardware/software techniques and application needs
• Device organization
• Interrupts: methods and implementations
• Concept of user/system state and protection, transition to kernel mode

Learning Outcomes:

1. Explain the concept of a logical layer. [Familiarity]
2. Explain the benefits of building abstract layers in hierarchical fashion. [Familiarity]
3. Describe the value of APIs and middleware. [Assessment]
4. Describe how computing resources are used by application software and managed by system software.

[Familiarity]
5. Contrast kernel and user mode in an operating system. [Usage]
6. Discuss the advantages and disadvantages of using interrupt processing. [Familiarity]
7. Explain the use of a device list and driver I/O queue. [Familiarity]

- 137 -

OS/Concurrency
[3 Core-Tier2 hours]
Topics:

• States and state diagrams (cross-reference SF/State and State Machines)
• Structures (ready list, process control blocks, and so forth)
• Dispatching and context switching
• The role of interrupts
• Managing atomic access to OS objects
• Implementing synchronization primitives
• Multiprocessor issues (spin-locks, reentrancy) (cross-reference SF/Parallelism)

Learning Outcomes:

1. Describe the need for concurrency within the framework of an operating system. [Familiarity]
2. Demonstrate the potential run-time problems arising from the concurrent operation of many separate tasks.

[Usage]
3. Summarize the range of mechanisms that can be employed at the operating system level to realize

concurrent systems and describe the benefits of each. [Familiarity]
4. Explain the different states that a task may pass through and the data structures needed to support the

management of many tasks. [Familiarity]
5. Summarize techniques for achieving synchronization in an operating system (e.g., describe how to

implement a semaphore using OS primitives). [Familiarity]
6. Describe reasons for using interrupts, dispatching, and context switching to support concurrency in an

operating system. [Familiarity]
7. Create state and transition diagrams for simple problem domains. [Usage]

OS/Scheduling and Dispatch
[3 Core-Tier2 hours]
Topics:

• Preemptive and non-preemptive scheduling (cross-reference SF/Resource Allocation and Scheduling,
PD/Parallel Performance)

• Schedulers and policies (cross-reference SF/Resource Allocation and Scheduling, PD/Parallel
Performance)

• Processes and threads (cross-reference SF/Computational paradigms)
• Deadlines and real-time issues

Learning Outcomes:

1. Compare and contrast the common algorithms used for both preemptive and non-preemptive scheduling of
tasks in operating systems, such as priority, performance comparison, and fair-share schemes. [Usage]

2. Describe relationships between scheduling algorithms and application domains. [Familiarity]
3. Discuss the types of processor scheduling such as short-term, medium-term, long-term, and I/O.

[Familiarity]
4. Describe the difference between processes and threads. [Usage]
5. Compare and contrast static and dynamic approaches to real-time scheduling. [Usage]
6. Discuss the need for preemption and deadline scheduling. [Familiarity]
7. Identify ways that the logic embodied in scheduling algorithms are applicable to other domains, such as

disk I/O, network scheduling, project scheduling, and problems beyond computing. [Usage]

- 138 -

OS/Memory Management
[3 Core-Tier2 hours]
Topics:

• Review of physical memory and memory management hardware
• Working sets and thrashing
• Caching (cross-reference AR/Memory System Organization and Architecture)

Learning Outcomes:

1. Explain memory hierarchy and cost-performance trade-offs. [Familiarity]
2. Summarize the principles of virtual memory as applied to caching and paging. [Familiarity]
3. Evaluate the trade-offs in terms of memory size (main memory, cache memory, auxiliary memory) and

processor speed. [Assessment]
4. Defend the different ways of allocating memory to tasks, citing the relative merits of each. [Assessment]
5. Describe the reason for and use of cache memory (performance and proximity, different dimension of how

caches complicate isolation and VM abstraction). [Familiarity]
6. Discuss the concept of thrashing, both in terms of the reasons it occurs and the techniques used to recognize

and manage the problem. [Familiarity]

OS/Security and Protection
[2 Core-Tier2 hours]
Topics:

• Overview of system security
• Policy/mechanism separation
• Security methods and devices
• Protection, access control, and authentication
• Backups

Learning Outcomes:

1. Articulate the need for protection and security in an OS (cross-reference IAS/Security Architecture and
Systems Administration/Investigating Operating Systems Security for various systems). [Assessment]

2. Summarize the features and limitations of an operating system used to provide protection and security
(cross-reference IAS/Security Architecture and Systems Administration). [Familiarity]

3. Explain the mechanisms available in an OS to control access to resources (cross-reference IAS/Security
Architecture and Systems Administration/Access Control/Configuring systems to operate securely as an IT
system). [Familiarity]

4. Carry out simple system administration tasks according to a security policy, for example creating accounts,
setting permissions, applying patches, and arranging for regular backups (cross-reference IAS/Security
Architecture and Systems Administration). [Usage]

- 139 -

OS/Virtual Machines
[Elective]
Topics:

• Types of virtualization (including Hardware/Software, OS, Server, Service, Network)
• Paging and virtual memory
• Virtual file systems
• Hypervisors
• Portable virtualization; emulation vs. isolation
• Cost of virtualization

Learning Outcomes:

1. Explain the concept of virtual memory and how it is realized in hardware and software. [Familiarity]
5. Differentiate emulation and isolation. [Familiarity]
6. Evaluate virtualization trade-offs. [Assessment]
2. Discuss hypervisors and the need for them in conjunction with different types of hypervisors. [Usage]

OS/Device Management
[Elective]
Topics:

• Characteristics of serial and parallel devices
• Abstracting device differences
• Buffering strategies
• Direct memory access
• Recovery from failures

Learning Outcomes:

1. Explain the key difference between serial and parallel devices and identify the conditions in which each is
appropriate. [Familiarity]

2. Identify the relationship between the physical hardware and the virtual devices maintained by the operating
system. [Usage]

3. Explain buffering and describe strategies for implementing it. [Familiarity]
4. Differentiate the mechanisms used in interfacing a range of devices (including hand-held devices,

networks, multimedia) to a computer and explain the implications of these for the design of an operating
system. [Usage]

5. Describe the advantages and disadvantages of direct memory access and discuss the circumstances in
which its use is warranted. [Usage]

6. Identify the requirements for failure recovery. [Familiarity]
7. Implement a simple device driver for a range of possible devices. [Usage]

- 140 -

OS/File Systems
[Elective]
Topics:

• Files: data, metadata, operations, organization, buffering, sequential, nonsequential
• Directories: contents and structure
• File systems: partitioning, mount/unmount, virtual file systems
• Standard implementation techniques
• Memory-mapped files
• Special-purpose file systems
• Naming, searching, access, backups
• Journaling and log-structured file systems

Learning Outcomes:

1. Describe the choices to be made in designing file systems. [Familiarity]
2. Compare and contrast different approaches to file organization, recognizing the strengths and weaknesses

of each. [Usage]
3. Summarize how hardware developments have led to changes in the priorities for the design and the

management of file systems. [Familiarity]
4. Summarize the use of journaling and how log-structured file systems enhance fault tolerance. [Familiarity]

OS/Real Time and Embedded Systems
[Elective]
Topics:

• Process and task scheduling
• Memory/disk management requirements in a real-time environment
• Failures, risks, and recovery
• Special concerns in real-time systems

Learning Outcomes:

1. Describe what makes a system a real-time system. [Familiarity]
2. Explain the presence of and describe the characteristics of latency in real-time systems. [Familiarity]
3. Summarize special concerns that real-time systems present, including risk, and how these concerns are

addressed. [Familiarity]

OS/Fault Tolerance
[Elective]
Topics:

• Fundamental concepts: reliable and available systems (cross-reference SF/Reliability through Redundancy)
• Spatial and temporal redundancy (cross-reference SF/Reliability through Redundancy)
• Methods used to implement fault tolerance
• Examples of OS mechanisms for detection, recovery, restart to implement fault tolerance, use of these

techniques for the OS’s own services

- 141 -

Learning Outcomes:

1. Explain the relevance of the terms fault tolerance, reliability, and availability. [Familiarity]
2. Outline the range of methods for implementing fault tolerance in an operating system. [Familiarity]
3. Explain how an operating system can continue functioning after a fault occurs. [Familiarity]

OS/System Performance Evaluation
[Elective]
Topics:

• Why system performance needs to be evaluated (cross-reference SF/Performance/Figures of performance
merit)

• What is to be evaluated (cross-reference SF/Performance/Figures of performance merit)
• Systems performance policies, e.g., caching, paging, scheduling, memory management, and security
• Evaluation models: deterministic, analytic, simulation, or implementation-specific
• How to collect evaluation data (profiling and tracing mechanisms)

Learning Outcomes:

1. Describe the performance measurements used to determine how a system performs. [Familiarity]
2. Explain the main evaluation models used to evaluate a system. [Familiarity]

Platform-Based Development (PBD)

Platform-based development is concerned with the design and development of software

applications that reside on specific software platforms. In contrast to general purpose

programming, platform-based development takes into account platform-specific constraints. For

instance web programming, multimedia development, mobile computing, app development, and

robotics are examples of relevant platforms that provide specific services/APIs/hardware that

constrain development. Such platforms are characterized by the use of specialized APIs, distinct

delivery/update mechanisms, and being abstracted away from the machine level. Platform-based

development may be applied over a wide breadth of ecosystems.

While we recognize that some platforms (e.g., web development) are prominent, we are also

cognizant of the fact that no particular platform should be specified as a requirement in the

CS2013 curricular guidelines. Consequently, this Knowledge Area highlights many of the

platforms that have become popular, without including any such platform in the core curriculum.

We note that the general skill of developing with respect to an API or a constrained environment

is covered in other Knowledge Areas, such as Software Development Fundamentals (SDF).

Platform-based development further emphasizes such general skills within the context of

particular platforms.

PBD. Platform-Based Development (Elective)

 Core-Tier1 hours Core-Tier2 hours Includes Electives

PBD/Introduction Y

PBD/Web Platforms Y

PBD/Mobile Platforms Y

PBD/Industrial Platforms Y

PBD/Game Platforms Y

- 143 -

PBD/Introduction
[Elective]
This knowledge unit describes the fundamental differences that Platform-Based Development
has over traditional software development.
Topics:

• Overview of platforms (e.g., Web, Mobile, Game, Industrial)
• Programming via platform-specific APIs
• Overview of Platform Languages (e.g., Objective C, HTML5)
• Programming under platform constraints

Learning Outcomes:

1. Describe how platform-based development differs from general purpose programming. [Familiarity]
2. List characteristics of platform languages. [Familiarity]
3. Write and execute a simple platform-based program. [Usage]
4. List the advantages and disadvantages of programming with platform constraints. [Familiarity]

PBD/Web Platforms
[Elective]
Topics:

• Web programming languages (e.g., HTML5, Java Script, PHP, CSS)
• Web platform constraints
• Software as a Service (SaaS)
• Web standards

Learning Outcomes:

1. Design and Implement a simple web application. [Usage]
2. Describe the constraints that the web puts on developers. [Familiarity]
3. Compare and contrast web programming with general purpose programming. [Assessment]
4. Describe the differences between Software-as-a-Service and traditional software products. [Familiarity]
5. Discuss how web standards impact software development. [Familiarity]
6. Review an existing web application against a current web standard. [Assessment]

PBD/Mobile Platforms
[Elective]
Topics:

• Mobile programming languages
• Challenges with mobility and wireless communication
• Location-aware applications
• Performance / power tradeoffs
• Mobile platform constraints
• Emerging technologies

- 144 -

Learning Outcomes:

1. Design and implement a mobile application for a given mobile platform. [Usage]
2. Discuss the constraints that mobile platforms put on developers. [Familiarity]
3. Discuss the performance vs. power tradeoff. [Familiarity]
4. Compare and contrast mobile programming with general purpose programming. [Assessment]

PBD/Industrial Platforms
[Elective]
This knowledge unit is related to IS/Robotics.
Topics:

• Types of Industrial Platforms (e.g., Mathematic, Robotic, Industrial Control)
• Robotic software and its architecture
• Domain-specific languages
• Industrial platform constraints

Learning Outcomes:

1. Design and implement an industrial application on a given platform (e.g., using Lego Mindstorms or
Matlab). [Usage]

2. Compare and contrast domain specific languages with general purpose programming languages.
[Assessment]

3. Discuss the constraints that a given industrial platforms impose on developers. [Familiarity]

PBD/Game Platforms
[Elective]
Topics:

• Types of game platforms (e.g., XBox, Wii, PlayStation)
• Game platform languages (e.g., C++, Java, Lua, Python)
• Game platform constraints

Learning Outcomes:

1. Design and implement a simple application on a game platform. [Usage]
2. Describe the constraints that game platforms impose on developers. [Familiarity]
3. Compare and contrast game programming with general purpose programming. [Assessment]

Parallel and Distributed Computing (PD)

The past decade has brought explosive growth in multiprocessor computing, including multi-core

processors and distributed data centers. As a result, parallel and distributed computing has

moved from a largely elective topic to become more of a core component of undergraduate

computing curricula. Both parallel and distributed computing entail the logically simultaneous

execution of multiple processes, whose operations have the potential to interleave in complex

ways. Parallel and distributed computing builds on foundations in many areas, including an

understanding of fundamental systems concepts such as concurrency and parallel execution,

consistency in state/memory manipulation, and latency. Communication and coordination

among processes is rooted in the message-passing and shared-memory models of computing and

such algorithmic concepts as atomicity, consensus, and conditional waiting. Achieving speedup

in practice requires an understanding of parallel algorithms, strategies for problem

decomposition, system architecture, detailed implementation strategies, and performance

analysis and tuning. Distributed systems highlight the problems of security and fault tolerance,

emphasize the maintenance of replicated state, and introduce additional issues that bridge to

computer networking.

Because parallelism interacts with so many areas of computing, including at least algorithms,

languages, systems, networking, and hardware, many curricula will put different parts of the

knowledge area in different courses, rather than in a dedicated course. While we acknowledge

that computer science is moving in this direction and may reach that point, in 2013 this process is

still in flux and we feel it provides more useful guidance to curriculum designers to aggregate the

fundamental parallelism topics in one place. Note, however, that the fundamentals of

concurrency and mutual exclusion appear in the Systems Fundamentals (SF) Knowledge Area.

Many curricula may choose to introduce parallelism and concurrency in the same course (see

below for the distinction intended by these terms). Further, we note that the topics and learning

outcomes listed below include only brief mentions of purely elective coverage. At the present

time, there is too much diversity in topics that share little in common (including for example,

parallel scientific computing, process calculi, and non-blocking data structures) to recommend

particular topics be covered in elective courses.

- 146 -

Because the terminology of parallel and distributed computing varies among communities, we

provide here brief descriptions of the intended senses of a few terms. This list is not exhaustive

or definitive, but is provided for the sake of clarity.

• Parallelism: Using additional computational resources simultaneously, usually for

speedup.

• Concurrency: Efficiently and correctly managing concurrent access to resources.

• Activity: A computation that may proceed concurrently with others; for example a

program, process, thread, or active parallel hardware component.

• Atomicity: Rules and properties governing whether an action is observationally

indivisible; for example, setting all of the bits in a word, transmitting a single packet, or

completing a transaction.

• Consensus: Agreement among two or more activities about a given predicate; for

example, the value of a counter, the owner of a lock, or the termination of a thread.

• Consistency: Rules and properties governing agreement about the values of variables

written, or messages produced, by some activities and used by others (thus possibly

exhibiting a data race); for example, sequential consistency, stating that the values of all

variables in a shared memory parallel program are equivalent to that of a single program

performing some interleaving of the memory accesses of these activities.

• Multicast: A message sent to possibly many recipients, generally without any constraints

about whether some recipients receive the message before others. An event is a multicast

message sent to a designated set of listeners or subscribers.

As multi-processor computing continues to grow in the coming years, so too will the role of

parallel and distributed computing in undergraduate computing curricula. In addition to the

guidelines presented here, we also direct the interested reader to the document entitled

"NSF/TCPP Curriculum Initiative on Parallel and Distributed Computing - Core Topics for

Undergraduates", available from the website: http://www.cs.gsu.edu/~tcpp/curriculum/.

General cross-referencing note: Systems Fundamentals also contains an introduction to

parallelism (SF/Computational Paradigms, SF/System Support for Parallelism, SF/Performance).

http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�
http://www.cs.gsu.edu/~tcpp/curriculum/�

- 147 -

The introduction to parallelism in SF complements the one here and there is no ordering

constraint between them. In SF, the idea is to provide a unified view of the system support for

simultaneous execution at multiple levels of abstraction (parallelism is inherent in gates,

processors, operating systems, and servers), whereas here the focus is on a preliminary

understanding of parallelism as a computing primitive and the complications that arise in parallel

and concurrent programming. Given these different perspectives, the hours assigned to each are

not redundant: the layered systems view and the high-level computing concepts are accounted

for separately in terms of the core hours.

PD. Parallel and Distributed Computing (5 Core-Tier1 hours, 10 Core-Tier2 hours)

 Core-Tier1 hours Core-Tier2 hours Includes Electives

PD/Parallelism Fundamentals 2 N

PD/Parallel Decomposition 1 3 N

PD/Communication and Coordination 1 3 Y

PD/Parallel Algorithms, Analysis, and
Programming

 3 Y

PD/Parallel Architecture 1 1 Y

PD/Parallel Performance Y

PD/Distributed Systems Y

PD/Cloud Computing Y

PD/Formal Models and Semantics Y

- 148 -

PD/Parallelism Fundamentals
[2 Core-Tier1 hours]
Build upon students’ familiarity with the notion of basic parallel execution—a concept addressed
in Systems Fundamentals—to delve into the complicating issues that stem from this notion, such
as race conditions and liveness.

Cross-reference SF/Computational Paradigms and SF/System Support for Parallelism.
Topics:

• Multiple simultaneous computations
• Goals of parallelism (e.g., throughput) versus concurrency (e.g., controlling access to shared resources)
• Parallelism, communication, and coordination

o Programming constructs for coordinating multiple simultaneous computations
o Need for synchronization

• Programming errors not found in sequential programming
o Data races (simultaneous read/write or write/write of shared state)
o Higher-level races (interleavings violating program intention, undesired non-determinism)
o Lack of liveness/progress (deadlock, starvation)

Learning outcomes:

1. Distinguish using computational resources for a faster answer from managing efficient access to a shared
resource. (Cross-reference GV/Fundamental Concepts, outcome 5.) [Familiarity]

2. Distinguish multiple sufficient programming constructs for synchronization that may be inter-
implementable but have complementary advantages. [Familiarity]

3. Distinguish data races from higher level races. [Familiarity]

PD/Parallel Decomposition
[1 Core-Tier1 hour, 3 Core-Tier2 hours]
(Cross-reference SF/System Support for Parallelism)
Topics:

[Core-Tier1]

• Need for communication and coordination/synchronization
• Independence and partitioning

[Core-Tier2]

• Basic knowledge of parallel decomposition concepts (cross-reference SF/System Support for Parallelism)
• Task-based decomposition

o Implementation strategies such as threads
• Data-parallel decomposition

o Strategies such as SIMD and MapReduce
• Actors and reactive processes (e.g., request handlers)

- 149 -

Learning outcomes:

[Core-Tier1]

1. Explain why synchronization is necessary in a specific parallel program. [Usage]
2. Identify opportunities to partition a serial program into independent parallel modules. [Familiarity]

[Core-Tier2]

3. Write a correct and scalable parallel algorithm. [Usage]
4. Parallelize an algorithm by applying task-based decomposition. [Usage]
5. Parallelize an algorithm by applying data-parallel decomposition. [Usage]
6. Write a program using actors and/or reactive processes. [Usage]

PD/Communication and Coordination
[1 Core-Tier1 hour, 3 Core-Tier2 hours]
Cross-reference OS/Concurrency for mechanism implementation issues.
Topics:

[Core-Tier1]

• Shared Memory
• Consistency, and its role in programming language guarantees for data-race-free programs

[Core-Tier2]

• Message passing
o Point-to-point versus multicast (or event-based) messages
o Blocking versus non-blocking styles for sending and receiving messages
o Message buffering (cross-reference PF/Fundamental Data Structures/Queues)

• Atomicity
o Specifying and testing atomicity and safety requirements
o Granularity of atomic accesses and updates, and the use of constructs such as critical sections or

transactions to describe them
o Mutual Exclusion using locks, semaphores, monitors, or related constructs

 Potential for liveness failures and deadlock (causes, conditions, prevention)
o Composition

 Composing larger granularity atomic actions using synchronization
 Transactions, including optimistic and conservative approaches

[Elective]

• Consensus
o (Cyclic) barriers, counters, or related constructs

• Conditional actions
o Conditional waiting (e.g., using condition variables)

- 150 -

Learning outcomes:

[Core-Tier1]

1. Use mutual exclusion to avoid a given race condition. [Usage]
2. Give an example of an ordering of accesses among concurrent activities (e.g., program with a data race)

that is not sequentially consistent. [Familiarity]

[Core-Tier2]

3. Give an example of a scenario in which blocking message sends can deadlock. [Usage]
4. Explain when and why multicast or event-based messaging can be preferable to alternatives. [Familiarity]
5. Write a program that correctly terminates when all of a set of concurrent tasks have completed. [Usage]
6. Use a properly synchronized queue to buffer data passed among activities. [Usage]
7. Explain why checks for preconditions, and actions based on these checks, must share the same unit of

atomicity to be effective. [Familiarity]
8. Write a test program that can reveal a concurrent programming error; for example, missing an update when

two activities both try to increment a variable. [Usage]
9. Describe at least one design technique for avoiding liveness failures in programs using multiple locks or

semaphores. [Familiarity]
10. Describe the relative merits of optimistic versus conservative concurrency control under different rates of

contention among updates. [Familiarity]
11. Give an example of a scenario in which an attempted optimistic update may never complete. [Familiarity]

[Elective]

12. Use semaphores or condition variables to block threads until a necessary precondition holds. [Usage]

PD/Parallel Algorithms, Analysis, and Programming
[3 Core-Tier2 hours]
Topics:

[Core-Tier2]

• Critical paths, work and span, and the relation to Amdahl’s law (cross-reference SF/Performance)
• Speed-up and scalability
• Naturally (embarrassingly) parallel algorithms
• Parallel algorithmic patterns (divide-and-conquer, map and reduce, master-workers, others)

o Specific algorithms (e.g., parallel MergeSort)

[Elective]

• Parallel graph algorithms (e.g., parallel shortest path, parallel spanning tree) (cross-reference
AL/Algorithmic Strategies/Divide-and-conquer)

• Parallel matrix computations
• Producer-consumer and pipelined algorithms
• Examples of non-scalable parallel algorithms

- 151 -

Learning outcomes:

[Core-Tier2]

1. Define “critical path”, “work”, and “span”. [Familiarity]
2. Compute the work and span, and determine the critical path with respect to a parallel execution diagram.

[Usage]
3. Define “speed-up” and explain the notion of an algorithm’s scalability in this regard. [Familiarity]
4. Identify independent tasks in a program that may be parallelized. [Usage]
5. Characterize features of a workload that allow or prevent it from being naturally parallelized. [Familiarity]
6. Implement a parallel divide-and-conquer (and/or graph algorithm) and empirically measure its performance

relative to its sequential analog. [Usage]
7. Decompose a problem (e.g., counting the number of occurrences of some word in a document) via map and

reduce operations. [Usage]

[Elective]

8. Provide an example of a problem that fits the producer-consumer paradigm. [Familiarity]
9. Give examples of problems where pipelining would be an effective means of parallelization. [Familiarity]
10. Implement a parallel matrix algorithm. [Usage]
11. Identify issues that arise in producer-consumer algorithms and mechanisms that may be used for addressing

them. [Familiarity]

PD/Parallel Architecture
[1 Core-Tier1 hour, 1 Core-Tier2 hour]
The topics listed here are related to knowledge units in the Architecture and Organization (AR)
knowledge area (AR/Assembly Level Machine Organization and AR/Multiprocessing and
Alternative Architectures). Here, we focus on parallel architecture from the standpoint of
applications, whereas the Architecture and Organization knowledge area presents the topic from
the hardware perspective.
[Core-Tier1]

• Multicore processors
• Shared vs. distributed memory

[Core-Tier2]

• Symmetric multiprocessing (SMP)
• SIMD, vector processing

[Elective]

• GPU, co-processing
• Flynn’s taxonomy
• Instruction level support for parallel programming

o Atomic instructions such as Compare and Set
• Memory issues

o Multiprocessor caches and cache coherence
o Non-uniform memory access (NUMA)

- 152 -

• Topologies
o Interconnects
o Clusters
o Resource sharing (e.g., buses and interconnects)

Learning outcomes:

[Core-Tier1]

1. Explain the differences between shared and distributed memory. [Familiarity]

[Core-Tier2]

2. Describe the SMP architecture and note its key features. [Familiarity]
3. Characterize the kinds of tasks that are a natural match for SIMD machines. [Familiarity]

[Elective]

4. Describe the advantages and limitations of GPUs vs. CPUs. [Familiarity]
5. Explain the features of each classification in Flynn’s taxonomy. [Familiarity]
6. Describe assembly-level support for atomic operations. [Familiarity]
7. Describe the challenges in maintaining cache coherence. [Familiarity]
8. Describe the key performance challenges in different memory and distributed system topologies.

[Familiarity]

PD/Parallel Performance
[Elective]
Topics:

• Load balancing
• Performance measurement
• Scheduling and contention (cross-reference OS/Scheduling and Dispatch)
• Evaluating communication overhead
• Data management

o Non-uniform communication costs due to proximity (cross-reference SF/Proximity)
o Cache effects (e.g., false sharing)
o Maintaining spatial locality

• Power usage and management

Learning outcomes:

1. Detect and correct a load imbalance. [Usage]
2. Calculate the implications of Amdahl’s law for a particular parallel algorithm (cross-reference

SF/Evaluation for Amdahl’s Law). [Usage]
3. Describe how data distribution/layout can affect an algorithm’s communication costs. [Familiarity]
4. Detect and correct an instance of false sharing. [Usage]
5. Explain the impact of scheduling on parallel performance. [Familiarity]
6. Explain performance impacts of data locality. [Familiarity]
7. Explain the impact and trade-off related to power usage on parallel performance. [Familiarity]

- 153 -

PD/Distributed Systems
[Elective]
Topics:

• Faults (cross-reference OS/Fault Tolerance)
o Network-based (including partitions) and node-based failures
o Impact on system-wide guarantees (e.g., availability)

• Distributed message sending
o Data conversion and transmission
o Sockets
o Message sequencing
o Buffering, retrying, and dropping messages

• Distributed system design tradeoffs
o Latency versus throughput
o Consistency, availability, partition tolerance

• Distributed service design
o Stateful versus stateless protocols and services
o Session (connection-based) designs
o Reactive (IO-triggered) and multithreaded designs

• Core distributed algorithms
o Election, discovery

Learning outcomes:

1. Distinguish network faults from other kinds of failures. [Familiarity]
2. Explain why synchronization constructs such as simple locks are not useful in the presence of distributed

faults. [Familiarity]
3. Write a program that performs any required marshaling and conversion into message units, such as packets,

to communicate interesting data between two hosts. [Usage]
4. Measure the observed throughput and response latency across hosts in a given network. [Usage]
5. Explain why no distributed system can be simultaneously consistent, available, and partition tolerant.

[Familiarity]
6. Implement a simple server -- for example, a spell checking service. [Usage]
7. Explain the tradeoffs among overhead, scalability, and fault tolerance when choosing a stateful v. stateless

design for a given service. [Familiarity]
8. Describe the scalability challenges associated with a service growing to accommodate many clients, as well

as those associated with a service only transiently having many clients. [Familiarity]
9. Give examples of problems for which consensus algorithms such as leader election are required. [Usage]

PD/Cloud Computing
[Elective]
Topics:

• Internet-Scale computing
o Task partitioning (cross-reference PD/Parallel Algorithms, Analysis, and Programming)
o Data access
o Clusters, grids, and meshes

• Cloud services
o Infrastructure as a service

 Elasticity of resources
 Platform APIs

- 154 -

o Software as a service
o Security
o Cost management

• Virtualization (cross-reference SF/Virtualization and Isolation and OS/Virtual Machines)
o Shared resource management
o Migration of processes

• Cloud-based data storage
o Shared access to weakly consistent data stores
o Data synchronization
o Data partitioning
o Distributed file systems (cross-reference IM/Distributed Databases)
o Replication

Learning outcomes:

1. Discuss the importance of elasticity and resource management in cloud computing. [Familiarity]
2. Explain strategies to synchronize a common view of shared data across a collection of devices.

[Familiarity]
3. Explain the advantages and disadvantages of using virtualized infrastructure. [Familiarity]
4. Deploy an application that uses cloud infrastructure for computing and/or data resources. [Usage]
5. Appropriately partition an application between a client and resources. [Usage]

PD/Formal Models and Semantics
[Elective]
Topics:

• Formal models of processes and message passing, including algebras such as Communicating Sequential
Processes (CSP) and pi-calculus

• Formal models of parallel computation, including the Parallel Random Access Machine (PRAM) and
alternatives such as Bulk Synchronous Parallel (BSP)

• Formal models of computational dependencies
• Models of (relaxed) shared memory consistency and their relation to programming language specifications
• Algorithmic correctness criteria including linearizability
• Models of algorithmic progress, including non-blocking guarantees and fairness
• Techniques for specifying and checking correctness properties such as atomicity and freedom from data

races

Learning outcomes:

1. Model a concurrent process using a formal model, such as pi-calculus. [Usage]
2. Explain the characteristics of a particular formal parallel model. [Familiarity]
3. Formally model a shared memory system to show if it is consistent. [Usage]
4. Use a model to show progress guarantees in a parallel algorithm. [Usage]
5. Use formal techniques to show that a parallel algorithm is correct with respect to a safety or liveness

property. [Usage]
6. Decide if a specific execution is linearizable or not. [Usage]

Programming Languages (PL)

Programming languages are the medium through which programmers precisely describe

concepts, formulate algorithms, and reason about solutions. In the course of a career, a computer

scientist will work with many different languages, separately or together. Software developers

must understand the programming models underlying different languages and make informed

design choices in languages supporting multiple complementary approaches. Computer

scientists will often need to learn new languages and programming constructs, and must

understand the principles underlying how programming language features are defined,

composed, and implemented. The effective use of programming languages, and appreciation of

their limitations, also requires a basic knowledge of programming language translation and static

program analysis, as well as run-time components such as memory management.

- 156 -

PL. Programming Languages (8 Core-Tier1 hours, 20 Core-Tier2 hours)
 Core-Tier1 hours Core-Tier2 hours Includes Electives

PL/Object-Oriented Programming 4 6 N

PL/Functional Programming 3 4 N

PL/Event-Driven and Reactive
Programming

 2 N

PL/Basic Type Systems 1 4 N

PL/Program Representation 1 N

PL/Language Translation and
Execution

 3 N

PL/Syntax Analysis Y

PL/Compiler Semantic Analysis Y

PL/Code Generation Y

PL/Runtime Systems Y

PL/Static Analysis Y

PL/Advanced Programming
Constructs

 Y

PL/Concurrency and Parallelism Y

PL/Type Systems Y

PL/Formal Semantics Y

PL/Language Pragmatics Y

PL/Logic Programming Y

Note:

• Some topics from one or more of the first three Knowledge Units (Object-Oriented
Programming, Functional Programming, Event-Driven and Reactive Programming) are
likely to be integrated with topics in the SF-Software Development Fundamentals
Knowledge Area in a curriculum’s introductory courses. Curricula will differ on which
topics are integrated in this fashion and which are delayed until later courses on software
development and programming languages.

• Some of the most important core learning outcomes are relevant to object-oriented
programming, functional programming, and, in fact, all programming. These learning
outcomes are repeated in the Object-Oriented Programming and Functional
Programming Knowledge Units, with a note to this effect. We do not intend that a

- 157 -

curriculum necessarily needs to cover them multiple times, though some will. We repeat
them only because they do not naturally fit in only one Knowledge Unit.

PL/Object-Oriented Programming
[4 Core-Tier1 hours, 6 Core-Tier2 hours]
Topics:

[Core-Tier1]

• Object-oriented design
o Decomposition into objects carrying state and having behavior
o Class-hierarchy design for modeling

• Definition of classes: fields, methods, and constructors
• Subclasses, inheritance, and method overriding
• Dynamic dispatch: definition of method-call

[Core-Tier2]

• Subtyping (cross-reference PL/Type Systems)
o Subtype polymorphism; implicit upcasts in typed languages
o Notion of behavioral replacement: subtypes acting like supertypes
o Relationship between subtyping and inheritance

• Object-oriented idioms for encapsulation
o Privacy and visibility of class members
o Interfaces revealing only method signatures
o Abstract base classes

• Using collection classes, iterators, and other common library components

Learning outcomes:

[Core-Tier1]

1. Design and implement a class. [Usage]
2. Use subclassing to design simple class hierarchies that allow code to be reused for distinct subclasses.

[Usage]
3. Correctly reason about control flow in a program using dynamic dispatch. [Usage]
4. Compare and contrast (1) the procedural/functional approach (defining a function for each operation with

the function body providing a case for each data variant) and (2) the object-oriented approach (defining a
class for each data variant with the class definition providing a method for each operation). Understand
both as defining a matrix of operations and variants. [Assessment] This outcome also appears in
PL/Functional Programming.

[Core-Tier2]

5. Explain the relationship between object-oriented inheritance (code-sharing and overriding) and subtyping
(the idea of a subtype being usable in a context that expects the supertype). [Familiarity]

6. Use object-oriented encapsulation mechanisms such as interfaces and private members. [Usage]
7. Define and use iterators and other operations on aggregates, including operations that take functions as

arguments, in multiple programming languages, selecting the most natural idioms for each language.
[Usage] This outcome also appears in PL/Functional Programming.

- 158 -

PL/Functional Programming
[3 Core-Tier1 hours, 4 Core-Tier2 hours]
Topics:

[Core-Tier1]

• Effect-free programming
o Function calls have no side effects, facilitating compositional reasoning
o Variables are immutable, preventing unexpected changes to program data by other code
o Data can be freely aliased or copied without introducing unintended effects from mutation

• Processing structured data (e.g., trees) via functions with cases for each data variant
o Associated language constructs such as discriminated unions and pattern-matching over them
o Functions defined over compound data in terms of functions applied to the constituent pieces

• First-class functions (taking, returning, and storing functions)

[Core-Tier2]

• Function closures (functions using variables in the enclosing lexical environment)
o Basic meaning and definition -- creating closures at run-time by capturing the environment
o Canonical idioms: call-backs, arguments to iterators, reusable code via function arguments
o Using a closure to encapsulate data in its environment
o Currying and partial application

• Defining higher-order operations on aggregates, especially map, reduce/fold, and filter

Learning outcomes:

[Core-Tier1]

1. Write basic algorithms that avoid assigning to mutable state or considering reference equality. [Usage]
2. Write useful functions that take and return other functions. [Usage]
3. Compare and contrast (1) the procedural/functional approach (defining a function for each operation with

the function body providing a case for each data variant) and (2) the object-oriented approach (defining a
class for each data variant with the class definition providing a method for each operation). Understand
both as defining a matrix of operations and variants. [Assessment] This outcome also appears in
PL/Object-Oriented Programming.

[Core-Tier2]

4. Correctly reason about variables and lexical scope in a program using function closures. [Usage]
5. Use functional encapsulation mechanisms such as closures and modular interfaces. [Usage]
6. Define and use iterators and other operations on aggregates, including operations that take functions as

arguments, in multiple programming languages, selecting the most natural idioms for each language.
[Usage] This outcome also appears in PL/Object-Oriented Programming.

- 159 -

PL/Event-Driven and Reactive Programming
[2 Core-Tier2 hours]
This material can stand alone or be integrated with other knowledge units on concurrency,
asynchrony, and threading to allow contrasting events with threads.
Topics:

• Events and event handlers
• Canonical uses such as GUIs, mobile devices, robots, servers
• Using a reactive framework

o Defining event handlers/listeners
o Main event loop not under event-handler-writer’s control

• Externally-generated events and program-generated events
• Separation of model, view, and controller

Learning outcomes:

1. Write event handlers for use in reactive systems, such as GUIs. [Usage]
2. Explain why an event-driven programming style is natural in domains where programs react to external

events. [Familiarity]
3. Describe an interactive system in terms of a model, a view, and a controller. [Familiarity]

PL/Basic Type Systems
[1 Core-Tier1 hour, 4 Core-Tier2 hours]
The core-tier2 hours would be profitably spent both on the core-tier2 topics and on a less shallow
treatment of the core-tier1 topics and learning outcomes.
Topics:

[Core-Tier1]

• A type as a set of values together with a set of operations
o Primitive types (e.g., numbers, Booleans)
o Compound types built from other types (e.g., records, unions, arrays, lists, functions, references)

• Association of types to variables, arguments, results, and fields
• Type safety and errors caused by using values inconsistently given their intended types
• Goals and limitations of static typing

o Eliminating some classes of errors without running the program
o Undecidability means static analysis must conservatively approximate program behavior

[Core-Tier2]

• Generic types (parametric polymorphism)
o Definition
o Use for generic libraries such as collections
o Comparison with ad hoc polymorphism (overloading) and subtype polymorphism

• Complementary benefits of static and dynamic typing
o Errors early vs. errors late/avoided

- 160 -

o Enforce invariants during code development and code maintenance vs. postpone typing decisions
while prototyping and conveniently allow flexible coding patterns such as heterogeneous
collections

o Avoid misuse of code vs. allow more code reuse
o Detect incomplete programs vs. allow incomplete programs to run

Learning outcomes:

[Core-Tier1]

1. For both a primitive and a compound type, informally describe the values that have that type. [Familiarity]
2. For a language with a static type system, describe the operations that are forbidden statically, such as

passing the wrong type of value to a function or method. [Familiarity]
3. Describe examples of program errors detected by a type system. [Familiarity]
4. For multiple programming languages, identify program properties checked statically and program

properties checked dynamically. [Usage]
5. Give an example program that does not type-check in a particular language and yet would have no error if

run. [Familiarity]
6. Use types and type-error messages to write and debug programs. [Usage]

[Core-Tier2]

7. Explain how typing rules define the set of operations that are legal for a type. [Familiarity]
8. Write down the type rules governing the use of a particular compound type. [Usage]
9. Explain why undecidability requires type systems to conservatively approximate program behavior.

[Familiarity]
10. Define and use program pieces (such as functions, classes, methods) that use generic types, including for

collections. [Usage]
11. Discuss the differences among generics, subtyping, and overloading. [Familiarity]
12. Explain multiple benefits and limitations of static typing in writing, maintaining, and debugging software.

[Familiarity]

PL/Program Representation
[1 Core-Tier2 hour]
Topics:

• Programs that take (other) programs as input such as interpreters, compilers, type-checkers, documentation
generators

• Abstract syntax trees; contrast with concrete syntax
• Data structures to represent code for execution, translation, or transmission

Learning outcomes:

1. Explain how programs that process other programs treat the other programs as their input data.
[Familiarity]

2. Describe an abstract syntax tree for a small language. [Usage]
3. Describe the benefits of having program representations other than strings of source code. [Familiarity]
4. Write a program to process some representation of code for some purpose, such as an interpreter, an

expression optimizer, or a documentation generator. [Usage]

- 161 -

PL/Language Translation and Execution
[3 Core-Tier2 hours]
Topics:

• Interpretation vs. compilation to native code vs. compilation to portable intermediate representation
• Language translation pipeline: parsing, optional type-checking, translation, linking, execution

o Execution as native code or within a virtual machine
o Alternatives like dynamic loading and dynamic (or “just-in-time”) code generation

• Run-time representation of core language constructs such as objects (method tables) and first-class
functions (closures)

• Run-time layout of memory: call-stack, heap, static data
o Implementing loops, recursion, and tail calls

• Memory management
o Manual memory management: allocating, de-allocating, and reusing heap memory
o Automated memory management: garbage collection as an automated technique using the notion

of reachability

Learning outcomes:

1. Distinguish a language definition (what constructs mean) from a particular language implementation
(compiler vs. interpreter, run-time representation of data objects, etc.). [Familiarity]

2. Distinguish syntax and parsing from semantics and evaluation. [Familiarity]
3. Sketch a low-level run-time representation of core language constructs, such as objects or closures.

[Familiarity]
4. Explain how programming language implementations typically organize memory into global data, text,

heap, and stack sections and how features such as recursion and memory management map to this memory
model. [Familiarity]

5. Identify and fix memory leaks and dangling-pointer dereferences. [Usage]
6. Discuss the benefits and limitations of garbage collection, including the notion of reachability. [Familiarity]

PL/Syntax Analysis
[Elective]
Topics:

• Scanning (lexical analysis) using regular expressions
• Parsing strategies including top-down (e.g., recursive descent, Earley parsing, or LL) and bottom-up (e.g.,

backtracking or LR) techniques; role of context-free grammars
• Generating scanners and parsers from declarative specifications

Learning outcomes:

1. Use formal grammars to specify the syntax of languages. [Usage]
2. Use declarative tools to generate parsers and scanners. [Usage]
3. Identify key issues in syntax definitions: ambiguity, associativity, precedence. [Familiarity]

- 162 -

PL/Compiler Semantic Analysis
[Elective]
Topics:

• High-level program representations such as abstract syntax trees
• Scope and binding resolution
• Type checking
• Declarative specifications such as attribute grammars

Learning outcomes:

1. Implement context-sensitive, source-level static analyses such as type-checkers or resolving identifiers to
identify their binding occurrences. [Usage]

2. Describe semantic analyses using an attribute grammar. [Usage]

PL/Code Generation
[Elective]
Topics:

• Procedure calls and method dispatching
• Separate compilation; linking
• Instruction selection
• Instruction scheduling
• Register allocation
• Peephole optimization

Learning outcomes:

1. Identify all essential steps for automatically converting source code into assembly or other low-level
languages. [Familiarity]

2. Generate the low-level code for calling functions/methods in modern languages. [Usage]
3. Discuss why separate compilation requires uniform calling conventions. [Familiarity]
4. Discuss why separate compilation limits optimization because of unknown effects of calls. [Familiarity]
5. Discuss opportunities for optimization introduced by naive translation and approaches for achieving

optimization, such as instruction selection, instruction scheduling, register allocation, and peephole
optimization. [Familiarity]

PL/Runtime Systems
[Elective]
Topics:

• Dynamic memory management approaches and techniques: malloc/free, garbage collection (mark-sweep,
copying, reference counting), regions (also known as arenas or zones)

- 163 -

• Data layout for objects and activation records
• Just-in-time compilation and dynamic recompilation
• Other common features of virtual machines, such as class loading, threads, and security.

Learning outcomes:

1. Compare the benefits of different memory-management schemes, using concepts such as fragmentation,
locality, and memory overhead. [Familiarity]

2. Discuss benefits and limitations of automatic memory management. [Familiarity]
3. Explain the use of metadata in run-time representations of objects and activation records, such as class

pointers, array lengths, return addresses, and frame pointers. [Familiarity]
4. Discuss advantages, disadvantages, and difficulties of just-in-time and dynamic recompilation.

[Familiarity]
5. Identify the services provided by modern language run-time systems. [Familiarity]

PL/Static Analysis
[Elective]
Topics:

• Relevant program representations, such as basic blocks, control-flow graphs, def-use chains, and static
single assignment

• Undecidability and consequences for program analysis
• Flow-insensitive analyses, such as type-checking and scalable pointer and alias analyses
• Flow-sensitive analyses, such as forward and backward dataflow analyses
• Path-sensitive analyses, such as software model checking
• Tools and frameworks for defining analyses
• Role of static analysis in program optimization
• Role of static analysis in (partial) verification and bug-finding

Learning outcomes:

1. Define useful static analyses in terms of a conceptual framework such as dataflow analysis. [Usage]
2. Explain why non-trivial sound static analyses must be approximate. [Familiarity]
3. Communicate why an analysis is correct (sound and terminating). [Usage]
4. Distinguish “may” and “must” analyses. [Familiarity]
5. Explain why potential aliasing limits sound program analysis and how alias analysis can help. [Familiarity]
6. Use the results of a static analysis for program optimization and/or partial program correctness. [Usage]

PL/Advanced Programming Constructs
[Elective]
Topics:

• Lazy evaluation and infinite streams
• Control Abstractions: Exception Handling, Continuations, Monads
• Object-oriented abstractions: Multiple inheritance, Mixins, Traits, Multimethods

- 164 -

• Metaprogramming: Macros, Generative programming, Model-based development
• Module systems
• String manipulation via pattern-matching (regular expressions)
• Dynamic code evaluation (“eval”)
• Language support for checking assertions, invariants, and pre/post-conditions

Learning outcomes:

1. Use various advanced programming constructs and idioms correctly. [Usage]
2. Discuss how various advanced programming constructs aim to improve program structure, software

quality, and programmer productivity. [Familiarity]
3. Discuss how various advanced programming constructs interact with the definition and implementation of

other language features. [Familiarity]

PL/Concurrency and Parallelism
[Elective]
Support for concurrency is a fundamental programming-languages issue with rich material in
programming language design, language implementation, and language theory. Due to coverage
in other Knowledge Areas, this elective Knowledge Unit aims only to complement the material
included elsewhere in the Body of Knowledge. Courses on programming languages are an
excellent place to include a general treatment of concurrency including this other material.

Cross-reference PD/Parallel and Distributed Computing, SF/Parallelism.
Topics:

• Constructs for thread-shared variables and shared-memory synchronization
• Actor models
• Futures
• Language support for data parallelism
• Models for passing messages between sequential processes
• Effect of memory-consistency models on language semantics and correct code generation

Learning outcomes:

1. Write correct concurrent programs using multiple programming models, such as shared memory, actors,
futures, and data-parallelism primitives. [Usage]

2. Use a message-passing model to analyze a communication protocol. [Usage]
3. Explain why programming languages do not guarantee sequential consistency in the presence of data races

and what programmers must do as a result. [Familiarity]

- 165 -

PL/Type Systems
[Elective]
Topics:

• Compositional type constructors, such as product types (for aggregates), sum types (for unions), function
types, quantified types, and recursive types

• Type checking
• Type safety as preservation plus progress
• Type inference
• Static overloading

Learning outcomes:

1. Define a type system precisely and compositionally. [Usage]
2. For various foundational type constructors, identify the values they describe and the invariants they

enforce. [Familiarity]
3. Precisely specify the invariants preserved by a sound type system. [Familiarity]
4. Prove type safety for a simple language in terms of preservation and progress theorems. [Usage]
5. Implement a unification-based type-inference algorithm for a simple language. [Usage]
6. Explain how static overloading and associated resolution algorithms influence the dynamic behavior of

programs. [Familiarity]

PL/Formal Semantics
[Elective]
Topics:

• Syntax vs. semantics
• Lambda Calculus
• Approaches to semantics: Operational, Denotational, Axiomatic
• Proofs by induction over language semantics
• Formal definitions and proofs for type systems (cross-reference PL/Type Systems)
• Parametricity (cross-reference PL/Type Systems)
• Using formal semantics for systems modeling

Learning outcomes:

1. Give a formal semantics for a small language. [Usage]
2. Write a lambda-calculus program and show its evaluation to a normal form. [Usage]
3. Discuss the different approaches of operational, denotational, and axiomatic semantics. [Familiarity]
4. Use induction to prove properties of all programs in a language. [Usage]
5. Use induction to prove properties of all programs in a language that are well-typed according to a formally

defined type system. [Usage]
6. Use parametricity to establish the behavior of code given only its type. [Usage]
7. Use formal semantics to build a formal model of a software system other than a programming language.

[Usage]

- 166 -

PL/Language Pragmatics
[Elective]
Topics:

• Principles of language design such as orthogonality
• Evaluation order, precedence, and associativity
• Eager vs. delayed evaluation
• Defining control and iteration constructs
• External calls and system libraries

Learning outcomes:

1. Discuss the role of concepts such as orthogonality and well-chosen defaults in language design.
[Familiarity]

2. Use crisp and objective criteria for evaluating language-design decisions. [Usage]
3. Give an example program whose result can differ under different rules for evaluation order, precedence, or

associativity. [Usage]
4. Show uses of delayed evaluation, such as user-defined control abstractions. [Familiarity]
5. Discuss the need for allowing calls to external calls and system libraries and the consequences for language

implementation. [Familiarity]

PL/Logic Programming
[Elective]
Topics:

• Clausal representation of data structures and algorithms
• Unification
• Backtracking and search
• Cuts

Learning outcomes:

1. Use a logic language to implement a conventional algorithm. [Usage]
2. Use a logic language to implement an algorithm employing implicit search using clauses, relations, and

cuts. [Usage]

Software Development Fundamentals (SDF)

Fluency in the process of software development is a prerequisite to the study of most of

computer science. In order to use computers to solve problems effectively, students must be

competent at reading and writing programs in multiple programming languages. Beyond

programming skills, however, they must be able to design and analyze algorithms, select

appropriate paradigms, and utilize modern development and testing tools. This knowledge area

brings together those fundamental concepts and skills related to the software development

process. As such, it provides a foundation for other software-oriented knowledge areas, most

notably Programming Languages, Algorithms and Complexity, and Software Engineering.

It is important to note that this knowledge area is distinct from the old Programming

Fundamentals knowledge area from CC2001. Whereas that knowledge area focused exclusively

on the programming skills required in an introductory computer science course, this new

knowledge area is intended to fill a much broader purpose. It focuses on the entire software

development process, identifying those concepts and skills that should be mastered in the first

year of a computer science program. This includes the design and simple analysis of algorithms,

fundamental programming concepts and data structures, and basic software development

methods and tools. As a result of its broader purpose, the Software Development Fundamentals

knowledge area includes fundamental concepts and skills that could naturally be listed in other

software-oriented knowledge areas (e.g., programming constructs from Programming

Languages, simple algorithm analysis from Algorithms & Complexity, simple development

methodologies from Software Engineering). Likewise, each of these knowledge areas will

contain more advanced material that builds upon the fundamental concepts and skills listed here.

While broader in scope than the old Programming Fundamentals, this knowledge area still allows

for considerable flexibility in the design of first-year curricula. For example, the Fundamental

Programming Concepts unit identifies only those concepts that are common to all programming

paradigms. It is expected that an instructor would select one or more programming paradigms

(e.g., object-oriented programming, functional programming, scripting) to illustrate these

programming concepts, and would pull paradigm-specific content from the Programming

Languages knowledge area to fill out a course. Likewise, an instructor could choose to

- 168 -

emphasize formal analysis (e.g., Big-Oh, computability) or design methodologies (e.g., team

projects, software life cycle) early, thus integrating hours from the Programming Languages,

Algorithms and Complexity, and/or Software Engineering knowledge areas. Thus, the 43 hours

of material in this knowledge area will typically be augmented with core material from one or

more of these knowledge areas to form a complete and coherent first-year experience.

When considering the hours allocated to each knowledge unit, it should be noted that these hours

reflect the minimal amount of classroom coverage needed to introduce the material. Many

software development topics will reappear and be reinforced by later topics (e.g., applying

iteration constructs when processing lists). In addition, the mastery of concepts and skills from

this knowledge area requires a significant amount of software development experience outside of

class.

SDF. Software Development Fundamentals (43 Core-Tier1 hours)

 Core-Tier1 hours Core-Tier2 hours Includes
Electives

SDF/Algorithms and Design 11 N

SDF/Fundamental Programming Concepts 10 N

SDF/Fundamental Data Structures 12 N

SDF/Development Methods 10 N

- 169 -

SDF/Algorithms and Design
[11 Core-Tier1 hours]
This unit builds the foundation for core concepts in the Algorithms and Complexity Knowledge
Area, most notably in the Basic Analysis and Algorithmic Strategies knowledge units.
Topics:

• The concept and properties of algorithms
o Informal comparison of algorithm efficiency (e.g., operation counts)

• The role of algorithms in the problem-solving process
• Problem-solving strategies

o Iterative and recursive mathematical functions
o Iterative and recursive traversal of data structures
o Divide-and-conquer strategies

• Fundamental design concepts and principles
o Abstraction
o Program decomposition
o Encapsulation and information hiding
o Separation of behavior and implementation

Learning Outcomes:

1. Discuss the importance of algorithms in the problem-solving process. [Familiarity]
2. Discuss how a problem may be solved by multiple algorithms, each with different properties. [Familiarity]
3. Create algorithms for solving simple problems. [Usage]
4. Use a programming language to implement, test, and debug algorithms for solving simple problems.

[Usage]
5. Implement, test, and debug simple recursive functions and procedures. [Usage]
6. Determine whether a recursive or iterative solution is most appropriate for a problem. [Assessment]
7. Implement a divide-and-conquer algorithm for solving a problem. [Usage]
8. Apply the techniques of decomposition to break a program into smaller pieces. [Usage]
9. Identify the data components and behaviors of multiple abstract data types. [Usage]
10. Implement a coherent abstract data type, with loose coupling between components and behaviors. [Usage]
11. Identify the relative strengths and weaknesses among multiple designs or implementations for a problem.

[Assessment]

SDF/Fundamental Programming Concepts
[10 Core-Tier1 hours]
This knowledge unit builds the foundation for core concepts in the Programming Languages
Knowledge Area, most notably in the paradigm-specific units: Object-Oriented Programming,
Functional Programming, and Event-Driven & Reactive Programming.
Topics:

• Basic syntax and semantics of a higher-level language
• Variables and primitive data types (e.g., numbers, characters, Booleans)
• Expressions and assignments
• Simple I/O including file I/O
• Conditional and iterative control structures
• Functions and parameter passing
• The concept of recursion

- 170 -

Learning Outcomes:

1. Analyze and explain the behavior of simple programs involving the fundamental programming
constructs variables, expressions, assignments, I/O, control constructs, functions, parameter passing,
and recursion. [Assessment]

2. Identify and describe uses of primitive data types. [Familiarity]
3. Write programs that use primitive data types. [Usage]
4. Modify and expand short programs that use standard conditional and iterative control structures and

functions. [Usage]
5. Design, implement, test, and debug a program that uses each of the following fundamental

programming constructs: basic computation, simple I/O, standard conditional and iterative structures,
the definition of functions, and parameter passing. [Usage]

6. Write a program that uses file I/O to provide persistence across multiple executions. [Usage]
7. Choose appropriate conditional and iteration constructs for a given programming task. [Assessment]
8. Describe the concept of recursion and give examples of its use. [Familiarity]
9. Identify the base case and the general case of a recursively-defined problem. [Assessment]

SDF/Fundamental Data Structures
[12 Core-Tier1 hours]
This unit builds the foundation for core concepts in the Algorithms and Complexity Knowledge
Area, most notably in the Fundamental Data Structures and Algorithms and Basic Computability
and Complexity knowledge units.
Topics:

• Arrays
• Records/structs (heterogeneous aggregates)
• Strings and string processing
• Abstract data types and their implementation

o Stacks
o Queues
o Priority queues
o Sets
o Maps

• References and aliasing
• Linked lists
• Strategies for choosing the appropriate data structure

Learning Outcomes:

1. Discuss the appropriate use of built-in data structures. [Familiarity]
2. Describe common applications for each of the following data structures: stack, queue, priority queue, set,

and map. [Familiarity]
3. Write programs that use each of the following data structures: arrays, records/structs, strings, linked lists,

stacks, queues, sets, and maps. [Usage]
4. Compare alternative implementations of data structures with respect to performance. [Assessment]
5. Describe how references allow for objects to be accessed in multiple ways. [Familiarity]
6. Compare and contrast the costs and benefits of dynamic and static data structure implementations.

[Assessment]
7. Choose the appropriate data structure for modeling a given problem. [Assessment]

- 171 -

SDF/Development Methods
[10 Core-Tier1 hours]
This unit builds the foundation for core concepts in the Software Engineering knowledge area,
most notably in the Software Processes, Software Design and Software Evolution knowledge
units.
Topics:

• Program comprehension
• Program correctness

o Types of errors (syntax, logic, run-time)
o The concept of a specification
o Defensive programming (e.g. secure coding, exception handling)
o Code reviews
o Testing fundamentals and test-case generation
o The role and the use of contracts, including pre- and post-conditions
o Unit testing

• Simple refactoring
• Modern programming environments

o Code search
o Programming using library components and their APIs

• Debugging strategies
• Documentation and program style

Learning Outcomes:

1. Trace the execution of a variety of code segments and write summaries of their computations. [Assessment]
2. Explain why the creation of correct program components is important in the production of high-quality

software. [Familiarity]
3. Identify common coding errors that lead to insecure programs (e.g., buffer overflows, memory leaks,

malicious code) and apply strategies for avoiding such errors. [Usage]
4. Conduct a personal code review (focused on common coding errors) on a program component using a

provided checklist. [Usage]
5. Contribute to a small-team code review focused on component correctness. [Usage]
6. Describe how a contract can be used to specify the behavior of a program component. [Familiarity]
7. Refactor a program by identifying opportunities to apply procedural abstraction. [Usage]
8. Apply a variety of strategies to the testing and debugging of simple programs. [Usage]
9. Construct, execute and debug programs using a modern IDE and associated tools such as unit testing tools

and visual debuggers. [Usage]
10. Construct and debug programs using the standard libraries available with a chosen programming language.

[Usage]
11. Analyze the extent to which another programmer’s code meets documentation and programming style

standards. [Assessment]
12. Apply consistent documentation and program style standards that contribute to the readability and

maintainability of software. [Usage]

Software Engineering (SE)

In every computing application domain, professionalism, quality, schedule, and cost are critical

to producing software systems. Because of this, the elements of software engineering are

applicable to developing software in all areas of computing. A wide variety of software

engineering practices have been developed and utilized since the need for a discipline of

software engineering was first recognized. Many trade-offs between these different practices

have also been identified. Practicing software engineers have to select and apply appropriate

techniques and practices to a given development effort in order to maximize value. To learn how

to do so, they study the elements of software engineering.

Software engineering is the discipline concerned with the application of theory, knowledge, and

practice to effectively and efficiently build reliable software systems that satisfy the requirements

of customers and users. This discipline is applicable to small, medium, and large-scale systems.

It encompasses all phases of the lifecycle of a software system, including requirements

elicitation, analysis and specification; design; construction; verification and validation;

deployment; and operation and maintenance. Whether small or large, following a traditional

plan-driven development process, an agile approach, or some other method, software engineering

is concerned with the best way to build good software systems.

Software engineering uses engineering methods, processes, techniques, and measurements. It

benefits from the use of tools for managing software development; analyzing and modeling

software artifacts; assessing and controlling quality; and for ensuring a disciplined, controlled

approach to software evolution and reuse. The software engineering toolbox has evolved over the

years. For instance, the use of contracts, with requires and ensure clauses and class invariants, is

one good practice that has become more common. Software development, which can involve an

individual developer or a team or teams of developers, requires choosing the most appropriate

tools, methods, and approaches for a given development environment.

- 173 -

Students and instructors need to understand the impacts of specialization on software engineering

approaches. For example, specialized systems include:

• Real time systems

• Client-server systems

• Distributed systems

• Parallel systems

• Web-based systems

• High integrity systems

• Games

• Mobile computing

• Domain specific software (e.g., scientific computing or business applications)

Issues raised by each of these specialized systems demand specific treatments in each phase of

software engineering. Students must become aware of the differences between general software

engineering techniques and principles and the techniques and principles needed to address issues

specific to specialized systems.

An important effect of specialization is that different choices of material may need to be made

when teaching applications of software engineering, such as between different process models,

different approaches to modeling systems, or different choices of techniques for carrying out any

of the key activities. This is reflected in the assignment of core and elective material, with the

core topics and learning outcomes focusing on the principles underlying the various choices, and

the details of the various alternatives from which the choices have to be made being assigned to

the elective material.

Another division of the practices of software engineering is between those concerned with the

fundamental need to develop systems that implement correctly the functionality that is required

for them and those concerned with other qualities for systems and the trade-offs needed to

balance these qualities. This division too is reflected in the assignment of core and elective

material, so that topics and learning outcomes concerned with the basic methods for developing

- 174 -

such system are assigned to the core and those that are concerned with other qualities and trade-

offs between them are assigned to the elective material.

In general, students can best learn to apply much of the material defined in the Sofware

Engineering KA by participating in a project. Such projects should require students to work on a

team to develop a software system through as much of its lifecycle as is possible. Much of

software engineering is devoted to effective communication among team members and

stakeholders. Utilizing project teams, projects can be sufficiently challenging to require students

to use effective software engineering techniques and to develop and practice their

communication skills. While organizing and running effective projects within the academic

framework can be challenging, the best way to learn to apply software engineering theory and

knowledge is in the practical environment of a project. The minimum hours specified for some

knowledge units in this document may appear insufficient to accomplish associated application-

level learning outcomes. It should be understood that these outcomes are to be achieved through

project experience that may even occur later in the curriculum than when the topics within the

knowledge unit are introduced.

Further, there is increasing evidence that students learn to apply software engineering principles

more effectively through an iterative approach, where students have the opportunity to work

through a development cycle, assess their work, and then apply the knowledge gained through

their assessment to another development cycle. Agile and iterative lifecycle models inherently

afford such opportunities.

Software lifecycle terminology in this document is based on that used in earlier sources, such as

the Software Engineering Body of Knowledge (SWEBOK) and the ACM/IEEE-CS Software

Engineering 2004 Curriculum Guidelines (SE2004). While some terms were originally defined

in the context of plan-driven development processes, they are treated here as generic, and thus

equally applicable to agile processes.

Note: The SDF/Development Methods knowledge unit includes 9 Core-Tier1 hours that

constitute an introduction to certain aspects of software engineering. The knowledge units,

topics and core hour specifications in this Software Engineering Knowledge Area must be

understood as assuming previous exposure to the material described in SDF/Development

Methods.

- 175 -

SE. Software Engineering (6 Core-Tier1 hours; 21 Core-Tier2 hours)
 Core-Tier1 hours Core-Tier2 hours Includes Electives

SE/Software Processes 2 1 Y

SE/Software Project Management 2 Y

SE/Tools and Environments 2 N

SE/Requirements Engineering 1 3 Y

SE/Software Design 3 5 Y

SE/Software Construction 2 Y

SE/Software Verification and Validation 4 Y

SE/Software Evolution 2 Y

SE/Software Reliability 1 Y

SE/Formal Methods Y

SE/Software Processes
[2 Core-Tier1 hours; 1 Core-Tier2 hour]
Topics:

[Core-Tier1]

• Systems level considerations, i.e., the interaction of software with its intended environment (cross-
reference IAS/Secure Software Engineering)

• Introduction to software process models (e.g., waterfall, incremental, agile)
o Activities within software lifecycles

• Programming in the large vs. individual programming

[Core-Tier2]

• Evaluation of software process models

[Elective]

• Software quality concepts
• Process improvement
• Software process capability maturity models
• Software process measurements

- 176 -

Learning Outcomes:

[Core-Tier1]

1. Describe how software can interact with and participate in various systems including information
management, embedded, process control, and communications systems. [Familiarity]

2. Describe the relative advantages and disadvantages among several major process models (e.g., waterfall,
iterative, and agile). [Familiarity]

3. Describe the different practices that are key components of various process models. [Familiarity]
4. Differentiate among the phases of software development. [Familiarity]
5. Describe how programming in the large differs from individual efforts with respect to understanding a large

code base, code reading, understanding builds, and understanding context of changes. [Familiarity]

[Core-Tier2]

6. Explain the concept of a software lifecycle and provide an example, illustrating its phases including the
deliverables that are produced. [Familiarity]

7. Compare several common process models with respect to their value for development of particular classes
of software systems taking into account issues such as requirement stability, size, and non-functional
characteristics. [Usage]

[Elective]

8. Define software quality and describe the role of quality assurance activities in the software process.
[Familiarity]

9. Describe the intent and fundamental similarities among process improvement approaches. [Familiarity]
10. Compare several process improvement models such as CMM, CMMI, CQI, Plan-Do-Check-Act, or

ISO9000. [Assessment]
11. Assess a development effort and recommend potential changes by participating in process improvement

(using a model such as PSP) or engaging in a project retrospective. [Usage]
12. Explain the role of process maturity models in process improvement. [Familiarity]
13. Describe several process metrics for assessing and controlling a project. [Familiarity]
14. Use project metrics to describe the current state of a project. [Usage]

SE/Software Project Management
[2 Core-Tier2 hours]
Topics:

[Core-Tier2]

• Team participation
o Team processes including responsibilities for tasks, meeting structure, and work schedule
o Roles and responsibilities in a software team
o Team conflict resolution
o Risks associated with virtual teams (communication, perception, structure)

• Effort Estimation (at the personal level)
• Risk (cross reference IAS/Secure Software Engineering)

o The role of risk in the lifecycle
o Risk categories including security, safety, market, financial, technology, people, quality, structure

and process

[Elective]

• Team management
o Team organization and decision-making

- 177 -

o Role identification and assignment
o Individual and team performance assessment

• Project management
o Scheduling and tracking
o Project management tools
o Cost/benefit analysis

• Software measurement and estimation techniques
• Software quality assurance and the role of measurements
• Risk

o Risk identification and management
o Risk analysis and evaluation
o Risk tolerance (e.g., risk-adverse, risk-neutral, risk-seeking)
o Risk planning

• System-wide approach to risk including hazards associated with tools

 Learning Outcomes:

[Core-Tier2]

1. Discuss common behaviors that contribute to the effective functioning of a team. [Familiarity]
2. Create and follow an agenda for a team meeting. [Usage]
3. Identify and justify necessary roles in a software development team. [Usage]
4. Understand the sources, hazards, and potential benefits of team conflict. [Usage]
5. Apply a conflict resolution strategy in a team setting. [Usage]
6. Use an ad hoc method to estimate software development effort (e.g., time) and compare to actual effort

required. [Usage]
7. List several examples of software risks. [Familiarity]
8. Describe the impact of risk in a software development lifecycle. [Familiarity]
9. Describe different categories of risk in software systems. [Familiarity]

[Elective]

10. Demonstrate through involvement in a team project the central elements of team building and team
management. [Usage]

11. Describe how the choice of process model affects team organizational structures and decision-making
processes. [Familiarity]

12. Create a team by identifying appropriate roles and assigning roles to team members. [Usage]
13. Assess and provide feedback to teams and individuals on their performance in a team setting. [Usage]
14. Using a particular software process, describe the aspects of a project that need to be planned and monitored,

(e.g., estimates of size and effort, a schedule, resource allocation, configuration control, change
management, and project risk identification and management). [Familiarity]

15. Track the progress of some stage in a project using appropriate project metrics. [Usage]
16. Compare simple software size and cost estimation techniques. [Usage]
17. Use a project management tool to assist in the assignment and tracking of tasks in a software development

project. [Usage]
18. Describe the impact of risk tolerance on the software development process. [Assessment]
19. Identify risks and describe approaches to managing risk (avoidance, acceptance, transference, mitigation),

and characterize the strengths and shortcomings of each. [Familiarity]
20. Explain how risk affects decisions in the software development process. [Usage]
21. Identify security risks for a software system. [Usage]
22. Demonstrate a systematic approach to the task of identifying hazards and risks in a particular situation.

[Usage]
23. Apply the basic principles of risk management in a variety of simple scenarios including a security

situation. [Usage]
24. Conduct a cost/benefit analysis for a risk mitigation approach. [Usage]
25. Identify and analyze some of the risks for an entire system that arise from aspects other than the software.

[Usage]

- 178 -

SE/Tools and Environments
[2 Core-Tier2 hours]
Topics:

• Software configuration management and version control
• Release management
• Requirements analysis and design modeling tools
• Testing tools including static and dynamic analysis tools
• Programming environments that automate parts of program construction processes (e.g., automated builds)

o Continuous integration
• Tool integration concepts and mechanisms

Learning Outcomes:

1. Describe the difference between centralized and distributed software configuration management.
[Familiarity]

2. Describe how version control can be used to help manage software release management. [Familiarity]
3. Identify configuration items and use a source code control tool in a small team-based project. [Usage]
4. Describe how available static and dynamic test tools can be integrated into the software development

environment. [Familiarity]
5. Describe the issues that are important in selecting a set of tools for the development of a particular software

system, including tools for requirements tracking, design modeling, implementation, build automation, and
testing. [Familiarity]

6. Demonstrate the capability to use software tools in support of the development of a software product of
medium size. [Usage]

SE/Requirements Engineering
[1 Core-Tier1 hour; 3 Core-Tier2 hours]
The purpose of requirements engineering is to develop a common understanding of the needs,
priorities, and constraints relevant to a software system. Many software failures arise from an
incomplete understanding of requirements for the software to be developed or inadequate
management of those requirements.

Specifications of requirements range in formality from completely informal (e.g., spoken) to
rigorously mathematical (e.g., written in a formal specification language such as Z or first-order
logic). In practice, successful software engineering efforts use requirements specifications to
reduce ambiguity and improve the consistency and completeness of the development team’s
understanding of the vision of the intended software. Plan-driven approaches tend to produce
formal documents with numbered requirements. Agile approaches tend to favor less formal
specifications that include user stories, use cases, and test cases.

- 179 -

Topics:

[Core-Tier1]

• Describing functional requirements using, for example, use cases or users stories
• Properties of requirements including consistency, validity, completeness, and feasibility

[Core-Tier2]

• Software requirements elicitation
• Describing system data using, for example, class diagrams or entity-relationship diagrams
• Non-functional requirements and their relationship to software quality (cross-reference IAS/Secure

Software Engineering)
• Evaluation and use of requirements specifications

[Elective]

• Requirements analysis modeling techniques
• Acceptability of certainty / uncertainty considerations regarding software / system behavior
• Prototyping
• Basic concepts of formal requirements specification
• Requirements specification
• Requirements validation
• Requirements tracing

Learning Outcomes:

[Core-Tier1]

1. List the key components of a use case or similar description of some behavior that is required for a system.
[Familiarity]

2. Describe how the requirements engineering process supports the elicitation and validation of behavioral
requirements. [Familiarity]

3. Interpret a given requirements model for a simple software system. [Familiarity]

[Core-Tier2]

4. Describe the fundamental challenges of and common techniques used for requirements elicitation.
[Familiarity]

5. List the key components of a data model (e.g., class diagrams or ER diagrams). [Familiarity]
6. Identify both functional and non-functional requirements in a given requirements specification for a

software system. [Usage]
7. Conduct a review of a set of software requirements to determine the quality of the requirements with

respect to the characteristics of good requirements. [Usage]

[Elective]

8. Apply key elements and common methods for elicitation and analysis to produce a set of software
requirements for a medium-sized software system. [Usage]

9. Compare the plan-driven and agile approaches to requirements specification and validation and describe the
benefits and risks associated with each. [Familiarity]

10. Use a common, non-formal method to model and specify the requirements for a medium-size software
system. [Usage]

11. Translate into natural language a software requirements specification (e.g., a software component contract)
written in a formal specification language. [Usage]

12. Create a prototype of a software system to mitigate risk in requirements. [Usage]
13. Differentiate between forward and backward tracing and explain their roles in the requirements validation

process. [Familiarity]

- 180 -

SE/Software Design
[3 Core-Tier1 hours; 5 Core-Tier2 hours]
Topics:

[Core-Tier1]

• System design principles: levels of abstraction (architectural design and detailed design), separation of
concerns, information hiding, coupling and cohesion, re-use of standard structures

• Design Paradigms such as structured design (top-down functional decomposition), object-oriented analysis
and design, event driven design, component-level design, data-structured centered, aspect oriented,
function oriented, service oriented

• Structural and behavioral models of software designs
• Design patterns

[Core-Tier2]

• Relationships between requirements and designs: transformation of models, design of contracts, invariants
• Software architecture concepts and standard architectures (e.g. client-server, n-layer, transform centered,

pipes-and-filters)
• Refactoring designs using design patterns
• The use of components in design: component selection, design, adaptation and assembly of components,

components and patterns, components and objects (for example, building a GUI using a standard widget
set)

[Elective]

• Internal design qualities, and models for them: efficiency and performance, redundancy and fault
tolerance, traceability of requirements

• External design qualities, and models for them: functionality, reliability, performance and efficiency,
usability, maintainability, portability

• Measurement and analysis of design quality
• Tradeoffs between different aspects of quality
• Application frameworks
• Middleware: the object-oriented paradigm within middleware, object request brokers and marshalling,

transaction processing monitors, workflow systems
• Principles of secure design and coding (cross-reference IAS/Principles of Secure Design)

o Principle of least privilege
o Principle of fail-safe defaults
o Principle of psychological acceptability

Learning Outcomes:

[Core-Tier1]

1. Articulate design principles including separation of concerns, information hiding, coupling and cohesion,
and encapsulation. [Familiarity]

2. Use a design paradigm to design a simple software system, and explain how system design principles have
been applied in this design. [Usage]

3. Construct models of the design of a simple software system that are appropriate for the paradigm used to
design it. [Usage]

4. Within the context of a single design paradigm, describe one or more design patterns that could be
applicable to the design of a simple software system. [Familiarity]

- 181 -

[Core-Tier2]

5. For a simple system suitable for a given scenario, discuss and select an appropriate design paradigm.
[Usage]

6. Create appropriate models for the structure and behavior of software products from their requirements
specifications. [Usage]

7. Explain the relationships between the requirements for a software product and its design, using appropriate
models. [Assessment]

8. For the design of a simple software system within the context of a single design paradigm, describe the
software architecture of that system. [Familiarity]

9. Given a high-level design, identify the software architecture by differentiating among common software
architectures such as 3-tier, pipe-and-filter, and client-server. [Familiarity]

10. Investigate the impact of software architectures selection on the design of a simple system. [Assessment]
11. Apply simple examples of patterns in a software design. [Usage]
12. Describe a form of refactoring and discuss when it may be applicable. [Familiarity]
13. Select suitable components for use in the design of a software product. [Usage]
14. Explain how suitable components might need to be adapted for use in the design of a software product.

[Familiarity]
15. Design a contract for a typical small software component for use in a given system. [Usage]

[Elective]

16. Discuss and select appropriate software architecture for a simple system suitable for a given scenario.
[Usage]

17. Apply models for internal and external qualities in designing software components to achieve an acceptable
tradeoff between conflicting quality aspects. [Usage]

18. Analyze a software design from the perspective of a significant internal quality attribute. [Assessment]
19. Analyze a software design from the perspective of a significant external quality attribute. [Assessment]
20. Explain the role of objects in middleware systems and the relationship with components. [Familiarity]
21. Apply component-oriented approaches to the design of a range of software, such as using components for

concurrency and transactions, for reliable communication services, for database interaction including
services for remote query and database management, or for secure communication and access. [Usage]

22. Refactor an existing software implementation to improve some aspect of its design. [Usage]
23. State and apply the principles of least privilege and fail-safe defaults. [Familiarity]

SE/Software Construction
[2 Core-Tier2 hours]
Topics:

[Core-Tier2]

• Coding practices: techniques, idioms/patterns, mechanisms for building quality programs (cross-reference
IAS/Defensive Programming; SDF/Development Methods)

o Defensive coding practices
o Secure coding practices
o Using exception handling mechanisms to make programs more robust, fault-tolerant

• Coding standards
• Integration strategies
• Development context: “green field” vs. existing code base

o Change impact analysis
o Change actualization

- 182 -

[Elective]

• Potential security problems in programs
o Buffer and other types of overflows
o Race conditions
o Improper initialization, including choice of privileges
o Checking input
o Assuming success and correctness
o Validating assumptions

Learning Outcomes:

[Core-Tier2]

1. Describe techniques, coding idioms and mechanisms for implementing designs to achieve desired
properties such as reliability, efficiency, and robustness. [Familiarity]

2. Build robust code using exception handling mechanisms. [Usage]
3. Describe secure coding and defensive coding practices. [Familiarity]
4. Select and use a defined coding standard in a small software project. [Usage]
5. Compare and contrast integration strategies including top-down, bottom-up, and sandwich integration.

[Familiarity]
6. Describe the process of analyzing and implementing changes to code base developed for a specific project.

[Familiarity]
7. Describe the process of analyzing and implementing changes to a large existing code base. [Familiarity]

[Elective]

8. Rewrite a simple program to remove common vulnerabilities, such as buffer overflows, integer overflows
and race conditions. [Usage]

9. Write a software component that performs some non-trivial task and is resilient to input and run-time
errors. [Usage]

SE/Software Verification and Validation
[4 Core-Tier2 hours]
Topics:

[Core-Tier2]

• Verification and validation concepts
• Inspections, reviews, audits
• Testing types, including human computer interface, usability, reliability, security, conformance to

specification (cross-reference IAS/Secure Software Engineering)
• Testing fundamentals (cross-reference SDF/Development Methods)

o Unit, integration, validation, and system testing
o Test plan creation and test case generation
o Black-box and white-box testing techniques
o Regression testing and test automation

• Defect tracking
• Limitations of testing in particular domains, such as parallel or safety-critical systems

- 183 -

[Elective]

• Static approaches and dynamic approaches to verification
• Test-driven development
• Validation planning; documentation for validation
• Object-oriented testing; systems testing
• Verification and validation of non-code artifacts (documentation, help files, training materials)
• Fault logging, fault tracking and technical support for such activities
• Fault estimation and testing termination including defect seeding

Learning Outcomes:

[Core-Tier2]

1. Distinguish between program validation and verification. [Familiarity]
2. Describe the role that tools can play in the validation of software. [Familiarity]
3. Undertake, as part of a team activity, an inspection of a medium-size code segment. [Usage]
4. Describe and distinguish among the different types and levels of testing (unit, integration, systems, and

acceptance). [Familiarity]
5. Describe techniques for identifying significant test cases for integration, regression and system testing.

[Familiarity]
6. Create and document a set of tests for a medium-size code segment. [Usage]
7. Describe how to select good regression tests and automate them. [Familiarity]
8. Use a defect tracking tool to manage software defects in a small software project. [Usage]
9. Discuss the limitations of testing in a particular domain. [Familiarity]

[Elective]

10. Evaluate a test suite for a medium-size code segment. [Usage]
11. Compare static and dynamic approaches to verification. [Familiarity]
12. Identify the fundamental principles of test-driven development methods and explain the role of automated

testing in these methods. [Familiarity]
13. Discuss the issues involving the testing of object-oriented software. [Usage]
14. Describe techniques for the verification and validation of non-code artifacts. [Familiarity]
15. Describe approaches for fault estimation. [Familiarity]
16. Estimate the number of faults in a small software application based on fault density and fault seeding.

[Usage]
17. Conduct an inspection or review of software source code for a small or medium sized software project.

[Usage]

SE/Software Evolution
[2 Core-Tier2 hour]
Topics:

• Software development in the context of large, pre-existing code bases
o Software change
o Concerns and concern location
o Refactoring

• Software evolution
• Characteristics of maintainable software
• Reengineering systems
• Software reuse

- 184 -

o Code segments
o Libraries and frameworks
o Components
o Product lines

Learning Outcomes:

1. Identify the principal issues associated with software evolution and explain their impact on the software
lifecycle. [Familiarity]

2. Estimate the impact of a change request to an existing product of medium size. [Usage]
3. Use refactoring in the process of modifying a software component. [Usage]
4. Discuss the challenges of evolving systems in a changing environment. [Familiarity]
5. Outline the process of regression testing and its role in release management. [Familiarity]
6. Discuss the advantages and disadvantages of different types of software reuse. [Familiarity]

SE/Software Reliability
[1 Core-Tier2]
Topics:

[Core-Tier2]

• Software reliability engineering concepts
• Software reliability, system reliability and failure behavior (cross-reference SF/Reliability Through

Redundancy)
• Fault lifecycle concepts and techniques

[Elective]

• Software reliability models
• Software fault tolerance techniques and models
• Software reliability engineering practices
• Measurement-based analysis of software reliability

Learning Outcomes:

[Core-Tier2]

1. Explain the problems that exist in achieving very high levels of reliability. [Familiarity]
2. Describe how software reliability contributes to system reliability. [Familiarity]
3. List approaches to minimizing faults that can be applied at each stage of the software lifecycle.

[Familiarity]

[Elective]

4. Compare the characteristics of three different reliability modeling approaches. [Familiarity]
5. Demonstrate the ability to apply multiple methods to develop reliability estimates for a software system.

[Usage]
6. Identify methods that will lead to the realization of a software architecture that achieves a specified level of

reliability. [Usage]
7. Identify ways to apply redundancy to achieve fault tolerance for a medium-sized application. [Usage]

- 185 -

SE/Formal Methods
[Elective]
The topics listed below have a strong dependency on core material from the Discrete Structures
(DS) Knowledge Area, particularly knowledge units DS/Functions Relations and Sets, DS/Basic
Logic and DS/Proof Techniques.
Topics:

• Role of formal specification and analysis techniques in the software development cycle
• Program assertion languages and analysis approaches (including languages for writing and analyzing pre-

and post-conditions, such as OCL, JML)
• Formal approaches to software modeling and analysis

o Model checkers
o Model finders

• Tools in support of formal methods

Learning Outcomes:

1. Describe the role formal specification and analysis techniques can play in the development of complex
software and compare their use as validation and verification techniques with testing. [Familiarity]

2. Apply formal specification and analysis techniques to software designs and programs with low complexity.
[Usage]

3. Explain the potential benefits and drawbacks of using formal specification languages. [Familiarity]
4. Create and evaluate program assertions for a variety of behaviors ranging from simple through complex.

[Usage]
5. Using a common formal specification language, formulate the specification of a simple software system

and derive examples of test cases from the specification. [Usage]

Systems Fundamentals (SF)

The underlying hardware and software infrastructure upon which applications are constructed is

collectively described by the term "computer systems." Computer systems broadly span the sub-

disciplines of operating systems, parallel and distributed systems, communications networks, and

computer architecture. Traditionally, these areas are taught in a non-integrated way through

independent courses. However these sub-disciplines increasingly share important common

fundamental concepts within their respective cores. These concepts include computational

paradigms, parallelism, cross-layer communications, state and state transition, resource

allocation and scheduling, and so on. The Systems Fundamentals Knowledge Area is designed

to present an integrative view of these fundamental concepts in a unified albeit simplified

fashion, providing a common foundation for the different specialized mechanisms and policies

appropriate to the particular domain area.

SF. Systems Fundamentals. [18 Core-Tier1 hours, 9 Core-Tier2 hours]

 Core-Tier1 hours Core-Tier2 hours Includes
Electives

SF/Computational Paradigms 3 N

SF/Cross-Layer Communications 3 N

SF/State and State Machines 6 N

SF/Parallelism 3 N

SF/Evaluation 3 N

SF/Resource Allocation and Scheduling 2 N

SF/Proximity 3 N

SF/Virtualization and Isolation 2 N

SF/Reliability through Redundancy 2 N

SF/Quantitative Evaluation Y

- 187 -

SF/Computational Paradigms
[3 Core-Tier1 hours]
The view presented here is the multiple representations of a system across layers, from hardware
building blocks to application components, and the parallelism available in each representation.
Cross-reference PD/Parallelism Fundamentals.
Topics:

• Basic building blocks and components of a computer (gates, flip-flops, registers, interconnections;
Datapath + Control + Memory)

• Hardware as a computational paradigm: Fundamental logic building blocks; Logic expressions,
minimization, sum of product forms

• Application-level sequential processing: single thread
• Simple application-level parallel processing: request level (web services/client-server/distributed), single

thread per server, multiple threads with multiple servers
• Basic concept of pipelining, overlapped processing stages
• Basic concept of scaling: going faster vs. handling larger problems

Learning Outcomes:

1. List commonly encountered patterns of how computations are organized. [Familiarity]
2. Describe the basic building blocks of computers and their role in the historical development of computer

architecture. [Familiarity]
3. Articulate the differences between single thread vs. multiple thread, single server vs. multiple server

models, motivated by real world examples (e.g., cooking recipes, lines for multiple teller machines and
couples shopping for food). [Familiarity]

4. Articulate the concept of strong vs. weak scaling, i.e., how performance is affected by scale of problem vs.
scale of resources to solve the problem. This can be motivated by the simple, real-world examples.
[Familiarity]

5. Design a simple logic circuit using the fundamental building blocks of logic design. [Usage]
6. Use tools for capture, synthesis, and simulation to evaluate a logic design. [Usage]
7. Write a simple sequential problem and a simple parallel version of the same program. [Usage]
8. Evaluate performance of simple sequential and parallel versions of a program with different problem sizes,

and be able to describe the speed-ups achieved. [Assessment]

SF/Cross-Layer Communications
Cross-reference NC/Introduction, OS/Operating Systems Principles

[3 Core-Tier1 hours]
Topics:

• Programming abstractions, interfaces, use of libraries
• Distinction between Application and OS services, Remote Procedure Call
• Application-Virtual Machine Interaction
• Reliability

Learning Outcomes:

1. Describe how computing systems are constructed of layers upon layers, based on separation of concerns,
with well-defined interfaces, hiding details of low layers from the higher layers. [Familiarity]

- 188 -

2. Describe how hardware, VM, OS, and applications are additional layers of interpretation/processing.
[Familiarity]

3. Describe the mechanisms of how errors are detected, signaled back, and handled through the layers.
[Familiarity]

4. Construct a simple program using methods of layering, error detection and recovery, and reflection of error
status across layers. [Usage]

5. Find bugs in a layered program by using tools for program tracing, single stepping, and debugging. [Usage]

SF/State and State Machines
[6 Core-Tier1 hours]
Cross-reference AL/Basic Computability and Complexity, OS/State and State Diagrams,
NC/Protocols
Topics:

• Digital vs. Analog/Discrete vs. Continuous Systems
• Simple logic gates, logical expressions, Boolean logic simplification
• Clocks, State, Sequencing
• Combinational Logic, Sequential Logic, Registers, Memories
• Computers and Network Protocols as examples of state machines

Learning Outcomes:

1. Describe computations as a system characyterized by a known set of configurations with transitions from
one unique configuration (state) to another (state). [Familiarity]

2. Describe the distinction between systems whose output is only a function of their input (Combinational)
and those with memory/history (Sequential). [Familiarity]

3. Describe a computer as a state machine that interprets machine instructions. [Familiarity]
4. Explain how a program or network protocol can also be expressed as a state machine, and that alternative

representations for the same computation can exist. [Familiarity]
5. Develop state machine descriptions for simple problem statement solutions (e.g., traffic light sequencing,

pattern recognizers). [Usage]
6. Derive time-series behavior of a state machine from its state machine representation. [Assessment]

SF/Parallelism
[3 Core-Tier1 hours]
Cross-reference PD/Parallelism Fundamentals.

Topics:

• Sequential vs. parallel processing
• Parallel programming vs. concurrent programming
• Request parallelism vs. Task parallelism
• Client-Server/Web Services, Thread (Fork-Join), Pipelining
• Multicore architectures and hardware support for synchronization

- 189 -

Learning Outcomes:

1. For a given program, distinguish between its sequential and parallel execution, and the performance
implications thereof. [Familiarity]

2. Demonstrate on an execution time line that parallelism events and operations can take place simultaneously
(i.e., at the same time). Explain how work can be performed in less elapsed time if this can be exploited.
[Familiarity]

3. Explain other uses of parallelism, such as for reliability/redundancy of execution. [Familiarity]
4. Define the differences between the concepts of Instruction Parallelism, Data Parallelism, Thread

Parallelism/Multitasking, Task/Request Parallelism. [Familiarity]
5. Write more than one parallel program (e.g., one simple parallel program in more than one parallel

programming paradigm; a simple parallel program that manages shared resources through synchronization
primitives; a simple parallel program that performs simultaneous operation on partitioned data through task
parallel (e.g., parallel search terms; a simple parallel program that performs step-by-step pipeline
processing through message passing). [Usage]

6. Use performance tools to measure speed-up achieved by parallel programs in terms of both problem size
and number of resources. [Assessment]

SF/Evaluation
[3 Core-Tier1 hours]
Cross-reference PD/Parallel Performance.

Topics:

• Performance figures of merit
• Workloads and representative benchmarks, and methods of collecting and analyzing performance figures of

merit
• CPI (Cycles per Instruction) equation as tool for understanding tradeoffs in the design of instruction sets,

processor pipelines, and memory system organizations.
• Amdahl’s Law: the part of the computation that cannot be sped up limits the effect of the parts that can

Learning Outcomes:

1. Explain how the components of system architecture contribute to improving its performance. [Familiarity]
2. Describe Amdahl’s law and discuss its limitations. [Familiarity]
3. Design and conduct a performance-oriented experiment. [Usage]
4. Use software tools to profile and measure program performance. [Assessment]

SF/Resource Allocation and Scheduling
[2 Core-Tier2 hours]
Topics:

• Kinds of resources (e.g., processor share, memory, disk, net bandwidth)
• Kinds of scheduling (e.g., first-come, priority)
• Advantages of fair scheduling, preemptive scheduling

Learning Outcomes:

1. Define how finite computer resources (e.g., processor share, memory, storage and network bandwidth) are
managed by their careful allocation to existing entities. [Familiarity]

- 190 -

2. Describe the scheduling algorithms by which resources are allocated to competing entities, and the figures
of merit by which these algorithms are evaluated, such as fairness. [Familiarity]

3. Implement simple schedule algorithms. [Usage]
4. Use figures of merit of alternative scheduler implementations. [Assessment]

SF/Proximity
[3 Core-Tier2 hours]
Cross-reference AR/Memory Management, OS/Virtual Memory.
Topics:

• Speed of light and computers (one foot per nanosecond vs. one GHz clocks)
• Latencies in computer systems: memory vs. disk latencies vs. across the network memory
• Caches and the effects of spatial and temporal locality on performance in processors and systems
• Caches and cache coherency in databases, operating systems, distributed systems, and computer

architecture
• Introduction into the processor memory hierarchy and the formula for average memory access time

Learning Outcomes:

1. Explain the importance of locality in determining performance. [Familiarity]
2. Describe why things that are close in space take less time to access. [Familiarity]
3. Calculate average memory access time and describe the tradeoffs in memory hierarchy performance in

terms of capacity, miss/hit rate, and access time. [Assessment]

SF/Virtualization and Isolation
[2 Core-Tier2 hours]
Topics:

• Rationale for protection and predictable performance
• Levels of indirection, illustrated by virtual memory for managing physical memory resources
• Methods for implementing virtual memory and virtual machines

Learning Outcomes:

1. Explain why it is important to isolate and protect the execution of individual programs and environments
that share common underlying resources. [Familiarity]

2. Describe how the concept of indirection can create the illusion of a dedicated machine and its resources
even when physically shared among multiple programs and environments. [Familiarity]

3. Measure the performance of two application instances running on separate virtual machines, and determine
the effect of performance isolation. [Assessment]

SF/Reliability through Redundancy
[2 Core-Tier2 hours]
Topics:

• Distinction between bugs and faults
• Redundancy through check and retry

- 191 -

• Redundancy through redundant encoding (error correcting codes, CRC, FEC)
• Duplication/mirroring/replicas
• Other approaches to fault tolerance and availability

Learning Outcomes:

1. Explain the distinction between program errors, system errors, and hardware faults (e.g., bad memory) and
exceptions (e.g., attempt to divide by zero). [Familiarity]

2. Articulate the distinction between detecting, handling, and recovering from faults, and the methods for their
implementation. [Familiarity]

3. Describe the role of error correcting codes in providing error checking and correction techniques in
memories, storage, and networks. [Familiarity]

4. Apply simple algorithms for exploiting redundant information for the purposes of data correction. [Usage]
5. Compare different error detection and correction methods for their data overhead, implementation

complexity, and relative execution time for encoding, detecting, and correcting errors. [Assessment]

SF/Quantitative Evaluation
[Elective]
Topics:

• Analytical tools to guide quantitative evaluation
• Order of magnitude analysis (Big-Oh notation)
• Analysis of slow and fast paths of a system
• Events on their effect on performance (e.g., instruction stalls, cache misses, page faults)
• Understanding layered systems, workloads, and platforms, their implications for performance, and the

challenges they represent for evaluation
• Microbenchmarking pitfalls

Learning Outcomes:

1. Explain the circumstances in which a given figure of system performance metric is useful. [Familiarity]
2. Explain the inadequacies of benchmarks as a measure of system performance. [Familiarity]
3. Use limit studies or simple calculations to produce order-of-magnitude estimates for a given performance

metric in a given context. [Usage]
4. Conduct a performance experiment on a layered system to determine the effect of a system parameter on

figure of system performance. [Assessment]

Social Issues and Professional Practice (SP)

While technical issues are central to the computing curriculum, they do not constitute a complete

educational program in the field. Students must also be exposed to the larger societal context of

computing to develop an understanding of the relevant social, ethical, legal and professional

issues. This need to incorporate the study of these non-technical issues into the ACM curriculum

was formally recognized in 1991, as can be seen from the following excerpt [2]:

Undergraduates also need to understand the basic cultural, social, legal, and ethical

issues inherent in the discipline of computing. They should understand where the

discipline has been, where it is, and where it is heading. They should also understand

their individual roles in this process, as well as appreciate the philosophical questions,

technical problems, and aesthetic values that play an important part in the development

of the discipline.

Students also need to develop the ability to ask serious questions about the social

impact of computing and to evaluate proposed answers to those questions. Future

practitioners must be able to anticipate the impact of introducing a given product into a

given environment. Will that product enhance or degrade the quality of life? What will

the impact be upon individuals, groups, and institutions?

Finally, students need to be aware of the basic legal rights of software and hardware

vendors and users, and they also need to appreciate the ethical values that are the basis

for those rights. Future practitioners must understand the responsibility that they will

bear, and the possible consequences of failure. They must understand their own

limitations as well as the limitations of their tools. All practitioners must make a long-

term commitment to remaining current in their chosen specialties and in the discipline

of computing as a whole.

As technological advances continue to significantly impact the way we live and work, the critical

importance of social issues and professional practice continues to increase; new computer-based

products and venues pose ever more challenging problems each year. It is our students who

must enter the workforce and academia with intentional regard for the identification and

resolution of these problems.

- 193 -

Computer science educators may opt to deliver this core and elective material in stand-alone

courses, integrated into traditional technical and theoretical courses, or as special units in

capstone and professional practice courses. The material in this familiarity area is best covered

through a combination of one required course along with short modules in other courses. On the

one hand, some units listed as Core Tier-1 (in particular, Social Context, Analytical Tools,

Professional Ethics, and Intellectual Property) do not readily lend themselves to being covered in

other traditional courses. Without a standalone course, it is difficult to cover these topics

appropriately. On the other hand, if ethical and social considerations are covered only in the

standalone course and not “in context,” it will reinforce the false notion that technical processes

are void of these other relevant issues. Because of this broad relevance, it is important that

several traditional courses include modules with case studies that analyze the ethical, legal,

social and professional considerations in the context of the technical subject matter of the course.

Courses in areas such as software engineering, databases, computer networks, information

assurance and security, and introduction to computing provide obvious context for analysis of

ethical issues. However, an ethics-related module could be developed for almost any course in

the curriculum. It would be explicitly against the spirit of the recommendations to have only a

standalone course. Running through all of the issues in this area is the need to speak to the

computing practitioner’s responsibility to proactively address these issues by both moral and

technical actions. The ethical issues discussed in any class should be directly related to and arise

naturally from the subject matter of that class. Examples include a discussion in the database

course of data aggregation or data mining, or a discussion in the software engineering course of

the potential conflicts between obligations to the customer and obligations to the user and others

affected by their work. Programming assignments built around applications such as controlling

the movement of a laser during eye surgery can help to address the professional, ethical and

social impacts of computing. Computing faculty who are unfamiliar with the content and/or

pedagogy of applied ethics are urged to take advantage of the considerable resources from ACM,

IEEE-CS, SIGCAS (special interest group on computers and society), and other organizations.

It should be noted that the application of ethical analysis underlies every subsection of this Social

and Professional knowledge area in computing. The ACM Code of Ethics and Professional

Conduct (http://www.acm.org/about/code-of-ethics) provides guidelines that serve as the basis

for the conduct of our professional work. The General Moral Imperatives provide an

- 194 -

understanding of our commitment to personal responsibility, professional conduct, and our

leadership roles.

SP. Social Issues and Professional Practice. [11 Core-Tier1 hours, 5 Core-Tier2
hours]

 Core-Tier1 hours Core-Tier2 hours Includes Electives

SP/Social Context 1 2 N

SP/Analytical Tools 2 N

SP/Professional Ethics 2 2 N

SP/Intellectual Property 2 Y

SP/Privacy and Civil Liberties 2 Y

SP/Professional Communication 1 Y

SP/Sustainability 1 1 Y

SP/History Y

SP/Economies of Computing Y

SP/Security Policies, Laws and
Computer Crimes

 Y

SP/Social Context
[1 Core-Tier1 hour, 2 Core-Tier2 hours]
Computers and the Internet, perhaps more than any other technologies, have transformed society
over the past 75 years, with dramatic increases in human productivity; an explosion of options
for news, entertainment, and communication; and fundamental breakthroughs in almost every
branch of science and engineering. Social Context provides the foundation for all other SP
knowledge units, especially Professional Ethics. Also see cross-referencing with Human-
Computer Interaction (HCI) and Networking and Communication (NC) Knowledge Areas.
Topics:

[Core-Tier1]

• Social implications of computing in a networked world (cross-reference HCI/Foundations/social models;
IAS/Fundamental Concepts/social issues)

• Impact of social media on individualism, collectivism and culture.

- 195 -

[Core-Tier2]

• Growth and control of the Internet (cross-reference NC/Introduction/organization of the Internet)
• Often referred to as the digital divide, differences in access to digital technology resources and its resulting

ramifications for gender, class, ethnicity, geography, and/or underdeveloped countries.
• Accessibility issues, including legal requirements
• Context-aware computing (cross-reference HCI/Design for non-mouse interfaces/ ubiquitous and context-

aware)

Learning Outcomes:

[Core-Tier1]

1. Describe positive and negative ways in which computer technology (networks, mobile computing, cloud
computing) alters modes of social interaction at the personal level. [Familiarity]

2. Identify developers’ assumptions and values embedded in hardware and software design, especially as they
pertain to usability for diverse populations including under-represented populations and the disabled.
[Familiarity]

3. Interpret the social context of a given design and its implementation. [Familiarity]
4. Evaluate the efficacy of a given design and implementation using empirical data. [Assessment]
5. Summarize the implications of social media on individualism versus collectivism and culture. [Usage]

[Core-Tier2]

6. Discuss how Internet access serves as a liberating force for people living under oppressive forms of
government; explain how limits on Internet access are used as tools of political and social repression.
[Familiarity]

7. Analyze the pros and cons of reliance on computing in the implementation of democracy (e.g. delivery of
social services, electronic voting). [Assessment]

8. Describe the impact of the under-representation of diverse populations in the computing profession (e.g.,
industry culture, product diversity). [Familiarity]

9. Explain the implications of context awareness in ubiquitous computing systems. [Familiarity]

SP/Analytical Tools
[2 Core-Tier1 hours]
Ethical theories and principles are the foundations of ethical analysis because they are the
viewpoints from which guidance can be obtained along the pathway to a decision. Each theory
emphasizes different points such as predicting the outcome and following one's duties to others
in order to reach an ethically guided decision. However, in order for an ethical theory to be
useful, the theory must be directed towards a common set of goals. Ethical principles are the
common goals that each theory tries to achieve in order to be successful. These goals include
beneficence, least harm, respect for autonomy, and justice.
Topics:

• Ethical argumentation
• Ethical theories and decision-making
• Moral assumptions and values

- 196 -

Learning Outcomes:

1. Evaluate stakeholder positions in a given situation. [Assessment]
2. Analyze basic logical fallacies in an argument. [Assessment]
3. Analyze an argument to identify premises and conclusion. [Assessment]
4. Illustrate the use of example and analogy in ethical argument. [Usage]
5. Evaluate ethical/social tradeoffs in technical decisions. [Assessment]

SP/Professional Ethics
[2 Core-Tier1 hours, 2 Core-Tier2 hours]
Computer ethics is a branch of practical philosophy that deals with how computing professionals
should make decisions regarding professional and social conduct. There are three primary
influences: 1) an individual's own personal code; 2) any informal code of ethical behavior
existing in the work place; and 3) exposure to formal codes of ethics. See cross-referencing with
the Information Assurance and Security (IAS) Knowledge Area.
Topics:

[Core-Tier1]

• Community values and the laws by which we live
• The nature of professionalism including care, attention and discipline, fiduciary responsibility, and

mentoring
• Keeping up-to-date as a computing professional in terms of familiarity, tools, skills, legal and professional

framework as well as the ability to self-assess and progress in the computing field
• Professional certification, codes of ethics, conduct, and practice, such as the ACM/IEEE-CS, SE, AITP,

IFIP and international societies (cross-reference IAS/Fundamental Concepts/ethical issues)
• Accountability, responsibility and liability (e.g. software correctness, reliability and safety, as well as

ethical confidentiality of cybersecurity professionals)

[Core-Tier2]

• The role of the computing professional in public policy
• Maintaining awareness of consequences
• Ethical dissent and whistle-blowing
• The relationship between regional culture and ethical dilemmas
• Dealing with harassment and discrimination
• Forms of professional credentialing
• Acceptable use policies for computing in the workplace
• Ergonomics and healthy computing environments
• Time to market and cost considerations versus quality professional standards

Learning Outcomes:

[Core-Tier1]

1. Identify ethical issues that arise in software development and determine how to address them technically
and ethically. [Familiarity]

2. Explain the ethical responsibility of ensuring software correctness, reliability and safety. [Familiarity]
3. Describe the mechanisms that typically exist for a professional to keep up-to-date. [Familiarity]

- 197 -

4. Describe the strengths and weaknesses of relevant professional codes as expressions of professionalism and
guides to decision-making. [Familiarity]

5. Analyze a global computing issue, observing the role of professionals and government officials in
managing this problem. [Assessment]

6. Evaluate the professional codes of ethics from the ACM, the IEEE Computer Society, and other
organizations. [Assessment]

[Core-Tier2]

7. Describe ways in which professionals may contribute to public policy. [Familiarity]
8. Describe the consequences of inappropriate professional behavior. [Familiarity]
9. Identify progressive stages in a whistle-blowing incident. [Familiarity]
10. Identify examples of how regional culture interplays with ethical dilemmas. [Familiarity]
11. Investigate forms of harassment and discrimination and avenues of assistance. [Usage]
12. Examine various forms of professional credentialing. [Usage]
13. Explain the relationship between ergonomics in computing environments and people’s health. [Familiarity]
14. Develop a computer usage/acceptable use policy with enforcement measures. [Assessment]
15. Describe issues associated with industries’ push to focus on time to market versus enforcing quality

professional standards. [Familiarity]

SP/Intellectual Property
[2 Core-Tier1 hours]
Intellectual property refers to a range of intangible rights of ownership in an asset such as a
software program. Each intellectual property "right" is itself an asset. The law provides different
methods for protecting these rights of ownership based on their type. There are essentially four
types of intellectual property rights relevant to software: patents, copyrights, trade secrets and
trademarks. Each affords a different type of legal protection. See cross-referencing with the
Information Management (IM) Knowledge Area.
Topics:

[Core-Tier1]

• Philosophical foundations of intellectual property
• Intellectual property rights (cross-reference IM/Information Storage and Retrieval/intellectual property and

protection)
• Intangible digital intellectual property (IDIP)
• Legal foundations for intellectual property protection
• Digital rights management
• Copyrights, patents, trade secrets, trademarks
• Plagiarism

[Elective]

• Foundations of the open source movement
• Software piracy

- 198 -

Learning Outcomes:

[Core-Tier1]

1. Discuss the philosophical bases of intellectual property. [Familiarity]
2. Discuss the rationale for the legal protection of intellectual property. [Familiarity]
3. Describe legislation aimed at digital copyright infringements. [Familiarity]
4. Critique legislation aimed at digital copyright infringements. [Assessment]
5. Identify contemporary examples of intangible digital intellectual property. [Familiarity]
6. Justify uses of copyrighted materials. [Assessment]
7. Evaluate the ethical issues inherent in various plagiarism detection mechanisms. [Assessment]
8. Interpret the intent and implementation of software licensing. [Familiarity]
9. Discuss the issues involved in securing software patents. [Familiarity]
10. Characterize and contrast the concepts of copyright, patenting and trademarks. [Assessment]

[Elective]

11. Identify the goals of the open source movement. [Familiarity]
12. Identify the global nature of software piracy. [Familiarity]

SP/Privacy and Civil Liberties
[2 Core-Tier1 hours]
Electronic information sharing highlights the need to balance privacy protections with
information access. The ease of digital access to many types of data makes privacy rights and
civil liberties more complex, differing among the variety of cultures worldwide. See cross-
referencing with the Human-Computer Interaction (HCI), Information Assurance and Security
(IAS), Information Management (IM), and Intelligent Systems (IS) Knowledge Areas.
Topics:

[Core-Tier1]

• Philosophical foundations of privacy rights (cross-reference IS/Fundamental Issues/philosophical issues)
• Legal foundations of privacy protection
• Privacy implications of widespread data collection for transactional databases, data warehouses,

surveillance systems, and cloud computing (cross-reference IM/Database Systems/data independence;
IM/Data Mining/data cleaning)

• Ramifications of differential privacy
• Technology-based solutions for privacy protection (cross-reference IAS/Threats and Attacks/attacks on

privacy and anonymity)

[Elective]

• Privacy legislation in areas of practice
• Civil liberties and cultural differences
• Freedom of expression and its limitations

Learning Outcomes:

[Core-Tier1]

1. Discuss the philosophical basis for the legal protection of personal privacy. [Familiarity]
2. Evaluate solutions to privacy threats in transactional databases and data warehouses. [Assessment]

- 199 -

3. Describe the role of data collection in the implementation of pervasive surveillance systems (e.g., RFID,
face recognition, toll collection, mobile computing). [Familiarity]

4. Describe the ramifications of differential privacy. [Familiarity]
5. Investigate the impact of technological solutions to privacy problems. [Usage]

[Elective]

6. Critique the intent, potential value and implementation of various forms of privacy legislation.
[Assessment]

7. Identify strategies to enable appropriate freedom of expression. [Familiarity]

SP/Professional Communication
[1 Core-Tier1 hour]
Professional communication conveys technical information to various audiences who may have
very different goals and needs for that information. Effective professional communication of
technical information is rarely an inherited gift, but rather needs to be taught in context
throughout the undergraduate curriculum. See cross-referencing with Human-Computer
Interaction (HCI) and Software Engineering (SE) Knowledge Areas.
Topics:

[Core-Tier1]

• Reading, understanding and summarizing technical material, including source code and documentation
• Writing effective technical documentation and materials
• Dynamics of oral, written, and electronic team and group communication (cross-reference

HCI/Collaboration and Communication/group communication; SE/Project Management/team participation)
• Communicating professionally with stakeholders
• Utilizing collaboration tools (cross-reference HCI/Collaboration and Communication/online communities;

IS/Agents/collaborative agents)

[Elective]

• Dealing with cross-cultural environments (cross-reference HCI/User-Centered Design and Testing/cross-
cultural evaluation)

• Tradeoffs of competing risks in software projects, such as technology, structure/process, quality, people,
market and financial (cross-reference SE/Software Project Management/Risk)

Learning Outcomes:

[Core-Tier1]

1. Write clear, concise, and accurate technical documents following well-defined standards for format and for
including appropriate tables, figures, and references. [Usage]

2. Evaluate written technical documentation to detect problems of various kinds. [Assessment]
3. Develop and deliver a good quality formal presentation. [Assessment]
4. Plan interactions (e.g. virtual, face-to-face, shared documents) with others in which they are able to get

their point across, and are also able to listen carefully and appreciate the points of others, even when they
disagree, and are able to convey to others what they have heard. [Usage]

5. Describe the strengths and weaknesses of various forms of communication (e.g. virtual, face-to-face, shared
documents). [Familiarity]

6. Examine appropriate measures used to communicate with stakeholders involved in a project. [Usage]
7. Compare and contrast various collaboration tools. [Assessment]

- 200 -

[Elective]

8. Discuss ways to influence performance and results in cross-cultural teams. [Familiarity]
9. Examine the tradeoffs and common sources of risk in software projects regarding technology,

structure/process, quality, people, market and financial. [Usage]
10. Evaluate personal strengths and weaknesses to work remotely as part of a multinational team. [Assessment]

SP/Sustainability
[1 Core-Tier1 hour, 1 Core-Tier2 hour]
Sustainability is characterized by the United Nations [1] as “development that meets the needs of
the present without compromising the ability of future generations to meet their own needs."
Sustainability was first introduced in the CS2008 curricular guidelines. Topics in this emerging
area can be naturally integrated into other familiarity areas and units, such as human-computer
interaction and software evolution. See cross-referencing with the Human-Computer Interaction
(HCI) and Software Engineering (SE) Knowledge Areas.
Topics:

[Core-Tier1]

• Being a sustainable practitioner by taking into consideration cultural and environmental impacts of
implementation decisions (e.g. organizational policies, economic viability, and resource consumption).

• Explore global social and environmental impacts of computer use and disposal (e-waste)

[Core-Tier2]

• Environmental impacts of design choices in specific areas such as algorithms, operating systems, networks,
databases, or human-computer interaction (cross-reference SE/Software Evaluation/software evolution;
HCI/Design-Oriented HCI/sustainability)

[Elective]

• Guidelines for sustainable design standards
• Systemic effects of complex computer-mediated phenomena (e.g. telecommuting or web shopping)
• Pervasive computing; information processing integrated into everyday objects and activities, such as smart

energy systems, social networking and feedback systems to promote sustainable behavior, transportation,
environmental monitoring, citizen science and activism.

• Research on applications of computing to environmental issues, such as energy, pollution, resource usage,
recycling and reuse, food management, farming and others.

• The interdependence of the sustainability of software systems with social systems, including the knowledge
and skills of its users, organizational processes and policies, and its societal context (e.g., market forces,
government policies).

Learning Outcomes:

[Core-Tier1]

1. Identify ways to be a sustainable practitioner. [Familiarity]
2. Illustrate global social and environmental impacts of computer use and disposal (e-waste). [Usage]

- 201 -

[Core-Tier2]

3. Describe the environmental impacts of design choices within the field of computing that relate to algorithm
design, operating system design, networking design, database design, etc. [Familiarity]

4. Investigate the social and environmental impacts of new system designs through projects. [Usage]

[Elective]

5. Identify guidelines for sustainable IT design or deployment. [Familiarity]
6. List the sustainable effects of telecommuting or web shopping. [Familiarity]
7. Investigate pervasive computing in areas such as smart energy systems, social networking, transportation,

agriculture, supply-chain systems, environmental monitoring and citizen activism. [Usage]
8. Develop applications of computing and assess through research areas pertaining to environmental issues

(e.g. energy, pollution, resource usage, recycling and reuse, food management, farming). [Assessment]

SP/History
[Elective]
This history of computing is taught to provide a sense of how the rapid change in computing
impacts society on a global scale. It is often taught in context with foundational concepts, such as
system fundamentals and software developmental fundamentals.
Topics:

• Prehistory—the world before 1946
• History of computer hardware, software, networking (cross-reference AR/Digital logic and digital systems/

history of computer architecture)
• Pioneers of computing
• History of the Internet

Learning Outcomes:

1. Identify significant continuing trends in the history of the computing field. [Familiarity]
2. Identify the contributions of several pioneers in the computing field. [Familiarity]
3. Discuss the historical context for several programming language paradigms. [Familiarity]
4. Compare daily life before and after the advent of personal computers and the Internet. [Assessment]

SP/Economies of Computing
[Elective]
Economics of computing encompasses the metrics and best practices for personnel and financial
management surrounding computer information systems.
Topics:

• Monopolies and their economic implications
• Effect of skilled labor supply and demand on the quality of computing products
• Pricing strategies in the computing domain
• The phenomenon of outsourcing and off-shoring software development; impacts on employment and on

economics
• Consequences of globalization for the computer science profession

- 202 -

• Differences in access to computing resources and the possible effects thereof
• Cost/benefit analysis of jobs with considerations to manufacturing, hardware, software, and engineering

implications
• Cost estimates versus actual costs in relation to total costs
• Entrepreneurship: prospects and pitfalls
• Network effect or demand-side economies of scale
• Use of engineering economics in dealing with finances

Learning Outcomes:

1. Summarize the rationale for antimonopoly efforts. [Familiarity]
2. Identify several ways in which the information technology industry is affected by shortages in the labor

supply. [Familiarity]
3. Identify the evolution of pricing strategies for computing goods and services. [Familiarity]
4. Discuss the benefits, the drawbacks and the implications of off-shoring and outsourcing. [Familiarity]
5. Investigate and defend ways to address limitations on access to computing. [Usage]
6. Describe the economic benefits of network effects. [Familiarity]

SP/Security Policies, Laws and Computer Crimes
[Elective]
While security policies, laws and computer crimes are important subjects, it is essential they are
viewed with the foundation of other Social and Professional knowledge units, such as Intellectual
Property, Privacy and Civil Liberties, Social Context, and Professional Ethics. Computers and
the Internet, perhaps more than any other technology, have transformed society over the past 75
years. At the same time, they have contributed to unprecedented threats to privacy; whole new
categories of crime and anti-social behavior; major disruptions to organizations; and the large-
scale concentration of risk into information systems. See cross-referencing with the Human-
Computer Interaction (HCI) and Information Assurance and Security (IAS) Knowledge Areas.
Topics:

• Examples of computer crimes and legal redress for computer criminals (cross-reference IAS/Digital
Forensics/rules of evidence)

• Social engineering, identity theft and recovery (cross-reference HCI/Human Factors and Security/trust,
privacy and deception)

• Issues surrounding the misuse of access and breaches in security
• Motivations and ramifications of cyber terrorism and criminal hacking, “cracking”
• Effects of malware, such as viruses, worms and Trojan horses
• Crime prevention strategies
• Security policies (cross-reference IAS/Security Policy and Governance/policies)

Learning Outcomes:

1. List classic examples of computer crimes and social engineering incidents with societal impact.
[Familiarity]

2. Identify laws that apply to computer crimes. [Familiarity]
3. Describe the motivation and ramifications of cyber terrorism and criminal hacking. [Familiarity]
4. Examine the ethical and legal issues surrounding the misuse of access and various breaches in security.

[Usage]

- 203 -

5. Discuss the professional's role in security and the trade-offs involved. [Familiarity]
6. Investigate measures that can be taken by both individuals and organizations including governments to

prevent or mitigate the undesirable effects of computer crimes and identity theft. [Usage]
7. Write a company-wide security policy, which includes procedures for managing passwords and employee

monitoring. [Usage]

References

[1] “Our Common Future.” http://grawemeyer.org/worldorder/previous-winners/1991-the-
united-nations-world-commission-on-environment-and-development.html

[2] Tucker, A. (ed), B. Barnes, R. Aiken, K. Barker, K. Bruce, J. Cain, S. Conry, G. Engel,
R. Epstein, D. Lidtke, M. Mulder, J. Rogers, E. Spafford, A. Turner, Computing
Curricula 1991: Report of the Joint Curriculum Task Force, ACM Press and IEEE-CS
Press, 1991.

- 204 -

Appendix B: Migrating to CS2013
A goal of CS2013 is to create guidelines that are realistic and implementable. One question that

often arises is, “How are these guidelines different from what we already do?” While it is not

possible in this document to answer that question for each institution, it is possible to describe in

general terms how these guidelines differ from previous versions in order to provide assistance to

curriculum developers in moving towards the CS2013 recommendations.

Due to advancements in the field and the increased needs of stakeholders, CS2013 has

reorganized and expanded the number of topics. However, few institutions have the luxury of

expanding their programs to accommodate a larger body of knowledge. CS2013 has taken the

following approaches to managing the size of curricula:

• The core material has been divided into Core-Tier1 and Core-Tier2, providing more

guidance to programs about the relative importance of material.

• Sets of knowledge areas have been restructured where common themes were identified.

• The expected depth of coverage has been made explicit. Outcomes listed at the

Familiarity level will typically require less coverage than topics at the Usage level, which

in turn require less coverage time than Assessment outcomes.

• Topic emphasis has changed within individual knowledge areas to reflect the state of the

art and practice.

To assist programs in migrating towards CS2013, we first compare the CC2001 Core with the

CS2013 Core (Tier1 and Tier2 combined). We include brief descriptions of how the content in

the KAs has changed, what outcomes were removed, and what outcomes have emerged.

Outcomes

CS2013 lists 1110 outcomes, just over half of which are in the core. Core-Tier1 comprises just

over one-fifth of the total outcomes. As shown in Figure B-1, over half of the learning outcomes

are at the Familiarity level, and one-third are at the Usage level.

Table B-1: Count of Outcomes by
Category

Figure B-1: Distribution of Outcomes by
Knowledge Level

Over 160 of the 560 core outcomes are substantially new and another approximately 150 are

significantly different than what is implied by CC2001. These new learning outcomes are

identified in Table B-4, which appears at the end of this appendix. Over two dozen topics from

CC2001 have been removed from the core, either by moving them to elective material or by

elimination entirely. These are summarized in Table B-3.

Changes in Knowledge Area Structure

Several knowledge areas have been significantly changed from the CC2001 and CS2008

Guidelines. Specifically, Systems Fundamentals has been added to capture the common themes

in previously distinct systems knowledge areas. The new Software Development Fundamentals

KA provides students with a view of software beyond programming skills, including topics from

Algorithms and Complexity (e.g., basic analysis, fundamental data structures), Software

Engineering (e.g., small scale reviews, basic development tools), and Programming Languages

(e.g., paradigm-independent constructs). Topics related to specific programming paradigms are

now covered in the Programming Languages and Platform-Based Development KAs.

A comparison of learning outcomes between CS2013 and CC2001 leads to several general

observations:

• The Systems Fundamentals knowledge area was created to capture the fundamental

principles common among operating systems, networking, and distributed systems.

● Digital logic and numerical methods are de-emphasized. A fundamental coverage of
digital logic can be found in Systems Fundamentals, but more advanced coverage is
considered to be the domain of computer engineering and electrical engineering.
Numerical methods are elective material in the Computational Science Knowledge Area

 Tier1 Tier2 Elective

Familiarity 118 192 273

Usage 93 92 191

Assessment 43 23 86

- 206 -

and are treated as a topic geared towards a more selected group of students entering into
computational sciences.

● Similarly, foundational topics related to software development have been reorganized to
produce a more coherent grouping and encourage curricular flexibility.

● There is increased emphasis on Parallel and Distributed Computing, as evidenced by the
new Knowledge Area with that name.

● There is a significant new emphasis on security. To this end, a new KA has been
developed, Information Assurance and Security (IAS). Much of the material described in
the KA is also mentioned in other KAs. The IAS KA cross-lists these topics. Some
institutions may choose to distribute the core IAS topics among existing courses. In
addition, privacy is a topic of growing concern, and is described in IAS as well as being
represented in the core content of the Social Issues and Professional Practice KA.

● There is no distinguished emphasis on building web pages or search engine use. We
assume that students entering undergraduate study in this decade are familiar with
internet search, email, and social networking, an assumption that was not universally true
in 2001.

● The Programming Languages core in CC2001 had a significant emphasis on language
translation. The CS2013 core material in PL is more focused on language paradigms and
tradeoffs, rather than implementation. The implementation content is elective.

● The Intelligent Systems, Architecture and Organization, and Discrete Structures
Knowledge Areas have many topics in common with CC2001, but also have a number of
new topics. Emphases have changed. Some topics have been de-emphasised to allow for
inclusion of new topics.

● The Social Issues and Professional Practice Knowledge Area has changed to a great
degree, particularly with respect to contemporary issues.

Core Comparison

There is significant overlap between the CC2001 Core and the CS2013 Core, particularly in the

more theoretical and fundamental content. This is an indication of growing maturity in the

fundamentals of the field. Knowledge Areas such as Discrete Structures, Algorithms and

Complexity, and Programming Languages are updated in CS2013, but the central material is

largely unchanged. Two new knowledge areas, Systems Fundamentals and Software

Development Fundamentals, are constructed from cross-cutting, foundational material from

- 207 -

existing knowledge areas. There are significant differences in applied and rapidly-changing

areas such as information assurance and security, intelligent systems, parallel and distributed

computing, and topics related to professionalism and society. This, too, is to be expected of a

field that is vibrant and expanding. The comparison is complicated by the fact that in CS2013,

we have augmented the topic list with explicit student outcomes and levels of understanding. To

compare CC2001 directly, we had to make some reasonable assumptions about what CC2001

intended. The changes are summarized in Table B-2 by knowledge area in CS2013.

Table B-2: Summary of Changes by Knowledge Area

KA Changes in CS2013

AL This knowledge area now includes a basic understanding of the classes P and NP, the P

vs NP problem, and examples of NP-complete problems. It also includes empirical

studies for the purposes of comparing algorithm performance. Note that Distributed

Algorithms have been moved to the Parallel and Distributed Computing KA.

AR In this knowledge area, multi-core parallelism, virtual machine support, and power as a

constraint are more significant considerations now than a decade ago. The use of CAD

tools is prescribed rather than suggested.

CN The topics in the core of this area are central to “computational thinking” and are at the

heart of using computational power to solve problems in domains both inside and outside

of traditional CS boundaries. The elective material covers topics that prepare students to

contribute to efforts such as computational biology, bioinformatics, eco-informatics,

computational finance, and computational chemistry.

DS The concepts covered in the core are not new, but some coverage time has shifted from

logic to discrete probability, reflecting the growing use of probability as a mathematical

tool in computing. Many learning outcomes are also more explicit in CS2013.

- 208 -

GV The storage of analog signals in digital form is a general computing idea, as is storing

information vs. re-computing. (This outcome appears in System Fundamentals, also.)

HCI Although the core hours have not increased, there is a change in emphasis within this

knowledge area to recognize the increased importance of design methods and

interdisciplinary approaches within the specialty.

IAS This is a new knowledge area. All of these outcomes reflect the growing emphasis in the

profession on security. The IAS knowledge area contains specific security and assurance

knowledge units; however, it is also heavily integrated with many other knowledge areas.

For example defensive programming is addressed in Core-Tier1 and Core-Tier2 hours

within the Programming Languages, System Fundamentals, Software Engineering, and

Operating Systems Knowledge Areas.

IM The core outcomes in this Knowledge Area reflect topics that are broader than a typical

database course. They can easily be covered in a traditional database course, but they

must be explicitly addressed.

IS Greater emphasis has been placed on machine learning than in the past. Additional

guidance has been provided on what is expected of students with respect to understanding

the challenges of implementing and using intelligent systems.

NC There is greater focus on the comparison of IP and Ethernet networks, and increased

attention to wireless networking. A related topic is reliable delivery. Here there is also

added emphasis on implementation of protocols and applications.

- 209 -

OS This knowledge area is structured to be complementary to Systems Fundamentals,

Networking and Communication, Information Assurance and Security, and the Parallel

and Distributed Computing Knowledge Areas. While some argue that system

administration is the realm of IT and not CS, the working group believes that every

student should have the capability to carry out basic administrative activities, especially

those impact access control. Security and protection were electives in CC2001, while they

were included in the core in CS2008. They appear in the core here as well. Realization of

virtual memory using hardware and software has been moved to be an elective learning

outcome (OS/Virtual Machines). Details of deadlocks and their prevention, including

detailed concurrency is left to the Parallel and Distributed Computing Knowledge Area.

PD This is a new knowledge area, which demonstrates the need for students to be able to

work in parallel and distributed environments. This trend was initially identified, but not

included, in the CS2008 Body of Knowledge. It is made explicit here to reflect that some

familiarity with this topic has become essential for all undergraduates in CS.

PL For the core material, the outcomes were made more uniform and general by refactoring

material on object-oriented programming, functional programming, and event-oriented

programming that was in multiple knowledge areas in CC2001. Programming with less

mutable state and with more use of higher-order functions (like map and reduce) have

greater emphasis. For the elective material, there is greater depth on advanced language

constructs, type systems, static analysis for purposes other than compiler optimization,

and run-time systems particularly garbage collection.

- 210 -

SDF This new knowledge area pulls together foundational concepts and skills needed for

software development. It is derived from the Programming Fundamentals Knowledge

Area in CC2001, but also draws basic analysis material from Algorithms and Complexity,

development process from Software Engineering, fundamental data structures from

Discrete Structures, and programming language concepts from Programming Languages.

Material specific to particular programming paradigms (e.g. object-oriented, functional)

has been moved to Programming Languages to allow for a more uniform treatment with

complementary material.

SE The changes in this knowledge area introduce or require topics such as refactoring, secure

programming, code modeling, code reviews, contracts, and team participation and process

improvement. These topics, which reflect the growing awareness of software process in

industry, are central to any level of modern software development, and should be used for

software development projects throughout the curriculum. Agile process models have

been added.

SF This is a new knowledge area. Its outcomes reflect the refactoring of the knowledge areas

to identify common themes across previously existing systems-related knowledge areas

(in particular, operating systems, networks, and computer architecture). The new cross-

cutting thematic areas include parallelism, communications, performance, proximity,

virtualization/isolation, and reliability.

SP

These outcomes in this knowledge area reflect a shift in the past decade toward

understanding intellectual property as related to digital intellectual property and digital

rights management, the need for global awareness, and a growing concern for privacy in

the digital age. They further recognize the enormous impact that computing has had on

society at large emphasizing a sustainable future and placing added responsibilities on

computing professionals. The outcomes also identify the vital needs for professional

ethics, professional development, professional communication, and the ability to

collaborate in person as well as remotely across time zones.

- 211 -

Conclusions

The changes from CC2001 to CS2013 are significant. Approximately one-half of the outcomes

are new or significantly changed from those implied by CC2001. Many of these changes were

suggested in the CS2008 revision, and reflect current practice in CS programs. Programs may be

in a position to migrate their curricula incrementally towards the CS2013 guidelines. In other

cases it will be preferable for faculty to revisit the structure of their curriculum to address the

changing landscape of computing.

- 212 -

Table B-3: Core Learning Topics and Objectives in CC2001 not found in the CS2013 Core

KA Topic From CC2001 Comment

AL Design and implement an appropriate hashing
function for an application.

This is elective material in C2013.

AL Distributed Algorithms Topics in this section have been updated
and moved to the CS2013 Parallel and
Distributed knowledge unit.

AR Logic gates, flip flops, PLA, minimization,
sum-of-product form, fan-out

This material has been moved to Systems
Fundamentals/Computational Paradigms.

AR VLIW, EPIC, Systolic architecture;
hypercube, shuffle-exchange, mesh, crossbar
as examples of interconnection networks

These topics are elective in CS2013.

GV Raster and vector graphics systems;
video display devices;
physical and logical input devices;
issues facing the developer of graphical
systems

These topics have been updated
significantly.

GV Affine transformations, homogeneous
coordinates, clipping;
raster and vector graphics, physical and
logical input devices

This is elective material in C2013.

IM Information storage and retrieval This is elective material in C2013.

IM Summarize the evolution of information
systems from early visions up through
modern offerings, distinguishing their
respective capabilities and future potential.

The history of information systems has
been removed.

NC Evolution of early networks; use of common
networked applications (e-mail, telnet, FTP,
newsgroups, and web browsers, online web
courses, and instant messaging); streams and
datagrams; CGI, applets, web servers

The evolution of early networks is elective
material in C2013. Use of common
applications has been removed. We
assume that students enter programs
familiar with common web applications.

NC Discuss important network standards in their
historical context.

The history of networking has been
removed.

NC Install a simple network with two clients and
a single server using standard host
configuration software tools such as DHCP.

System administration outcomes are
described in Operating Systems/Security
and Protection.

- 213 -

OS Describe how operating systems have evolved
over time from primitive batch systems to
sophisticated multiuser systems.

The history of operating systems has been
removed.

OS Describe how issues such as open source
software and the increased use of the Internet
are influencing operating system design.

No core outcomes explicitly mention the
use of open source software.

OS Discuss the utility of data structures, such as
stacks and queues, in managing concurrency.

Concurrency topics are now located in
Parallel and Distributed Computing.

PF Describe the mechanics of parameter passing Implementation specifics are elective
topics in CS2013.

PF Describe how recursion can be implemented
using a stack.

Recursion remains a significant topic,
much of which is described in
Programming Languages now.

PL Summarize the evolution of programming
languages illustrating how this history has led
to the paradigms available today.

The history of programming languages has
been removed.

PL Activation records, type parameters, internal
representations of objects and methods

Most implementation specifics are elective
topics in CS2013, with a basic familiarity
with the implementation of key language
constructs appearing in Core-Tier-2.

SE Class browsers, programming by example,
API debugging;
tools.

Covered without listing a necessary and
sufficient list of tools.

SP History This is elective material in C2013.

SP Gender-related issues This material has been expanded to
include all under-represented populations.

SP Growth of the internet This material has been subsumed by topics
in Social Context with an understanding
that students entering undergraduate study
no longer consider the Internet to be a
novel concept.

SP Freedom of expression This is elective material in C2013.

- 214 -

Table B-4: New and Expanded Core Learning Outcomes in CS2013

KA Core Learning Outcomes as described in CS2013

AL Core-Tier1:
• Explain what is meant by “best”, “expected”, and “worst” case behavior of an

algorithm.
• In the context of specific algorithms, identify the characteristics of data and/or

other conditions or assumptions that lead to different behaviors.
• Perform empirical studies to validate hypotheses about runtime stemming from

mathematical analysis. Run algorithms on input of various sizes and compare
performance.

• Give examples that illustrate time-space trade-offs of algorithms.
• Use dynamic programming to solve an appropriate problem.
• Explain how tree balance affects the efficiency of various binary search tree

operations.

Core-Tier2:
• Define the classes P and NP.
• Explain the significance of NP-completeness.
• Discuss factors other than computational efficiency that influence the choice of

algorithms, such as programming time, maintainability, and the use of
application-specific patterns in the input data.

AR Core-Tier2:
• Comprehend the trend of modern computer architectures towards multi-core and

that parallelism is inherent in all hardware systems.
• Explain the implications of the “power wall” in terms of further processor

performance improvements and the drive towards harnessing parallelism.
• Design the basic building blocks of a computer: arithmetic-logic unit (gate-level),

registers (gate-level), central processing unit (register transfer-level), and
memory (register transfer-level).

• Use CAD tools for capture, synthesis, and simulation to evaluate simple building
blocks (e.g., arithmetic-logic unit, registers, movement between registers) of a
simple computer design.

• Evaluate the functional and timing diagram behavior of a simple processor
implemented at the logic circuit level.

• Compute Average Memory Access Time under a variety of cache and memory
configurations and mixes of instruction and data references.

- 215 -

CN Core-Tier1:
• Explain the concept of modeling and the use of abstraction that allows the use of

a machine to solve a problem.
• Describe the relationship between modeling and simulation, ie, thinking of

simulation as dynamic modeling.
• Create a simple, formal mathematical model of a real-world situation and use that

model in a simulation.
• Differentiate among the different types of simulations, including physical

simulations, human-guided simulations, and virtual reality.
• Describe several approaches to validating models.

DS Core-Tier1:
• Apply the pigeonhole principle in the context of a formal proof.
• Perform computations involving modular arithmetic.
• Identify a case of the binomial distribution and compute a probability using that

distribution.
• Compute the variance for a given probability distribution.

Core-Tier2:
• Compute the variance for a given probability distribution.
• Explain how events that are independent can be conditionally dependent (and

vice-versa). Identify real-world examples of such cases.
• Determine if two graphs are isomorphic.

GV Core-Tier1:
• Explain in general terms how analog signals can be reasonably represented by

discrete samples, for example, how images can be represented by pixels.
• Explain how the limits of human perception affect choices about the digital

representation of analog signals.
• Describe the differences between lossy and lossless image compression

techniques, for example as reflected in common graphics image file formats such
as JPG, PNG, MP3, MP4, and GIF.

Core-Tier2:
• Describe color models and their use in graphics display devices.
• Describe the tradeoffs between storing information vs storing enough

information to reproduce the information, as in the difference between vector and
raster rendering.

HCI Core-Tier2:
• For an identified user group, undertake and document an analysis of their needs.
• Create a simple application, together with help and documentation, that supports

a graphical user interface.
• Discuss at least one national or international user interface design standard.

- 216 -

IAS Core-Tier1:
• Analyze the tradeoffs of balancing key security properties (Confidentiality,

Integrity, Availability).
• Describe the concepts of risk, threats, vulnerabilities and attack vectors

(including the fact that there is no such thing as perfect security).
• Explain the concept of trust and trustworthiness.
• Recognize that there are important ethical issues to consider in computer

security, including ethical issues associated with fixing or not fixing
vulnerabilities and disclosing or not disclosing vulnerabilities.

• Describe the principle of least privilege and isolation as applied to system design.
• Summarize the principle of fail-safe and deny-by-default.
• Recognize not to rely on the secrecy of design for security (but also that open

design alone does not imply security).
• Explain the goals of end-to-end data security.
• Discuss the benefits of having multiple layers of defenses.
• Recognize that security has to be a consideration from the point of initial design

and throughout the lifecycle of a product.
• Recognize that security imposes costs and tradeoffs.
• Explain why input validation and data sanitization is necessary in the face of

adversarial control of the input channel.
• Explain why you might choose to develop a program in a type-safe language like

Java, in contrast to an unsafe programming language like C/C++.
• Classify common input validation errors, and write correct input validation code.
• Demonstrate using a high-level programming language how to prevent a race

condition from occurring and how to handle an exception.
• Demonstrate the identification and graceful handling of error conditions.

Core-Tier2:
• Describe the concept of mediation and the principle of complete mediation.
• Be aware of standard components for security operations, instead of re-inventing

fundamentals operations.
• Explain the concept of trusted computing including trusted computing base and

attack surface and the principle of minimizing trusted computing base.
• Discuss the importance of usability in security mechanism design.
• Recognize that security does not compose by default; security issues can arise at

boundaries between multiple components.
• Identify the different roles of prevention mechanisms and detection/deterrence

mechanisms.
• Explain the risks with misusing interfaces with third-party code and how to

correctly use third-party code.
• Discuss the need to update software to fix security vulnerabilities and the

lifecycle management of the fix.
• List examples of direct and indirect information flows.

- 217 -

• Describe likely attacker types against a particular system.
• Discuss the limitations of malware countermeasures (eg, signature-based

detection, behavioral detection).
• Identify instances of social engineering attacks and Denial of Service attacks.
• Discuss how Denial of Service attacks can be identified and mitigated.
• Describe risks to privacy and anonymity in commonly used applications.
• Discuss the concepts of covert channels and other data leakage procedures.
• Describe the different categories of network threats and attacks.
• Describe virtues and limitations of security technologies at each layer of the

network stack.
• Identify the appropriate defense mechanism(s) and its limitations given a network

threat.
• Discuss security properties and limitations of other non-wired networks.
• Define the following terms: cipher, cryptanalysis, cryptographic algorithm, and

cryptology and describe the two basic methods (ciphers) for transforming plain
text in cipher text.

• Discuss the importance of prime numbers in cryptography and explain their use
in cryptographic algorithms.

• Use cryptographic primitives and their basic properties.

IM Core-Tier1:
• Describe how humans gain access to information and data to support their needs.
• Understand advantages and disadvantages of central organizational control over

data.
• Identify the careers/roles associated with information management (e.g., database

administrator, data modeler, application developer, end-user).
• Demonstrate uses of explicitly stored metadata/schema associated with data.
• Identify issues of data persistence for an organization.

Core-Tier2:
• Explain uses of declarative queries.
• Give a declarative version for a navigational query.
• Identify vulnerabilities and failure scenarios in common forms of information

systems.
• Describe the most common designs for core database system components

including the query optimizer, query executor, storage manager, access methods,
and transaction processor.

• Describe facilities that databases provide supporting structures and/or stream
(sequence) data, e.g., text.

• Compare and contrast appropriate data models, including internal structures, for
different types of data.

• Describe the differences between relational and semi-structured data models.
• Give a semi-structured equivalent (e.g., in DTD or XML Schema) for a given

relational schema.

- 218 -

IS Core-Tier2:
• Translate a natural language (e.g., English) sentence into predicate logic

statement.
• Convert a logic statement into clause form.
• Apply resolution to a set of logic statements to answer a query.
• Make a probabilistic inference in a real-world problem using Bayes’ theorem to

determine the probability of a hypothesis given evidence.
• List the differences among the three main styles of learning: supervised,

reinforcement, and unsupervised.
• Identify examples of classification tasks, including the available input features

and output to be predicted.
• Explain the difference between inductive and deductive learning.
• Describe over-fitting in the context of a problem.
• Apply the simple statistical learning algorithm such as Naive Bayesian Classifier

to a classification task and measure the classifier's accuracy.

NC Core-Tier1:
• Articulate the organization of the Internet.
• List and define the appropriate network terminology.
• Identify the different types of complexity in a network (edges, core, etc).
• List the differences and the relations between names and addresses in a network.
• Define the principles behind naming schemes and resource location.

Core-Tier2:
• List the factors that affect the performance of reliable delivery protocols.
• Design and implement a simple reliable protocol.
• Describe the organization of the network layer.
• Describe how packets are forwarded in an IP network.
• List the scalability benefits of hierarchical addressing.
• Describe how frames are forwarded in an Ethernet network.
• Describe the steps used in one common approach to the multiple access problem.
• Describe how resources can be allocated in a network.
• Describe the congestion problem in a large network.
• Compare and contrast fixed and dynamic allocation techniques.
• Compare and contrast current approaches to congestion.
• Describe the organization of a wireless network.
• Describe how wireless networks support mobile users.

- 219 -

OS Core-Tier2:
• Articulate the need for protection and security in an OS (cross-reference

IAS/Security Architecture and Systems Administration/Investigating Operating
Systems Security for various systems).

• Summarize the features and limitations of an operating system used to provide
protection and security (cross-reference IAS/Security Architecture and Systems
Administration).

• Explain the mechanisms available in an OS to control access to resources (cross-
reference IAS/Security Architecture and Systems Administration/Access
Control/Configuring systems to operate securely as an IT system).

• Carry out simple system administration tasks according to a security policy, for
example, creating accounts, setting permissions, applying patches, and arranging
for regular backups (cross-reference IAS/Security Architecture and Systems
Administration).

PD Core-Tier1:
• Distinguish using computational resources for a faster answer from managing

efficient access to a shared resource.
• Distinguish multiple sufficient programming constructs for synchronization that

may be inter-implementable but have complementary advantages.
• Distinguish data races from higher level races.
• Explain why synchronization is necessary in a specific parallel program.
• Use mutual exclusion to avoid a given race condition.
• Explain the differences between shared and distributed memory.

Core-Tier2:
• Identify opportunities to partition a serial program into independent parallel

modules.
• Write a correct and scalable parallel algorithm.
• Parallelize an algorithm by applying task-based decomposition.
• Parallelize an algorithm by applying data-parallel decomposition.
• Write a program using actors and/or reactive processes.
• Give an example of an ordering of accesses among concurrent activities (eg,

program with a data race) that is not sequentially consistent.
• Give an example of a scenario in which blocking message sends can deadlock.
• Explain when and why multicast or event-based messaging can be preferable to

alternatives.
• Write a program that correctly terminates when all of a set of concurrent tasks

have completed.
• Use a properly synchronized queue to buffer data passed among activities.
• Explain why checks for preconditions, and actions based on these checks, must

share the same unit of atomicity to be effective.
• Write a test program that can reveal a concurrent programming error, for

example, missing an update when two activities both try to increment a variable.

- 220 -

• Describe at least one design technique for avoiding liveness failures in programs
using multiple locks or semaphores.

• Describe the relative merits of optimistic versus conservative concurrency
control under different rates of contention among updates.

• Give an example of a scenario in which an attempted optimistic update may
never complete.

• Define “critical path”, “work”, and “span”.
• Compute the work and span, and determine the critical path with respect to a

parallel execution diagram.
• Define “speed-up” and explain the notion of an algorithm’s scalability in this

regard.
• Identify independent tasks in a program that may be parallelized.
• Characterize features of a workload that allow or prevent it from being naturally

parallelized.
• Implement a parallel divide-and-conquer (and/or graph algorithm) and

empirically measure its performance relative to its sequential analog.
• Decompose a problem (e.g., counting the number of occurrences of some word in

a document) via map and reduce operations.
• Describe the SMP architecture and note its key features.
• Characterize the kinds of tasks that are a natural match for SIMD machines.

PL Core-Tier1:
• Write basic algorithms that avoid assigning to mutable state or considering

reference equality.
• Write useful functions that take and return other functions.
• Compare and contrast (1) the procedural/functional approach (defining a function

for each operation with the function body providing a case for each data variant)
and (2) the object-oriented approach (defining a class for each data variant with
the class definition providing a method for each operation). Understand both as
defining a matrix of operations and variants.

• For both a primitive and a compound type, informally describe the values that
have that type.

• For a language with a static type system, describe the operations that are
forbidden statically, such as passing the wrong type of value to a function or
method.

• Describe examples of program errors detected by a type system.
• For multiple programming languages, identify program properties checked

statically and program properties checked dynamically.
• Give an example program that does not type-check in a particular language and

yet would have no error if run.
• Use types and type-error messages to write and debug programs.

Core-Tier2:
• Correctly reason about variables and lexical scope in a program using function

closures.

- 221 -

• Use functional encapsulation mechanisms such as closures and modular
interfaces.

• Define and use iterators and other operations on aggregates, including operations
that take functions as arguments, in multiple programming languages, selecting
the most natural idioms for each language.

• Explain why an event-driven programming style is natural in domains where
programs react to external events.

• Describe an interactive system in terms of a model, a view, and a controller.
• Explain how typing rules define the set of operations that are legal for a type.
• Write down the type rules governing the use of a particular compound type.
• Explain why undecidability requires type systems to conservatively approximate

program behavior.
• Define and use program pieces (such as functions, classes, methods) that use

generic types, including for collections.
• Discuss the differences among generics, subtyping, and overloading.
• Explain multiple benefits and limitations of static typing in writing, maintaining,

and debugging software.
• Explain how programs that process other programs treat the other programs as

their input data.
• Describe an abstract syntax tree for a small language.
• Describe the benefits of having program representations other than strings of

source code.
• Write a program to process some representation of code for some purpose, such

as an interpreter, an expression optimizer, or a documentation generator.
• Distinguish syntax and parsing from semantics and evaluation.
• Sketch a low-level run-time representation of core language constructs, such as

objects or closures.
• Explain how programming language implementations typically organize memory

into global data, text, heap, and stack sections and how features such as recursion
and memory management map to this memory model.

• Identify and fix memory leaks and dangling-pointer dereferences.
• Discuss the benefits and limitations of garbage collection, including the notion of

reachability.

SDF Core-Tier1:
• Discuss how a problem may be solved by multiple algorithms, each with

different properties.
• Identify the data components and behaviors of multiple abstract data types.
• Implement a coherent abstract data type, with loose coupling between

components and behaviors.
• Identify the relative strengths and weaknesses among multiple designs or

implementations for a problem.
• Trace the execution of a variety of code segments and write summaries of their

computations.

- 222 -

• Explain why the creation of correct program components is important in the
production of high-quality software.

• Identify common coding errors that lead to insecure programs (eg, buffer
overflows, memory leaks, malicious code) and apply strategies for avoiding such
errors.

• Conduct a personal code review (focused on common coding errors) on a
program component using a provided checklist.

• Describe how a contract can be used to specify the behavior of a program
component.

• Refactor a program by identifying opportunities to apply procedural abstraction.
• Analyze the extent to which another programmer’s code meets documentation

and programming style standards.
• Apply consistent documentation and program style standards that contribute to

the readability and maintainability of software.

SE Core-Tier1:
• List the key components of a use case or similar description of some behavior

that is required for a system.
• Describe how the requirements engineering process supports the elicitation and

validation of behavioral requirements.
• Interpret a given requirements model for a simple software system.
• Use a design paradigm to design a simple software system, and explain how

system design principles have been applied in this design.
• Within the context of a single design paradigm, describe one or more design

patterns that could be applicable to the design of a simple software system.

Core-Tier2:
• Discuss common behaviors that contribute to the effective functioning of a team.
• Create and follow an agenda for a team meeting.
• Identify and justify necessary roles in a software development team.
• Understand the sources, hazards, and potential benefits of team conflict.
• Apply a conflict resolution strategy in a team setting.
• Use an ad hoc method to estimate software development effort (e.g., time) and

compare to actual effort required.
• List several examples of software risks.
• Describe the impact of risk in a software development lifecycle.
• Describe different categories of risk in software systems.
• Describe the difference between centralized and distributed software

configuration management.
• Describe how version control can be used to help manage software release

management.
• Identify configuration items and use a source code control tool in a small team-

based project.

- 223 -

• Describe how available static and dynamic test tools can be integrated into the
software development environment.

• Describe the issues that are important in selecting a set of tools for the
development of a particular software system, including tools for requirements
tracking, design modeling, implementation, build automation, and testing.

• Demonstrate the capability to use software tools in support of the development of
a software product of medium size.

• Describe the fundamental challenges of and common techniques used for
requirements elicitation.

• List the key components of a data model (eg, class diagrams or ER diagrams).
• Identify both functional and non-functional requirements in a given requirements

specification for a software system.
• For a simple system suitable for a given scenario, discuss and select an

appropriate design paradigm.
• Create appropriate models for the structure and behavior of software products

from their requirements specifications.
• Explain the relationships between the requirements for a software product and its

design, using appropriate models.
• For the design of a simple software system within the context of a single design

paradigm, describe the software architecture of that system.
• Given a high-level design, identify the software architecture by differentiating

among common software architectures such as 3-tier, pipe-and-filter, and client-
server.

• Investigate the impact of software architectures selection on the design of a
simple system.

• Describe a form of refactoring and discuss when it may be applicable.
• Select suitable components for use in the design of a software product.
• Explain how suitable components might need to be adapted for use in the design

of a software product.
• Design a contract for a typical small software component for use in a given

system.
• Describe techniques, coding idioms and mechanisms for implementing designs to

achieve desired properties such as reliability, efficiency, and robustness.
• Describe secure coding and defensive coding practices.
• Select and use a defined coding standard in a small software project.
• Compare and contrast integration strategies including top-down, bottom-up, and

sandwich integration.
• Describe the process of analyzing and implementing changes to code base

developed for a specific project.
• Describe the process of analyzing and implementing changes to a large existing

code base.
• Describe how to select good regression tests and automate them.
• Use a defect tracking tool to manage software defects in a small software project.
• Discuss the limitations of testing in a particular domain.

- 224 -

• Use refactoring in the process of modifying a software component.
• Explain the problems that exist in achieving very high levels of reliability.
• Describe how software reliability contributes to system reliability.
• List approaches to minimizing faults that can be applied at each stage of the

software lifecycle.

SF Core-Tier1:
• List commonly encountered patterns of how computations are organized.
• Articulate the differences between single thread vs. multiple thread, single server

vs multiple server models, motivated by real world examples (e.g., cooking
recipes, lines for multiple teller machines and couples shopping for food).

• Articulate the concept of strong vs. weak scaling, i.e., how performance is
affected by scale of problem vs. scale of resources to solve the problem. This can
be motivated by the simple, real-world examples.

• Use tools for capture, synthesis, and simulation to evaluate a logic design.
• Write a simple sequential problem and a simple parallel version of the same

program.
• Evaluate performance of simple sequential and parallel versions of a program

with different problem sizes, and be able to describe the speed-ups achieved.
• Describe how computing systems are constructed of layers upon layers, based on

separation of concerns, with well-defined interfaces, hiding details of low layers
from the higher layers.

• Describe that hardware, VM, OS, application are additional layers of
interpretation/processing.

• Describe the mechanisms of how errors are detected, signaled back, and handled
through the layers.

• Construct a simple program using methods of layering, error detection and
recovery, and reflection of error status across layers.

• Find bugs in a layered program by using tools for program tracing, single
stepping, and debugging.

• Describe computations as a system characterized by a known set of
configurations with transitions from one unique configuration (state) to another
(state).

• Describe the distinction between systems whose output is only a function of their
input (combinational) and those with memory/history (sequential).

• Describe a computer as a state machine that interprets machine instructions.
• Explain how a program or network protocol can also be expressed as a state

machine, and that alternative representations for the same computation can exist.
• Develop state machine descriptions for simple problem statement solutions (eg,

traffic light sequencing, pattern recognizers).
• Derive time-series behavior of a state machine from its state machine

representation.
• For a given program, distinguish between its sequential and parallel execution,

and the performance implications thereof.

- 225 -

• Demonstrate on an execution time line that parallelism events and operations can
take place simultaneously (ie, at the same time) Explain how work can be
performed in less elapsed time if this can be exploited.

• Explain other uses of parallelism, such as for reliability/redundancy of execution.
• Define the differences between the concepts of Instruction Parallelism, Data

Parallelism, Thread Parallelism/Multitasking, and Task/Request Parallelism.
• Write more than one parallel program (e.g., one simple parallel program in more

than one parallel programming paradigm; a simple parallel program that manages
shared resources through synchronization primitives; a simple parallel program
that performs simultaneous operation on partitioned data through task parallelism
(e.g., parallel search terms); a simple parallel program that performs step-by-step
pipeline processing through message passing).

• Use performance tools to measure speed-up achieved by parallel programs in
terms of both problem size and number of resources.

• Explain how the components of system architecture contribute to improving its
performance.

• Describe Amdahl’s law and discuss its limitations.
• Design and conduct a performance-oriented experiment.
• Use software tools to profile and measure program performance.

Core-Tier2:
• Define how finite computer resources (e.g., processor share, memory, storage,

and network bandwidth) are managed by their careful allocation to existing
entities.

• Describe the scheduling algorithms by which resources are allocated to
competing entities, and the figures of merit by which these algorithms are
evaluated, such as fairness.

• Implement simple schedule algorithms.
• Use figures of merit of alternative scheduler implementations.
• Explain the importance of locality in determining performance.
• Describe why things that are close in space take less time to access.
• Calculate average memory access time and describe the tradeoffs in memory

hierarchy performance in terms of capacity, miss/hit rate, and access time.
• Describe how the concept of indirection can create the illusion of a dedicated

machine and its resources even when physically shared among multiple programs
and environments.

• Measure the performance of two application instances running on separate virtual
machines, and determine the effect of performance isolation.

• Explain the distinction between program errors, system errors, and hardware
faults (e.g., bad memory) and exceptions (e.g., attempt to divide by zero).

• Articulate the distinction between detecting, handling, and recovering from
faults, and the methods for their implementation.

• Describe the role of error correcting codes in providing error checking and
correction techniques in memories, storage, and networks.

- 226 -

• Apply simple algorithms for exploiting redundant information for the purposes of
data correction.

• Compare different error detection and correction methods for their data overhead,
implementation complexity, and relative execution time for encoding, detecting,
and correcting errors.

SP Core-Tier1:
• Summarize the implications of social media on individualism versus collectivism

and culture.
• Recognize the ethical responsibility of ensuring software correctness, reliability

and safety.
• Describe the mechanisms that typically exist for a professional to keep up-to-

date.
• Discuss the philosophical bases of intellectual property.
• Discuss the rationale for the legal protection of intellectual property.
• Describe legislation aimed at digital copyright infringements.
• Critique legislation aimed at digital copyright infringements.
• Identify contemporary examples of intangible digital intellectual property.
• Justify uses of copyrighted materials.
• Evaluate the ethical issues inherent in various plagiarism detection mechanisms.
• Interpret the intent and implementation of software licensing.
• Discuss the issues involved in securing software patents.
• Evaluate solutions to privacy threats in transactional databases and data

warehouses.
• Recognize the fundamental role of data collection in the implementation of

pervasive surveillance systems (e.g., RFID, face recognition, toll collection,
mobile computing).

• Recognize the ramifications of differential privacy.
• Investigate the impact of technological solutions to privacy problems.
• Write clear, concise, and accurate technical documents following well-defined

standards for format and for including appropriate tables, figures, and
references.

• Evaluate written technical documentation to detect problems of various kinds.
• Develop and deliver a good quality formal presentation.
• Plan interactions (e.g., virtual, face-to-face, shared documents) with others in

which they are able to get their point across, and are also able to listen carefully
and appreciate the points of others, even when they disagree, and are able to
convey to others that they have heard.

• Describe the strengths and weaknesses of various forms of communication (e.g.,
virtual, face-to-face, shared documents).

• Examine appropriate measures used to communicate with stakeholders involved
in a project.

• Compare and contrast various collaboration tools.
• Identify ways to be a sustainable practitioner.

- 227 -

• Illustrate global social and environmental impacts of computer use and disposal
(e-waste).

Core-Tier2:
• Discuss how Internet access serves as a liberating force for people living under

oppressive forms of government; explain how limits on Internet access are used
as tools of political and social repression.

• Analyze the pros and cons of reliance on computing in the implementation of
democracy (e.g., delivery of social services, electronic voting).

• Describe the impact of the under-representation of diverse populations in the
computing profession (e.g., industry culture, product diversity).

• Explain the implications of context awareness in ubiquitous computing systems.
• Describe ways in which professionals may contribute to public policy.
• Describe the consequences of inappropriate professional behavior.
• Identify examples of how regional culture interplays with ethical dilemmas.
• Investigate forms of harassment and discrimination and avenues of assistance.
• Examine various forms of professional credentialing.
• Explain the relationship between ergonomics in computing environments and

people’s health.
• Describe issues associated with industries’ push to focus on time to market

versus enforcing quality professional standards.
• Describe the environmental impacts of design choices within the field of

computing that relate to algorithm design, operating system design, networking
design, database design, etc.

• Investigate the social and environmental impacts of new system designs through
projects.

- 228 -

Appendix C: Course Exemplars
While the Body of Knowledge lists the topics that should be included in undergraduate programs

in computer science and their associated learning outcomes, there are many different ways in

which these topics may be packaged into courses. In this appendix we present a collection of

course exemplars gathered from a wide variety of institutions. These take different approaches in

how they cover portions of the CS2013 Body of Knowledge. To allow easy comparison, the

exemplars were all written following a common template, which is included before the actual

course exemplars. These exemplars are not generalized models, artificially created from abstract

features, but are rather examples of real courses. Thus they are written from a variety of

viewpoints and in many voices. In the writing, each one embodies the traditions and practices of

its own institution.

Table C1 provides a list of exemplars organized by the Knowledge Area that they most

significantly cover. The courses listed first with respect to each Knowledge Area devote the

majority of their time to the specific Knowledge Area. Courses listed in parentheses have

significant coverage of topics in the Knowledge Area, but have primary emphasis in a different

Knowledge Area. As can be seen from these exemplars, a course often includes material from

multiple Knowledge Areas and, equally, that multiple courses are often used to cover all the

material from one Knowledge Area.

These exemplars are not meant to be prescriptive with respect to curricular design, nor are they

meant to define a standard curriculum for all institutions. Rather they are provided to give

educators examples of different ways that the Body of Knowledge may be organized into

courses, to provide comparative breadth, and to spur new thinking for future course design.

- 229 -

Table C1: Exemplars by Knowledge Area

NOTE: Courses listed below in parentheses have a secondary emphasis in this area.

KA Course Page
 Course Exemplar Template 232
AL Pomona College CSCI 140: Algorithms

Princeton University COS 226: Algorithms and Data Structures
Williams College CSCI 256: Algorithm Design and Analysis
U. Washington CSE332: Data Abstractions

(Grinnell College CSC207: Algorithms and Object-Oriented Design)
(Princeton University COS126: General Computer Science)
(Utrect Languages and Compilers)
(Harvey Mudd College CS5: Intro to Computer Science)
(Portland Community College Discrete Structures 2)
(Reykjavik University Operating Systems)
(Carnegie Mellon University CS 150: Functional Programming)
(Creighton University CSC222 Object-Oriented Programming)

234
237
240
243

460
443
359
391
271
336
384
452

AR U. Wisconsin-Madison CS522: Intro to Computer Architecture
UC Berkeley CS150: Digital Logic Design
UC Berkeley CS152: Computer Engineering

(Grinnell College The Digital Age)
(Harvey Mudd College CS5: Intro to Computer Science)
(Princeton University COS126 General Computer Sience)

246
249
251

439
391
443

CN UNC Charlotte eScience
Wofford College COSC/Math 201: Modeling and Simulation

(Harvard University CS175 Computer Graphics)

253
258

DS Union County College MAT 267 Discrete Mathematics
Stanford University CS103/CS109: Mathematical Foundations of CS
 and Probability for CS
Portland Community College Discrete Structures 1
Portland Community College Discrete Structures 2

(Carnegie Mellon University 15-312 Principles of Programming Languages)
(Carnegie Mellon University 15-150 Functional Programming)

262
265

268
271

380
384

GV Harvard CS175:Computer Graphics
Williams College CS371: Computer Graphics

(Grinnell College CSC151 Functional Problem Solving)

274
277

456

HCI University of York, UK Human Aspects of Computer Science
Monash University FIT3063 Human Computer Interaction
University of Kent Human Computer Interaction
Miami University CS 262 Technology, Ethics, and Global Society
University of Cambridge Human Computer Interaction
Stanford University Human Computer Interaction

(Open University Netherlands Human Information Processing)
(University of Cambridge Software and Interface Design)

280
282
285

287
289

291
293

IAS Lewis and Clark State College CS 475 Computer Systems Security

(Colorado State University Database Systems)

295

298

IM Colorado State Universit Database Systems 298

- 230 -

IS U. San Francisco Artificial Intelligence Programming
Politecnico di Milano Intelligenza Artificiale
U. Maryland, Baltimore County Introduction to Artificial Intelligence
Case Western Reserve Univ. Artificial Intelligence
UC Berkeley CS188: Artificial Intelligence
University Hartford Artificial Intelligence

(U. North Carolina Charlotte eScience)

304
306
308
310
313
315

253

NC Case Western Reserve U. Computer Networks I
Stanford University CS144: Introduction to Computer Networking
Williams College Computer Networks

(Reykjavik University Operating Systems)

318
320
323

336

OS Williams College CSCI 432: Operating Systems
Embry Riddle Aeronautical U. CS 420: Operating Systems
University of Ark. Little Rock CPSC 3380: Operating Systems
University. of Helsinki 582219 Operating Systems
Reykjavik University RU STY1 Operating Systems

(Carnegie Mellon University 15-312 Principles of Programming Languages)

327
330
332
334
336

380

PD Huazhong U. Of Science and Tech. Parallel Programming Principle and Practice
Nizhni Novgorod State University Introduction to Parallel Programming
CSInParallel.org CS in Parallel (course modules on parallel computing)

(Carnegie Mellon University CS 150: Functional Programming)
(U. Washington CSE 332: Data Abstractions)
(U. of Arkansas. Little Rock CPSC 3380: Operating Systems)
(Embry Riddle Aeronautical U. CS 420: Operating Systems)
(Williams College CSCI 334: Principles of Programming Languages)

339
342
344

384
243
332
330
374

PL Compilers
 Colorado State University CS 453: Introduction to Compilers
 U. Arizona, Tucson CSC 453: Translators and Systems Software
 Williams College CSCI 434T: Compiler Design
 Utrect Languages and Compilers
 Stanford University Compilers
 Rice Topics in Compiler Construction

Programming Languages
 Pomona College CS 131: Principles of Programming Languages
 Brown University CSCI 1730: Introduction to Programming
 U. of Rochester Programming Language Design and Implementation
 U. Washington Programming Languages
 Williams College CSCI 334 Principles of Programming
 U. of Pennsylvania Programming Languages and Techniques I

(Carnegie Mellon University 15-312 Principles of Programming Languages)
(Carnegie Mellon University 15-150 Functional Programming)
(Brown University CSCI 0190: Accelerated Intro. to Computer Science)
(Grinnell College CSC151 Functional Problem Solving)
(Grinnell College CSC161 Imperative Problem Solving)
(Grinnell College CSC207 Algorithms and Object-Oriented Design)
(Clemson University 215 Software Development Foundations)
(Creighton University CS222 Object Oriented Programming)
(Portland Community College CIS 133J: Java Programming I)
(Worchester Polytechnic Inst. CS1101: Introduction to Program Design)

348
351
353
359
356
361

364
367
369
372
374
377

380
384
447
456
458
460
394
452
388
397

- 231 -

SDF Also see Introductory Sequences (at end of table)

Portland Community College CIS133J: Java Programming I
Harvey Mudd College CS5: Introduction to Computer Science
Clemson University 215 Software Development Foundations
Worchester Polytechnic Inst. CS1101: Introduction to Program Design

(U. of Pennsylvania Programming Languages and Techniques I)
(Miami University Data Abstraction)
(Princeton University COS126: General Computer Science)
(Brown Univ. CSCI 0190: Accelerated Intro. to Computer Science)

449

388
391
394
397

377
400
443
447

SE Embry Riddle Aeronautical U. Software Engineering Practices
U. California Berkeley CS169 Software Engineering
Milwaukee School of Engineering SE 2890:Software Engineering Practices
Quinnipiac University Software Development

(Clemson University 215 Software Development Foundations)
(Colorado State University CS453: Introduction to Compilers)
(Harvard CS175 Computer Graphics)
(Williams College CS371: Computer Graphics)
(Brown University CSCI 0190: Accelerated Intro. to Computer Science)

402
406
409
411

394
348
274
277
447

SF Georgia Tech CS 2200: Computer Systems and Networks
UC Berkeley CS 61c: Great Ideas in Computer Architecture
U. Washington CSE 333: System Programming

414
418
420

SP U. of Maryland, Univ. College IFSM 304 Ethics in Technology
Carnegie Mellon University Technology Consulting in the Community
Saint Xavier University Issues in Computing
Anne Arundel Community College Ethics & the Information Age (CSI 194)
Miami University (Oxford, OH) Technology, Ethics, and Global Society
Northwest Missouri State U. Professional Development Seminar

(Grinnell College The Digital Age)

423
426
430
433
301
433

439

In
tr

od
uc

to
ry

Se

qu
en

ce
s

Creighton University
 CSC221: Introduction to Programming
 CSC222: Object-Oriented Programming

Grinnell College
 CSC207: Algorithms and Object-Oriented Design
 CSC161: Imperative Problem Solving and Data Structures
 CSC151: Functional problem solving

449
450
452

454
460
458
456

- 232 -

ACM/IEEE-CS CS2013 Course-Exemplar Template:
Total length should not exceed 4 pages, 2-3 pages preferred

Course Exemplar Template (Name of Course, Institution)
Location of Institution
Your Name
Email Address

Permanent URL where additional materials and information are available (this may be course website
for a recent offering assuming it is public)

Knowledge Areas that contain topics and learning outcomes covered in the course
[List Knowledge Area(s) and associated acronym. It might be easier to complete this table last –
especially the total hours]

Knowledge Area Total Hours of Coverage

Name (e.g., Systems Fundamentals (SF)) Number

Where does the course fit in your curriculum?
[In what year do students commonly take the course? Is it compulsory? Does it have pre-requisites,
required following courses? How many students take it?]

What is covered in the course?
[A short description, and/or a concise list of topics - possibly from your course syllabus.(This is likely to
be your longest answer)]

What is the format of the course?
[Is it face-to-face, online or blended? How many contact hours? Does it have lectures, lab sessions,
discussion classes?]

How are students assessed?
[What type, and number, of assignments are students are expected to do? (papers, problem sets,
programming projects, etc.). How long do you expect students to spend on completing assessed work?]

Course textbooks and materials
[A brief description of materials used (e.g., textbooks, programming languages, environments etc.)]

Why do you teach the course this way?
[A description of the course rationale and goals. If you know, please indicate the history and background
of the course and when it was last reviewed/revised. Do students typically consider this course to be
challenging?]

- 233 -

Body of Knowledge coverage
[List the Knowledge Units covered in whole or in part in the course. If in part, please indicate which
topics and/or learning outcomes are covered. For those not covered, you might want to indicate whether
they are covered in another course or not covered in your curriculum at all. This section will likely be the
most time-consuming to complete, but is the most valuable for educators planning to adopt the CS2013
guidelines.]

KA Knowledge Unit Topics Covered Hours

XY Full name of KU [Include explanation as needed] Num

Additional topics
[List notable topics covered in the course that you do not find in the CS2013 Body of Knowledge]

Other comments
[optional]

- 234 -

CSCI 140: Algorithms, Pomona College

Claremont, CA 91711, USA
Tzu-Yi Chen
tzuyi@cs.pomona.edu
http://www.cs.pomona.edu/~tzuyi/Classes/CC2013/Algorithms/index.html

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Algorithms and Complexity (AL) 29 - 32

Software Development Fundamentals (SDF) 1.5

Parallel and Distributed Computing (PD) 0 - 3

Where does the course fit in your curriculum?
This is a required course in the CS major that is typically taken by juniors and seniors. The official prerequisites
are Data Structures (CSCI 062, the 3rd course in the introductory sequence) and Discrete Math (CSCI 055).
However, we regularly make exceptions for students who have had only the first 2 courses in the introductory
sequence as long as they have also taken a proof-based math class such as Real Analysis or Combinatorics.
Algorithms is not a prerequisite for any other required classes, but is a prerequisite for electives such as Applied
Algorithms.

What is covered in the course?
This class covers basic techniques used to analyze problems and algorithms (including asymptotics, upper/lower
bounds, best/average/worst case analysis, amortized analysis, complexity), basic techniques used to design
algorithms (including divide & conquer / greedy / dynamic programming / heuristics, choosing appropriate data
structures), and important classical algorithms (including sorting, string, matrix, and graph algorithms). The goal
is for students to be able to apply all of the above to designing solutions for real-world problems.

What is the format of the course?
This is a one semester (14 week) face-to-face class with 2.5 hours of lecture a week.

How are students assessed?
There is a written assignment (written up individually) due almost every class as well as 1 or 2 programming
assignments (done in groups of 1-3) due during the semester; solutions are evaluated on clarity, correctness, and
(when appropriate) efficiency. Students are expected to spend 6-10 hours a week outside of class on course
material. There are also 1 or 2 midterms and a final exam. Students are expected to attend lectures and to
demonstrate engagement either by asking/answering questions in class or by going to office hours (the professor's
or the TAs').

Course textbooks and materials
The textbook is Introduction to Algorithms, 3rd Edition by Cormen, Leiserson, Rivest, and Stein. For the
programming assignments students are strongly encouraged to use their choice of C, C++, Java, or Python, though
other languages may be used with permission. Students are required to use LaTeX to format their first 2-3 weeks
of assignments, after which its use is encouraged but not required.

Why do you teach the course this way?
This course serves as a bridge between theory and practice. Lectures cover classical algorithms and techniques for
reasoning about their correctness and efficiency. Assignments allow students to practice skills necessary for

- 235 -

developing, describing, and justifying algorithmic solutions for new problems. The 1 or 2 programming
assignments go a step further by also requiring an implementation; these assignments help students better
appreciate both what it means to describe an algorithm clearly and what issues can remain in implementation. To
encourage students not to fall behind in the material, two problem sets are due every week (one every lecture). By
the end of the semester students should also have a strong appreciation for the role of algorithms.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

SDF algorithms and
design

concept and properties of algorithms, role of algorithms, problem-solving
strategies, separation of behavior and implementation

1.5

AL basic analysis all core-tier1
all core-tier2

1
1.5

AL algorithmic
strategies

core-tier1: brute-force, greedy, divide-and-conquer,
 dynamic programming
core-tier2: heuristics

6

.5

AL fundamental data
structures
and algorithms

all core-tier1
core-tier2: heaps, graph algorithms (minimum
 spanning tree, single source shortest path, all pairs
 shortest path), string algorithms (longest common
 subsequence)

3
6

AL basic automata
computability and
complexity

no core-tier1 (covered in other required courses),
core-tier2: introduction to P/NP/NPC with examples

0
1

AL advanced
computational
complexity

P/NP/NPC, Cook-Levin, classic NPC problems, reductions 2

AL advanced automata
theory and
computability

none (covered in other required courses) 0

AL advanced data
structures
algorithms and
analysis

balanced trees (1-2 examples), graphs (topological sort, strongly
connected components), advanced data structures (disjoint sets, mergeable
heaps), network flows, linear programming (formulating, duality,
overview of techniques), approximation algorithms (2-approx for metric-
TSP, vertex cover), amortized analysis

8

Additional topics
The above table covers approximately 30 hours of lecture and gives the material that is covered every semester.
The remaining hours can be used for review sessions, to otherwise allow extra time for topics that students that
semester find particularly confusing, for in-class midterms, or to cover a range of additional topics. In the past
these additional topics have included:

KA Knowledge Unit Topics Covered

AL advanced computational complexity P-space, EXP

- 236 -

AL advanced data structures algorithms and
analysis

more approximation algorithms (e.g., Christofides, subset-
sum), geometric algorithms, randomized algorithms,
online algorithms and competitive analysis, more data
structures (e.g., log* analysis for disjoint-sets)

PD parallel algorithms, analysis, and
programming

critical path, work and span, naturally parallel algorithms,
specific algorithms (e.g., mergesort, parallel prefix)

PD formal models and semantics PRAM

Other comments
Starting in the Fall of 2013 approximately 2-3 hours of the currently optional material on parallel algorithms will
become a standard part of the class.

- 237 -

COS 226: Algorithms and Data Structures, Princeton University

Princeton, NJ
Robert Sedgewick and Kevin Wayne
rs@cs.princeton.edu wayne@cs.princeton.edu
http://www.cs.princeton.edu/courses/archive/spring12/cos226/info.php
http://algs4.cs.princeton.edu

Knowledge Areas that contain topics and learning outcomes covered in the course
Knowledge Area Total Hours of Coverage

Algorithms and Complexity (AL) 29

Software Development Fundamentals (SDF) 3

Programming Languages (PL) 1

Where does the course fit in your curriculum?
This course introduces fundamental algorithms in the context of significant applications in science, engineering,
and commerce. It has evolved from a traditional “second course for CS majors” to a course that is taken by over
one-third of all Princeton students. The prerequisite is a one-semester course in programming, preferably in Java
and preferably at the college level. Our students nearly all fulfill the prerequisite with our introductory course. This
course is a prerequisite for all later courses in computer science, but is taken by many students in other fields of
science and engineering (only about one-quarter of the students in the course are majors).

What is covered in the course?
Classical algorithms and data structures, with an emphasis on implementing them in modern programming
environments, and using them to solve real-world problems. Particular emphasis is given to algorithms for sorting,
searching, string processing, and graph algorithms. Fundamental algorithms in a number of other areas are covered
as well, including geometric algorithms and some algorithms from operations research. The course concentrates on
developing implementations, understanding their performance characteristics, and estimating their potential
effectiveness in applications.

• Analysis of algorithms, with an emphasis on using the scientific method to validate hypotheses about
algorithm performance.

• Data types, APIs, encapsulation.
• Linked data structures, resizing arrays, and implementations of container types such as stacks and queues.
• Sorting algorithms, including insertion sort, selection sort, shellsort, mergesort, randomized quicksort,

heapsort.
• Priority queue data types and implementations, including binary heaps.
• Symbol table data types and implementations (searching algorithms), including binary search trees, red-

black trees, and hash tables.
• Geometric algorithms (searching in point sets and intersection).
• Graph algorithms (breadth-first search, depth-first search, MST, shortest paths, topological sort, strong

components, maxflow)
• Tries, string sorting, substring search, regular expression pattern matching.
• Data compression (Huffman, LZW).
• Reductions, combinatorial search, P vs. NP, and NP-completeness.

mailto:rs@cs.princeton.edu�
http://algs4.cs.princeton.edu/�

- 238 -

What is the format of the course?
The material is presented in two 1.5 hour lectures per week with weekly quizzes and a programming assignment,
supported by a one-hour section where details pertinent to assignments and exams are covered by TAs teaching
smaller groups of students. An alternative format is to use online lectures supplemented by two 1.5 hour sections,
one devoted to discussion of lecture material, the other devoted to assignments.

How are students assessed?
The bulk of the assessment is weekly programming assignments, which usually involve solving an interesting
application problem using an efficient algorithm learned in lecture. Students spend 10-20 hours per week on these
assignments and often consult frequently with section instructors for help.

• Monte Carlo simulation to address the percolation problem from physical chemistry, based on efficient
algorithms for the union-find problem.

• Develop generic data types for deques and randomized queues.
• Find collinear points in a point set, using an efficient generic sorting algorithm implementation.
• Implement A* search to solve a combinatorial problem, based on an efficient priority queue

implementation.
• Implement a data type that supports range search and near-neighbor search in point sets, using kD trees.
• Build and search a “WordNet” directed acyclic graph.
• Use maxflow to solve the “baseball elimination” problem.
• Develop an efficient implementation of Burrow-Wheeler data compression.

Exercises for self-assessment are available on the web, are a topic of discussion in sections, and are good
preparation for exams. A mid-term exam and a final exam account for a significant portion of the grade.

Course textbooks and materials
The course is based on the textbook Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne (Addison-
Wesley Professional, 2011, ISBN 0-321-57351-X). The book is supported by a public “booksite”
(http://algs4.cs.princeton.edu), which contains a condensed version of the text narrative (for reference while
online) Java code for the algorithms and clients in the book, and many related algorithms and clients, test data sets,
simulations, exercises, and solutions to selected exercises. The booksite also has lecture slides and other teaching
material for use by faculty at other universities.

A separate website specific to each offering of the course contains detailed information about schedule, grading
policies, and programming assignments.

Why do you teach the course this way?
The motivation for this course is the idea that knowledge of classical algorithms is fundamental to any computer
science curriculum, but it is not just for programmers and computer science students. Everyone who uses a
computer wants it to run faster or to solve larger problems. The algorithms in the course represent a body of
knowledge developed over the last 50 years that has become indispensable. As the scope of computer applications
continues to grow, so grows the impact of these basic methods. Our experience in developing this course over
several decades has shown that the most effective way to teach these methods is to integrate them with
applications as students are first learning to tackle significant programming problems, as opposed to the oft-used
alternative where they are taught in a theory course. With this approach, we are reaching four times as many
students as do typical algorithms courses. Furthermore, our CS majors have a solid knowledge of the algorithms
when they later learn more about their theoretical underpinnings, and all our students have an understanding that
efficient algorithms are necessary in many contexts.

Body of Knowledge coverage
KA Knowledge Unit Topics Covered Hours

SDF Algorithms and Design Encapsulation, separation of behavior and implementation. 1

PL Object-oriented
programming Object-oriented design, encapsulation, iterators. 1

http://algs4.cs.princeton.edu/�

- 239 -

SDF Fundamental data
structures

Stacks, queues, priority queues, references, linked structures,
resizable arrays. 2

AL Basic Analysis

Asymptotic analysis, empirical measurements. Differences
among best, average, and worst case behaviors of an algorithm.
Complexity classes, such as constant, logarithmic, linear,
quadratic, and exponential. Time and space trade-offs in
algorithms.

1

AL Algorithmic Strategies Brute-force, greedy, divide-and-conquer, and recursive
algorithms. Dynamic programming, reduction. 2

AL
Fundamental Data
Structures and
Algorithms

Binary search. Insertion sort, selection sort, shellsort,
quicksort, mergesort, heapsort. Binary heaps. Binary search
trees, hashing. Representations of graphs. Graph search, union-
find, minimum spanning trees, shortest paths. Substring search,
pattern matching.

13

AL
Basic Automata,
Computability and
Complexity

Finite-state machines, regular expressions, P vs. NP, NP-
completeness, NP-complete problems 3

AL
Advanced Automata,
Computability and
Complexity

Languages, DFAs, NFAs, equivalence of NFAs and DFAs. 1

AL
Advanced Data
Structures and
Algorithms

Balanced trees, B-trees. Topological sort, strong components,
network flow. Convex hull. Geometric search and intersection.
String sorts, tries, Data compression.

9

Additional topics
Use of scientific method to validate hypotheses about an algorithm’s time and space usage.

- 240 -

CS 256 Algorithm Design and Analysis, Williams College

Williamstown, MA
Brent Heeringa
heeringa@cs.williams.edu
www.cs.williams.edu/~heeringa/classes/cs256

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Algorithms and Complexity (AL) 28

Discrete Structures (DS) 2

Where does the course fit in your curriculum?
Students commonly take this course in their second year. It is required. The course has two prerequisites:
Discrete Mathematics (taken in the Department of Mathematics) and Data Structures. Over the past five years, the
course averages 20 students per year. In 2013 there are 38 students enrolled.

What is covered in the course?
Analysis: asymptotic analysis including lower bounds on sorting, recurrence relations and their solutions.

Graphs: directed, undirected, planar, and bipartite.

Greedy Algorithms: shortest paths, minimum spanning trees, and the union-find data structure (including
amortized analysis).

Divide and Conquer Algorithms: integer and matrix multiplication, the fast-fourier transform.

Dynamic Programming: matrix parenthesization, subset sum, RNA secondary structure, DP on trees.

Network Flow: Max-Flow, Min-Cut (equivalence, duality, algorithms).

Randomization: randomized quicksort, median, min-cut, universal hashing, skip lists.

String Algorithms: string matching, suffix trees and suffix arrays.

Complexity Theory: Complexity classes, reductions, and approximation algorithms.

What is the format of the course?
The course format is face-to-face lecture. The lectures last 50 minutes and happen 3 times a week for 12 weeks
for a total of 30 contact hours. Office hours often increase contact hours significantly. There is no lab or
discussion section.

How are students assessed?
Nine problem sets, each worth 5% of the total grade. I drop the lowest score. One take-home midterm exam
worth 25% of the grade. One take-home final exam worth 25% of the grade. 6 pop quizzes, each worth 1% of the
grade. I drop the lowest score. A class participation grade based on attendance, promptness, and participation
worth 5% of the grade. I expect students will spend 7-10 hours on the problem sets and exams.

- 241 -

Course textbooks and materials
Algorithm Design by Kleinberg and Tardos, supplemented liberally with my own lecture notes. There are two
programming assignments, one in Python and one in Java.

Why do you teach the course this way?
The goal of Algorithms is for students to learn and practice a variety of problem solving strategies and analysis
techniques. Students develop algorithmic maturity. They learn how to think about problems, their solutions, and
the quality of those solutions.

I have taught Algorithms since 2007 except for 2010 when I was on sabbatical. My sense is that my course is non-
trivial revision of the offering pre-2007. Students consider the course challenging in a rewarding way.

Body of Knowledge coverage

KA Knowledge
Unit

Topics Covered Hours

AL Basic Analysis Asymptotic analysis including definitions of asymptotic upper, lower, and
tight bounds. Discussion of worst, best, and expected running time (Monte
Carlo and Las Vegas for randomized algorithms and a brief discussion about
making assumptions about the distribution of the input). Natural complexity
classes in P (log n, linear quadratic, etc.), recurrence relations and their
solutions (mostly via the recursion tree and master method although we
mention generating functions as a more general solution).

5

AL Algorithmic
Strategies

Brute-force algorithms (i.e., try-‘em-all), divide and conquer, greedy
algorithms, dynamic programming, and transformations. We do not cover
recursive backtracking, branch and bound, or heuristic programming although
these topics are given some attention in Artificial Intelligence.

6

AL Fundamental
Data Structures
and Algorithms

Order statistics including deterministic median, We do not cover heaps
directly in this course although we mention various heap implementations and
their trade-offs (e.g., Fibonacci heaps, soft heaps, etc.) when discussing
shortest path and spanning tree algorithms. Undirected and directed graphs,
bipartite graphs, graph representations and trade-offs, fundamental graph
algorithms including BFS and DFS, shortest-path algorithms, and spanning
tree algorithms. Many of the topic areas included in this knowledge unit are
covered in Data Structures so we review them quickly and use them as a
launching point for more advanced material.

4

AL Basic
Automata,
Computability
and Complexity

Algorithm Design and Analysis contains very little complexity theory–these
topics are all covered in detail in our Theory of Computation course.
However, we do spend 1 lecture on the complexity classes P and NP, and
approaches to dealing with intractability including approximation algorithms
(mentioned below).

1

AL Advanced Data
Structures,
Algorithms and
Analysis

A quick review of ordered dynamic dictionaries (including balanced BSTs
like Red-Black Trees and AVL-Trees) as a way of motivating Skip Lists.
Graph algorithms to find a maximum matching and connected components.
Some advanced data structures like union-find (including the log*n amortized
analysis). Suffix trees, suffix arrays (we follow the approach of Karkkainen
and Sanders that recursively builds a suffix array and then transforms it into a
suffix tree). Network flow including max-flow, min-cut, bipartite matching

12

- 242 -

and other applications including Baseball Elimination. Randomized
algorithms including randomized median, randomized min-cut, randomized
quicksort, and Rabin-Karp string matching. We cover the geometric problem
of finding the closest pair of points in the plane and develop the standard
randomized solution based on hashing. Sometimes we cover linear
programming. Very little number theoretic and geometric algorithms are
covered due to time. We spend two lectures on approximation algorithms
because it is my research area.

DS Discrete
Probability

We review concepts from discrete probability in support of randomized
algorithms. This includes expectation, variance, and (very quickly)
concentration bounds (we use these to prove that many of our algorithms run
in their expected time with very high probability)

2

Other comments
There is some overlap with the topics covered here and DS/Graphs and Trees.

- 243 -

CSE332: Data Abstractions, University of Washington

Seattle, WA
Dan Grossman
djg@cs.washington.edu
http://www.cs.washington.edu/education/courses/cse332/
(Description below based on, for example, the Spring 2012 offering)

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Algorithms and Complexity (AL) 19

Parallel and Distributed Computing (PD) 9

Discrete Structures (DS) 3

Software Development Fundamentals (SDF) 2

Where does the course fit in your curriculum?
This is a required course taken by students mostly in their second year, following at least CS1, CS2, and a
“Foundations” course that covers much of Discrete Structures. This course is approximately 70% classic data
structures and 30% an introduction to shared-memory parallelism and concurrency. It is a prerequisite for many
senior-level courses.

What is covered in the course?
The core of this course is fundamental “classical” data structures and algorithms including balanced trees,
hashtables, sorting, priority queues, graphs and graph algorithms like shortest paths, etc. The course includes
asymptotic complexity (e.g., big-O notation). The course also includes an introduction to concurrency and
parallelism grounded in the data structure material. Concurrent access to shared data motivates mutual exclusion.
Independent subcomputations (e.g., recursive calls to mergesort) motivate parallelism and cost models that
account for time-to-completion in the presence of parallelism.

More general goals of the course include (1) exposing students to non-obvious algorithms (to make the point that
algorithm selection and design is an important and non-trivial part of computer science & engineering) and (2)
giving students substantial programming experience in a modern high-level programming language such as Java
(to continue developing their software-development maturity).

Course topics:

• Asymptotic complexity, algorithm analysis, recurrence relations
• Review of stacks, queues, and binary search trees (covered in CS2)
• Priority queues and binary heaps
• Dictionaries and AVL trees, B trees, and hashtables
• Insertion sort, selection sort, heap sort, merge sort, quicksort, bucket sort, radix sort
• Lower bound for comparison sorting
• Graphs, graph representations, graph traversals, topological sort, shortest paths, minimum spanning trees
• Simple examples of amortized analysis (e.g., resizing arrays)
• Introduction to multiple explicit threads of execution
• Parallelism via fork-join computations
• Basic parallel algorithms: maps, reduces, parallel-prefix computations
• Parallel-algorithm analysis: Amdahl’s Law, work, span
• Concurrent use of shared resources, mutual exclusion via locks

http://www.cs.washington.edu/education/courses/cse332/�

- 244 -

• Data races and higher-level race conditions
• Deadlock
• Condition variables

What is the format of the course?
This is a fairly conventional course with 3 weekly 1-hour lectures and 1 weekly recitation section led by a teaching
assistant. The recitation section often covers software-tool details not covered in lecture. It is a 10-week course
because the university uses a “quarter system” with 10-week terms.

How are students assessed?
Students complete 8 written homework assignments, 3 programming projects in Java (1 using parallelism), a
midterm, and a final exam.

Course textbooks and materials
For the classic data structures material, the textbook is Data Structures and Algorithm Analysis in Java by Weiss.
 For parallelism and concurrency, materials were developed originally for this course and are now used by several
other institutions (see URL below). Programming assignments use Java, in particular Java’s Fork-Join Framework
for parallelism.

Why do you teach the course this way?
Clearly the most novel feature of this course is the integration of multithreading, parallelism, and concurrency.
 The paper “Introducing Parallelism and Concurrency in the Data Structures Course” by Dan Grossman and Ruth
E. Anderson, published in SIGCSE2012, provides additional rationale and experience for this approach. In short,
data structures provides a rich source of canonical examples to motivate both parallelism and concurrency.
Moreover, an introduction to parallelism benefits from the same mix of algorithms, analysis, programming, and
practical considerations that is the main ethos of the data structures course.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

AL Basic Analysis All except the Master Theorem 3

AL Fundamental Data
Structures and
Algorithms

All topics except string/text algorithms. Also, the preceding CS2
course covers some of the simpler topics, which are then quickly
reviewed

10

AL Advanced Data
Structures Algorithms
and Analysis

Only these: AVL trees, topological sort, B-trees, and a brief
introduction to amortized analysis

6

DS Graphs and Trees All topics except graph isomorphism 3

PD Parallelism Fundamentals All 2

PD Parallel Decomposition All topics except actors and reactive processes, but at only a
cursory level

1

PD Communication and
Coordination

All topics except Consistency in shared memory models, Message
passing, Composition, Transactions, Consensus, Barriers, and
Conditional actions. (The treatment of atomicity and deadlock is
also very elementary.)

2

PD Parallel Algorithms,
Analysis, and
Programming

All Core-Tier-2 topics; none of the Elective topics 4

http://www.cs.washington.edu/homes/djg/papers/SIGCSE2012.pdf�

- 245 -

SDF Fundamental Data
Structures

Only priority queues (all other topics are in CS1 and CS2) 2

Additional topics
The parallel-prefix algorithm

Other comments
The parallelism and concurrency materials are freely available at
http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/

http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/�

- 246 -

CS/ECE 552: Introduction to Computer Architecture, University of
Wisconsin

Computer Sciences Department
sohi@cs.wisc.edu
http://pages.cs.wisc.edu/~karu/courses/cs552/spring2011/wiki/index.php/Main/Syllabus

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Architecture and Organization (AR) 39

Where does the course fit in your curriculum?
This is taken by juniors, seniors, and beginning graduate students in computer science and computer engineering.
Prerequisites include courses that cover assembly language and logic design. This course is a (recommended)
prerequisite for a graduate course on advanced computer architecture. Approximately 60 students take the course
per offering; it is offered two times per year (once each semester).

What is covered in the course?
The goal of the course is to teach the design and operation of a digital computer. It serves students in two ways.
First, for those who want to continue studying computer architecture, embedded systems, and other low-level
aspects of computer systems, it lays the foundation of detailed implementation experience needed to make the
quantitative tradeoffs in more advanced courses meaningful. Second, for those students interested in other areas of
computer science, it solidifies an intuition about why hardware is as it is and how software interacts with
hardware.

The subject matter covered in the course includes technology trends and their implications, performance
measurement, instruction sets, computer arithmetic, design and control of a datapath, pipelining, memory
hierarchies, input and output, and brief introduction to multiprocessors.

The full list of course topics is:
Introduction and Performance

• Technology trends
• Measuring CPU performance
• Amdahl’s law and averaging performance metrics

Instruction Sets

• Components of an instruction set
• Understanding instruction sets from an implementation perspective
• RISC and CISC and example instruction sets

Computer Arithmetic

• Ripple carry, carry lookahead, and other adder designs
• ALU and Shifters
• Floating-point arithmetic and floating-point hardware design

- 247 -

Datapath and Control
• Single-cycle and multi-cycle datapaths
• Control of datapaths and implementing control finite-state machines

Pipelining

• Basic pipelined datapath and control
• Data dependences, data hazards, bypassing, code scheduling
• Branch hazards, delayed branches, branch prediction

Memory Hierarchies

• Caches (direct mapped, fully associative, set associative)
• Main memories
• Memory hierarchy performance metrics and their use
• Virtual memory, address translation, TLBs

Input and Output

• Common I/O device types and characteristics
• Memory mapped I/O, DMA, program-controlled I/O, polling, interrupts
• Networks

Multiprocessors

• Introduction to multiprocessors
• Cache coherence problem

What is the format of the course?

The course is 15 weeks long, with students meeting for three 50-minute lectures per week or two 75-minute
lectures per week. If the latter, the course is typically “front loaded” so that lecture material is covered earlier in
the semester and students are able to spend more time later in the semester working on their projects.

How are students assessed?
Assessment is a combination of homework, class project, and exams. There are typically six homework
assignments. The project is a detailed implementation of a 16-bit computer for an example instruction set. The
project requires both an unpipelined as well as a pipelined implementation and typically takes close to a hundred
hours of work to complete successfully. The project and homeworks are typically done by teams of 2 students.
There is a midterm exam and a final exam, each of which is typically 2 hours long.

Course textbooks and materials
David A. Patterson and John L. Hennessy, Computer Organization and Design: The Hardware and Software
Interface Morgan Kaufmann Publishers,
Fourth Edition. ISBN: 978-0-12-374493-7

Why do you teach the course this way?
Since the objective is to teach how a digital computer is designed and built and how it executes programs, we want
to show how basic logic gates could be combined to construct building blocks which are then combined to work
together to execute programs written in a machine language. The students learn the concepts of how to do so in
the classroom, and then apply them in their project. Having taken this course a student can go into an industrial
environment and be ready to participate in the design of complex digital.

- 248 -

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

AR Introductory Material and
Performance

Technology trends, measuring CPU performance,
Amdahl’s law and averaging performance metrics

3

AR Instruction Set Architecture Components of instruction sets, understanding
instruction sets from an implementation perspective,
RISC and CISC and example instruction sets

3

AR Computer Arithmetic Ripple carry, carry lookahead, and other adder designs,
ALU and Shifters, floating-point arithmetic and floating-
point hardware design

6

AR Datapath and Control Single-cycle and multi-cycle datapaths, control of
datapaths and implementing control finite-state
machines

4

AR Pipelined Datapaths and Control Basic pipelined datapath and control, data dependences,
data hazards, bypassing, code scheduling, branch
hazards, delayed branches, branch prediction

8

AR Memory Hierarchies Caches (direct mapped, fully associative, set
associative), main memories, memory hierarchy
performance metrics and their use, virtual memory,
address translation, TLBs

9

AR Input and Output Common I/O device types and characteristics, memory
mapped I/O, DMA, program-controlled I/O, polling,
interrupts, networks

3

AR Multiprocessors Introduction to multiprocessors, cache coherence
problem

3

- 249 -

CS150: Digital Components and Design, University of California,
Berkeley

Randy H. Katz
randy@cs.Berkeley.edu
http://inst.eecs.berkeley.edu/~cs150/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Architecture and Organization (AR) 37.5

Where does the course fit in your curriculum?
This is a junior-level course in the computer science curriculum for computer engineering students interested in
digital system design and implementation.

What is covered in the course?
Design of synchronous digital systems using modern tools and methodologies, in particular, digital logic synthesis
tools, digital hardware simulation tools, and field programmable gate array architectures.

What is the format of the course?
Lecture, discussion section, laboratory

How are students assessed?
Laboratories, examinations, and an independent design project

Course textbook and materials
Harris and Harris, Digital Design and Computer Architecture

Why do you teach the course this way?
Understand the principles and methodology of digital logic design at the gate and switch level, including both
combinational and sequential logic elements. Gain experience developing a relatively large and complex digital
system. Gain experience with modern computer-aided design tools for digital logic design. Understand clocking
methodologies used to control the flow of information and manage circuit state. Appreciate methods for specifying
digital logic, as well as the process by which a high-level specification of a circuit is synthesized into logic
networks. Appreciate the tradeoffs between hardware and software implementations of a given function.
Appreciate the uses and capabilities of a modern FPGA platform.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

AR Digital Logic and Digital Systems Combinational /Sequential
Logic Design and CAD Tools;
State Machines, Counters;
Digital Building Blocks;
High Level Design w/Verilog

4.5
4.5
3
4.5
4.5

AR Machine Level Representation of Data N/A 0

- 250 -

AR Assembly Level Machine Organization MIPS Architecture & Project

3

AR Memory System Organization and Architecture CMOS/SRAM/DRAM,
Video/Frame Buffers

6

AR Interfacing and Communication Timing;
Synchronization

3
1.5

AR Functional Organization N/A 0

AR Multprocessing and Alternative Architecture Graphics Processing Chips 1.5

AR Performance Enhancements Power and Energy 1.5

- 251 -

CC152: Computer Architecture and Engineering, University of
California, Berkeley

Randy H. Katz
randy@cs.Berkeley.edu
http://inst.eecs.berkeley.edu/~cs152/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Architecture and Organization (AR) 33

Where does the course fit in your curriculum?
This is a senior-level course in the computer science curriculum for computer engineering students interested in
computer design.

What is covered in the course?
Historical Perspectives: RISC vs. CISC, Pipelining, Memory Hierarchy, Virtual Memory, Complex Pipelines and
Out-of-Order Execution, Superscaler and VLIW Architecture, Synchronization, Cache Coherency.

What is the format of the course?
Lectures, Discussion, Laboratories, and Examinations

How are students assessed?
Examinations, homeworks, and hands-on laboratory exercises

Course textbook and materials
J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, 5th Edition, Morgan
Kaufmann Publishing Co., Menlo Park, CA. 2012.

Why do you teach the course this way?
The course is intended to provide a foundation for students interested in performance programming, compilers,
and operating systems, as well as computer architecture and engineering. Our goal is for you to better understand
how software interacts with hardware, and to understand how trends in technology, applications, and economics
drive continuing changes in the field. The course will cover the different forms of parallelism found in applications
(instruction-level, data-level, thread-level, gate-level) and how these can be exploited with various architectural
features. We will cover pipelining, superscalar, speculative and out-of-order execution, vector machines, VLIW
machines, multithreading, graphics processing units, and parallel microprocessors. We will also explore the design
of memory systems including caches, virtual memory, and DRAM. An important part of the course is a series of
lab assignments using detailed simulation tools to evaluate and develop architectural ideas while running real
applications and operating systems. Our objective is that you will understand all the major concepts used in
modern microprocessors by the end of the semester.

- 252 -

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

AR Digital Logic and Digital Systems N/A 0

AR Machine Level Representation of Data N/A 0

AR Assembly Level Machine Organization Historical Perspectives 6

AR Memory System Organization and Architecture Memory Hierarchy,
Virtual Memory,
Snooping Caches

9

AR Interfacing and Communication Synchronization,
Sequential Consistency

3

AR Functional Organization Pipelining 3

AR Multprocessing and Alternative Architecture Superscalar, VLIW,
Vector Processing

6

AR Performance Enhancements Complex Pipelining 3

Additional topics
Case Study: Intel Sandy Bridge & AMD Bulldozer (1.5); Warehouse-Scale Computing (1.5)

- 253 -

eScience, University of North Carolina at Charlotte

Mirsad Hadzikadic and Carlos E. Seminario
mirsad@uncc.edu cseminar@uncc.edu

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Computational Science (CN) 42

Intelligent Systems (IS) 15

Topics outside Body of Knowledge 33

Where does the course fit in your curriculum?
The University of North Carolina at Charlotte’s (UNCC) College of Computing and Informatics (CCI) has recently
introduced its first laboratory-based science course, designed to partially satisfy the science portion of the University
College’s general education requirements2 3. The University College General Education program’s curriculum
reflects UNCC’s commitment to the principles of a liberal arts education, a broad training that develops analytic,
problem solving, and communications skills and also awareness of bodies of knowledge and new perspectives that
prepare students for success in their careers and communities in the 21st century. In the General Education
curriculum, eScience is positioned alongside other introductory “Inquiry into the Sciences” courses4

 such as
Astronomy, Bioinformatics, Biological Anthropology, Biology, Chemistry, Earth Sciences, Geology, Physics, and
Psychology.

This course is commonly taken by freshmen and sophomores, occasionally juniors and seniors have attended.
Although this course is not compulsory, it does satisfy the requirement for a science class with lab. There are no
course pre-requisites and no follow-on courses are required. (Starting in the Fall 2013, a related and optional Agent-
Based Modeling course will be offered for undergraduate and graduate students.) Typically, anywhere from 15 to 40
students will take this course per semester.

What is covered in the course?
eScience’s basic premise is that in addition to the two accepted scientific inquiry methods: theoretical/mathematical
formulation and experimentation, computational simulation/modeling has become the third method for doing
science. eScience introduces the application of computational methods to scientific exploration and discovery in the
social and natural sciences. Both the class and the laboratory include a broad range of well-defined experiments,
verified data inputs, predictable/repeatable outcomes, and open questions to be explored. We begin with an
Introduction to eScience, Scientific Method, and Models. Thereafter, we have weekly topics including Spread of
Epidemics, Spread of Fire, Movement of Ants and Problem Solving, Predator-prey relationships,

2 http://ucol.uncc.edu/

3 http://ucol.uncc.edu/gened/requirements.htm

4 https://ucol.uncc.edu/general-education/requirements/inquiry-sciences

mailto:mirsad@uncc.edu�
mailto:cseminar@uncc.edu�
http://ucol.uncc.edu/�
http://ucol.uncc.edu/gened/requirements.htm�
https://ucol.uncc.edu/general-education/requirements/inquiry-sciences�

- 254 -

Altruism/Collaboration/Competition, Economics, Art and Music, Climate Change, E. coli metabolism of lactose,
Cancer and Tumors, Games, Complex Systems and Chaos, Networks, and Fractals. Both theory and practice of
computational simulation and modeling techniques are examined as tools to support the scientific method. No
computer programming knowledge or calculus is required. By popular student demand, Netlogo5

 is predominantly
used as the modeling tool for this course due to its ease of use and extensive library of relevant models. Such tools
have the advantage of embodying principles of a systems approach to non-linear, self-organizing, and emergent
phenomena that characterize most interesting problems that societies face today. They also offer a bottom-up
approach to problem-solution and experimentation in a non-threatening way that does not require the knowledge of
programming. At the same time, these tools also provide more adventurous students with the opportunity to modify
the natural language-like computer code to test their own ideas about modeling the societal challenge under
consideration.

The course includes up to fifteen knowledge units per semester. Each week in the semester is devoted to one
knowledge unit. There are two 75-minute lessons per week/knowledge unit. The first lesson of the week uncovers
the nature of the societal problem targeted in that particular knowledge unit. The second lesson of the week offers
examples of computer-based simulations and models of the problem. Both lessons include many team-based
exercises that encourage self-exploration, innovation, and creativity. The lessons are followed by a laboratory
session that uses well-defined protocols to guide students through hands-on exploration of computer simulations and
models. In the Spring 2013 semester we introduced the use of Audience Response Systems6

 (clickers) for quizzes at
the end of each lesson or topic; each quiz consisted of four to five questions about the current topic plus one or two
review questions from previous topics. We also experimented with “flipped classroom” methods during some of the
clicker quizzes. When responses to questions were diverse and mostly incorrect, we had students discuss their
responses amongst themselves and then we re-tested them; as expected, student scores improved on those questions
after they had an opportunity to discuss amongst themselves.

Some knowledge units incorporate student projects. Projects are two to three weeks long. They are team-based. Each
team includes two to four students. Students are assigned to teams based on their declared major/discipline. Every
effort is made to ensure that teams are interdisciplinary.

At the conclusion of this one-semester, 4-hour course, students should be able to:

1. Have an enhanced appreciation for the use of science in addressing real-world problems
2. Apply critical thinking in solving science-related problems
3. Survey literature on current and relevant science-related issues
4. Comfortably communicate scientific concepts with others
5. Perform basic inquiry-based science experimentation using computational models
6. Have fun doing all of the above!

What is the format of the course?
eScience is taught as a traditional face-to-face, four credit-hour course consisting of three hours of class instruction
and one three-hour lab per week for about 15 weeks.

5 http://ccl.northwestern.edu/netlogo/

6 http://www.turningtechnologies.com/response-solutions

http://ccl.northwestern.edu/netlogo/�
http://www.turningtechnologies.com/response-solutions�

- 255 -

How are students assessed?
eScience students are assessed using various methods: two or three member team-based project assignments (30%),
eight to ten lab exercises (20%), class participation including weekly quizzes (10%), mid-term and final exams
(20% each). On average, students are expected to spend about two to three hours per week on assessed work plus
class attendance.

Course textbooks and materials
There is currently no textbook for this course. Course materials consist of PowerPoint presentations, online
YouTube videos, and links to other online resources. All course materials, assignments, communications, quizzes,
and exams are available on Moodle7

, an open source Learning Management System (LMS) available to students 24
x 7. Netlogo is predominantly used as the modeling tool for this course due to its ease of use and extensive library of
relevant models.

Why do you teach the course this way?
The initial offering of this course in the Fall 2010 and Spring 2011 semesters made use of dynamical systems and
data-driven simulation/modeling paradigms; the textbook we used ("Introduction to Computational Science:
Modeling and Simulation for the Sciences," by Shiflet, A. B. and Shiflet, G. W., Princeton University Press, 2006)
was heavily based on calculus and mathematical formalisms. The topics covered were: Rate of Change, Constrained
Growth, Unconstrained Growth and Decay, Drug Dosage, Modeling Falling and Skydiving, Competition, Spread of
SARS, Predator-Prey, Errors, Euler's Method, Runge-Kutta Method, Empirical Models, Simulations, Area Through
Monte Carlo Simulation, Random Walk, Spreading of Fire, and Movement of Ants. We used Mathematica8 and
Vensim9

 for lab experiments. Teaching this course in this manner was instrumental in helping us understand what is
wrong with current approaches to teaching science, including ours. For example, the eScience course attracted a
diverse group of students the first time it was offered, including those majoring in communications, business,
computer science, and information systems. However, early on in the semester eight of the twenty students dropped
the class, citing the heavy use of calculus as the reason for doing so. We can only speculate that these students have
conveyed their experience to their academic advisors and fellow students, and the 75% drop in the course enrollment
the following semester seemed to indicate such a possibility. In conversations with students who stayed in the class,
we learned that they expected a class that was very different from the one that was offered. They were hoping for a
class that would demonstrate the utility of science in many areas of everyday life, including social interactions,
economy, stock market, diseases, weather, poverty, population growth, ecology, global warming, war, politics,
social unrests, and nature in general. They wanted to be able to experiment with various settings and what-if
scenarios in order to understand the consequences of their actions, sensitivity to initial conditions, and
interpretability of the outcomes. All in all, they wanted it to be fun, engaging, and relevant. At the same time, we
felt that both the class and the laboratory needed to be structured enough to include a broad range of well-defined
experiments, verified data inputs, predictable/repeatable outcomes, and open questions to be explored.

We changed the course format to its current incarnation in the Fall 2011 semester. The dependency on math and
calculus was eliminated and the list of topics was changed to include social sciences, humanities, and arts in addition
to the natural sciences. No textbook is required. For each topic, we designed or found existing presentation materials
and experiment/tool that addresses a recognized problem of significant interest relevant to today’s students. The
purpose of the current eScience course is to convince students that science is interesting, important, relevant to their

7 www.moodle.com

8 http://www.wolfram.com/mathematica/

9 www.vensim.com

http://www.moodle.com/�
http://www.wolfram.com/mathematica/�
http://www.vensim.com/�

- 256 -

everyday lives, and therefore at least worth studying, if not majoring in it. The course is divided into knowledge
units. Each knowledge unit exemplifies key concepts that are associated with the scientific method, including
Problem definition, Hypothesis generation, Experiment design and implementation, Results analysis, Model design,
and Model validation and verification.

The knowledge units address issues of everyday interest to the general population. Knowledge units have included:
movement of ants, economics, spread of epidemics, climate change and global warming, cancer, predator-prey
relationships, cooperation and collaboration, computer games, arts and music, fractals, and metabolism of lactose
(lac operon). In addition, students are exposed to tools, methods, theories, and paradigms that allow them to consider
patterns that transcend application domains and problems. These methods and tools include the science of
complexity, the science of networks, fractals, chaos theory, problem solving techniques, and game theory.

Because of the diversity in the majors of students who take this course (Business, Computing, Engineering, Liberal
Arts, etc.) and the diversity of topics that are covered, some students find this course challenging while others feel it
is less so. Again, our goal is to make the course relevant, interesting, and applicable to current issues.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

CN Fundamentals Models as abstractions of situations

3

CN Modeling and
Simulation

Purpose of modeling and simulation including optimization; supporting decision
making, forecasting, safety considerations; for training and education.
Important application areas including health care and diagnostics, economics and
finance, city and urban planning, science, and engineering.

.

3

CN Modeling and
Simulation

Model building: use of mathematical formula or equation, graphs, constraints;
methodologies and techniques; use of time stepping for dynamic systems.
.

15

CN Modeling and
Simulation

Formal models and modeling techniques: mathematical descriptions involving
simplifying assumptions and avoiding detail. The descriptions use fundamental
mathematical concepts such as set and function. Random numbers.

3

CN Modeling and
Simulation

Assessing and evaluating models and simulations in a variety of contexts;
verification and validation of models and simulations.

18

IS Agents Multi-agent systems
Collaborating agents
Agent teams
Competitive agents (e.g., auctions, voting)
Swarm systems and biologically inspired models

15

 Other KA’s are covered in other courses n/a

- 257 -

Additional topics
We begin with an Introduction to eScience, Scientific Method, and Models. Thereafter, we have weekly topics
including Spread of Epidemics, Spread of Fire, Movement of Ants and Problem Solving, Predator-prey
relationships, Altruism/Collaboration/Competition, Economics, Art and Music, Climate Change, E. coli metabolism
of lactose, Cancer and Tumors, Games, Complex Systems and Chaos, Networks, and Fractals. Both theory and
practice of computational simulation and modeling techniques are examined as tools to support the scientific
method. (33 hours)

Other comments
The number of topics taught each semester varies, new topics are added and some topics are dropped.

- 258 -

COSC/MATH 201: Modeling and Simulation for the Sciences, Wofford
College

Angela B. Shiflet
http://www.wofford.edu/ecs/
(Description below based on the Fall 2011 and 2012 offerings)

Knowledge Areas with topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Computational Science (CN) 35.5

Intelligent Systems (IS) 3

Software Development Fundamentals (SDF) 2

Software Engineering (SE) 1

Graphics and Visualization (GV) 0.5

Where does the course fit in your curriculum?
Modeling and Simulation for the Sciences (COSC/MATH 201) has a pre-requisite of Calculus I. However,
because the course does not require derivative or integral formulas but only an understanding of the concept of
"rate of change," students with no calculus background have taken the course successfully. The course has been
offered since the spring of 2001. Dual-listed as a computer science and a mathematics course and primarily
targeted at second-year science majors, the course is required for Wofford College's Emphasis in Computer
Science (see "Other comments" below). Moreover, Modeling and Simulation meets options for the computer
science, mathematics, and environmental studies majors and counts for both computer science and mathematics
minors.

Wofford College has a thirteen-week semester with an additional week for final exams. Modeling and Simulation
for the Sciences has 3-semester-hours credit and meets 3 contact hours per week.

What is covered in the course?
• The modeling process
• Two system dynamics tool tutorials
• System dynamics problems with rate proportional to amount: unconstrained growth and decay,

constrained growth, drug dosage
• System dynamics models with interactions: competition, predator-prey models, spread of disease models
• Computational error
• Simulation techniques: Euler's method, Runge-Kutta 2 method
• Additional system dynamics projects throughout, such as modeling falling and skydiving, enzyme

kinetics, the carbon cycle, economics and fishing
• Six computational toolbox tutorials
• Empirical models
• Introduction to Monte Carlo simulations
• Cellular automaton random walk simulations
• Cellular automaton diffusion simulations: spreading of fire, formation of biofilms

http://www.wofford.edu/ecs/�

- 259 -

• High-performance computing: concurrent processing, parallel algorithms
• Additional cellular automaton simulations throughout such as simulating polymer formation,

solidification, foraging, pit vipers, mushroom fairy rings, clouds

What is the format of the course?
Usually, students are assigned reading of the material before consideration in class. Then, after questions are
discussed, students often are given a short quiz taken directly from the quick review questions. Answers to these
questions are available at the end of each module. After the quiz, usually the class develops together an extension
of a model in the textbook. Class time is allotted for the first system dynamics tutorial and the first computational
toolbox tutorial. Students work on the remaining tutorials and open-ended projects, often in pairs, primarily
outside of class and occasionally in class.

How are students assessed?
Students complete two system dynamics tutorials and six computational toolbox tutorials with at least one of each
type of tutorial in a lab situation. The students have approximately one project assignment per week during a
thirteen-week semester. Most assignments are completed in teams of two or three students. Generally, a
submission includes a completed model, results, and discussion. Students present their models at least twice during
the semester. Daily quizzes occur on the quick review questions, and tests comprise a midterm and a final.

Course textbooks and materials
Textbook: Introduction to Computational Science: Modeling and Simulation by Angela B. Shiflet and George W.
Shiflet, Princeton University Press, with online materials available at the above website.

A second edition of the textbook is nearing completion and will include new chapters on agent-based modeling
and modeling with matrices along with ten additional project-based modules and more material on high
performance computing.

The first half of the semester on system dynamics uses STELLA or Vensim; and the second half of the semester
on empirical modeling and cellular automaton simulations employs Mathematica or MATLAB. (Tutorials and
files are available on the above website in these tools and also in Python, R, Berkeley Madonna, and Excel for
system dynamics models and in Python, R, Maple, NetLogo, and Excel for the material for the second half of the
semester.)

Why do you teach the course this way?
The course has evolved since its initial offering in 2001, and the vast majority students, who have a variety of
majors in the sciences, mathematics, and computer science, are successful in completing the course with good
grades. Moreover, many of the students have used what they have learned in summer internships involving
computation in the sciences.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

CN Introduction to
Modeling and
Simulation

Models as abstractions of situations
Simulations as dynamic modeling
Simulation techniques and tools, such as physical simulations and
human-in-the-loop guided simulations.
Foundational approaches to validating models

3

CN Modeling and
Simulation

Purpose of modeling and simulation including optimization; supporting
decision making, forecasting, safety considerations; for training and
education.
Tradeoffs including performance, accuracy, validity, and complexity.
The simulation process; identification of key characteristics or

29

- 260 -

behaviors, simplifying assumptions; validation of outcomes.
Model building: use of mathematical formula or equation, graphs,
constraints; methodologies and techniques; use of time stepping for
dynamic systems.
Formal models and modeling techniques: mathematical descriptions
involving simplifying assumptions and avoiding detail. The descriptions
use fundamental mathematical concepts such as set and function.
Random numbers. Examples of techniques including:
Monte Carlo methods
Stochastic processes
Graph structures such as directed graphs, trees, networks
Differential equations: ODE
Non-linear techniques
State spaces and transitions
Assessing and evaluating models and simulations in a variety of
contexts; verification and validation of models and simulations.
Important application areas including health care and diagnostics,
economics and finance, city and urban planning, science, and
engineering.
Software in support of simulation and modeling; packages, languages.

CN Processing Fundamental programming concepts, including:
The process of converting an algorithm to machine-executable code;
Software processes including lifecycle models, requirements, design,
implementation, verification and maintenance;
Machine representation of data computer arithmetic, and numerical
methods, specifically sequential and parallel architectures and
computations;
The basic properties of bandwidth, latency, scalability and granularity;
The levels of parallelism including task, data, and event parallelism.

3

CN Interactive
Visualization

Image processing techniques, including the use of standard APIs and
tools to create visual displays of data

0.5

GV Fundamental
Concepts

Applications of computer graphics: including visualization

0.5

SDF Development
Methods

Program comprehension
Program correctness
Types or errors (syntax, logic, run-time)
The role and the use of contracts, including pre- and post-conditions
Unit testing
Simple refactoring
Debugging strategies
Documentation and program style

2

IS Agents Definitions of agents
Agent architectures (e.g., reactive, layered, cognitive, etc.)
Agent theory
Biologically inspired models

Possibly
3

SE Software Design The use of components in design: component selection, design,
adaptation and assembly of components, components, components.

1

- 261 -

Additional topics
Successful course participants will:

• Understand the modeling process
• Be able to develop and analyze systems dynamics models and Monte Carlo simulations with a team
• Understand the concept of rate of change
• Understand basic system dynamics models, such as ones for unconstrained and constrained growth,

competition, predator-prey, SIR, enzyme kinetics
• Be able to perform error computations
• Be able to use Euler's and Runge-Kutta 2 Methods
• Be able to develop an empirical model from data
• Understand basic cellular automaton simulations, such as ones for random walks, diffusion, and reaction-

diffusion
• Be able to verify and validate models
• Understand basic hardware and programming issues of high performance computing
• Be able to use a system dynamics tool, such as Vensim, STELLA, or Berkeley Madonna
• Be able to use a computational tool, such as MATLB, Mathematica, or Maple.

Other comments
Wofford College's Emphasis in Computational Science (ECS), administered by the Computer Science Department,
is available to students pursuing a B.S. in a laboratory science, mathematics, or computer science. The Emphasis
requires five courses—Modeling and Simulation for the Sciences (this course), CS1, CS2, Calculus I, and Data
and Visualization (optionally in 2013, Bioinformatics or High Performance Computing)—and a summer internship
involving computation in the sciences. Computer science majors obtaining the ECS must also complete 8
additional semester hours of a laboratory science at the 200+ level. Note: Data and Visualization covers creation
of Web-accessible scientific databases, a dynamic programming technique of genomic sequence alignment, and
scientific visualization programming in C with OpenGL.

- 262 -

MAT 267: Discrete Mathematics, Union County College

Cranford, NJ
Dr. Cynthia Roemer, Department Chair
roemer@ucc.edu
www.ucc.edu

Per College policy, all course materials are password-protected. Instructional resources are
available upon email request.

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Discrete Structures (DS) 42 hours

Where does the course fit in your curriculum?
Union County College offers this course both Fall and Spring semesters. Computer Science majors typically
complete the required Discrete Mathematics course as sophomores. Students are eligible to enroll in this course
after passing pre-calculus (MAT 143) with a grade of C or better, or scoring well enough on the College Level
Mathematics Test to place directly into it. CS majors are also required to complete Calculus I (MAT 171).

What is covered in the course?
This course will develop advanced mathematics skills appropriate for students pursuing STEM studies such as
Engineering, Science, Computer Science, and Mathematics. Topics include sets, numbers, algorithms, logic,
computer arithmetic, applied modern algebra, combinations, recursion principles, graph theory, trees, discrete
probability, and digraphs.

What is the format of the course?
This course earns 3 credit hours and consists of 3 lecture hours per week for 14 weeks. Discrete Mathematics
offered at Union County College currently meets twice per week for 80 minutes each.

How are students assessed?
Students are assessed on a combination of homework, quizzes/tests, group activities, discussion, projects, and a
comprehensive final exam. Students are expected to complete homework assignments/projects on a weekly basis.
For a typical student, each assignment will require at least 3 hours to complete.

Course textbooks and materials
Text: Discrete Mathematics by Sherwood Washburn, Thomas Marlowe, & Charles T. Ryan (Addison-Wesley)

A graphing calculator (e.g. TI-89) and a computer algebra system (e.g. MAPLE) are required for completing
certain homework exercises and projects.

Union County College has a Mathematics Success Center that is available for tutoring assistance for all
mathematics courses.

Why do you teach the course this way?
Discrete Mathematics is a transfer-oriented course designed to meet the requirements of Computer Science,
Engineering and Mathematics degree programs. Many of the Computer Science majors at Union County College

- 263 -

matriculate to New Jersey Institute of Technology. Furthermore, this course is designed to meet the following
program objectives. (Also see Other Comments below). Upon successful completion of this course, students will
be able to:

• Demonstrate critical thinking, analytical reasoning, and problem solving skills
• Apply appropriate mathematical and statistical concepts and operations to interpret data and to solve

problems
• Identify a problem and analyze it in terms of its significant parts and the information needed to solve it
• Formulate and evaluate possible solutions to problems, and select and defend the chosen solutions
• Construct graphs and charts, interpret them, and draw appropriate conclusions

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

DS Sets, Relations,
Functions

all topics 6

DS Basic Logic all topics 9

DS Proof Techniques all topics 9

DS Basics of Counting all topics 7

DS Graphs and Trees all topics except Graph Isomorphism (core tier-2) 6

DS Discrete Probability all topics except Conditional Independence (core tier-2) 5

Other comments
Correlation of Program Objectives, Student Learning Outcomes, and Assessment Methods

Program
Objectives

Student
Learning Outcomes

Assessment
Methods

Demonstrate critical thinking, analytical
reasoning, and problem solving skills

Recognize, identify, and solve
problems using set theory,
elementary number theory, and
discrete probability

Recognize, identify, and apply the
concepts of functions and relations
and graph theory in problem
solving

Apply proof techniques in logic

Written: Homework
assignments, examinations
in class, and projects to be
completed at home

Verbal: Classroom
exercises and discussion

Apply appropriate mathematical and
statistical concepts and operations to
interpret data and to solve problems

Recognize, identify, and solve
problems using set theory,
elementary number theory, and
discrete probability

Recognize, identify, and apply the
concepts of functions and relations
and graph theory in problem
solving

Written: Homework
assignments, examinations
in class, and projects to be
completed at home

Verbal: Classroom
exercises and discussion

- 264 -

Identify a problem and analyze it in terms of
its significant parts and the information
needed to solve it

Recognize, identify, and solve
problems using set theory,
elementary number theory, and
discrete probability

Recognize, identify, and apply the
concepts of functions and relations
and graph theory in problem
solving

Apply proof techniques in logic

Written: Homework
assignments, examinations
in class, and projects to be
completed at home

Verbal: Classroom
exercises and discussion

Formulate and evaluate possible solutions to
problems, and select and defend the chosen
solutions

Recognize, identify, and solve
problems using set theory ,
elementary number theory, and
discrete probability

Recognize, identify, and apply the
concepts of functions and relations
and graph theory in problem
solving

Apply proof techniques in logic

Written: Homework
assignments, examinations
in class, and projects to be
completed at home

Verbal: Classroom
exercises and discussion

Construct graphs and charts, interpret them,
and draw appropriate conclusions

Recognize, identify, and apply the
concepts of functions and relations
and graph theory in problem
solving

Written: Homework
assignments, examinations
in class, and projects to be
completed at home

Verbal: Classroom
exercises and discussion

- 265 -

CS103: Mathematical Foundations of Computer Science, Stanford
University

and

CS109: Probability Theory for Computer Scientists, Stanford
University

Stanford, CA, USA
Keith Schwarz and Mehran Sahami
{htiek, sahami}@cs.stanford.edu
Course URLs:
cs103.stanford.edu
cs109.stanford.edu

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Discrete Structures (DS) 30

Algorithms and Complexity (AL) 6

Intelligent Systems (IS) 2

Where does the course fit in your curriculum?
CS103 and CS109 make up the first two courses in the required introductory CS theory core at Stanford. The
prerequisites for CS103 are CS2 and mathematical maturity (e.g., comfortable with algebra, but calculus is not a
requirement). The prerequisites for CS109 are CS2, CS103, and calculus. However, calculus is only used for
topics beyond the CS2013 Discrete Structures guidelines, such as working with continuous probability density
functions. Approximately 400 students take each course each year. The majority of students taking the courses
are sophomores, although students at all levels (from freshman to graduate students) enroll in these courses.

What is covered in the course?
CS103 covers:

• Sets
• Functions and Relations
• Proof techniques (including direct, contradiction, diagonalization and induction)
• Graphs
• Logic (proposition and predicate)
• Finite Automata (DFAs, NFAs, PDAs)
• Regular and Context-Free Languages
• Turing Machines
• Complexity Classes (P, NP, Exp)
• NP-Completeness

- 266 -

CS109 covers:
• Counting
• Combinations and Permutations
• Probability (including conditional probability, independence, and conditional independence)
• Expectation and Variance
• Covariance and Correlation
• Discrete distributions (including Binomial, Negative Binomial, Poisson, and Hypergeometric)
• Continuous distributions (including Uniform, Normal, Exponential, and Beta)
• Limit/Concentration results (including Central Limit Theorem, Markov/Chebyshev bounds)
• Parameter estimation (including maximum likelihood and Bayesian estimation)
• Classification (including Naive Bayes Classifier and Logistic Regression)
• Simulation

What is the format of the course?
Both CS103 and CS109 use a lecture format, but also include interactive class demonstrations. Each course meets
three times per week for 75 minutes per class meeting. CS103 also offers an optional 75 minute discussion
session. The courses each run for 10 weeks (Stanford is on the quarter system).

How are students assessed?
CS103 currently requires nine problem sets (approximately one every week), with an expectation that students
spend roughly 10 hours per week on the assignments. The problem sets are comprised of rigorous exercises (e.g.,
proofs, constructions, etc.) that cover the material from class during the just completed week.

CS109 currently requires five problem sets and one programming assignment (one assignment due every 1.5
weeks), with an expectation that students spend roughly 10 hours per week on the assignments. The problem sets
present problems in probability (both applied and theoretical) with a bent toward applications in computer science.
The programming assignment requires students to implement various probabilistic classification techniques, apply
them to real data, and analyze the results.

Course textbooks and materials
CS103 uses two texts (in addition to a number of instructor-written course notes):

1. Chapter One of Discrete Mathematics and Its Applications, by Kenneth Rosen. This chapter (not the
whole text) covers mathematical logic.

2. Introduction to the Theory of Computation by Michael Sipser.

CS109 uses the text A First Course in Probability Theory by Sheldon Ross for the first two-thirds of the course.
The last third of the course relies on an instructor-written set of notes/slides that cover parameter estimation and
provide an introduction to machine learning. Those slides are available here:
http://ai.stanford.edu/users/sahami/cs109/

Why do you teach the course this way?
As the result of a department-wide curriculum revision, we created this two course sequence to capture the
foundations we expected students to have in discrete math and probability with more advanced topics, such as
automata, complexity, and machine learning. This obviated the need for later full course requirements in
automata/complexity and an introduction to AI (from which search-based SAT solving and machine learning were
thought to be the most critical aspects). Students do generally find these courses to be challenging.

- 267 -

Body of Knowledge coverage
KA Knowledge Unit Topics Covered Hours

DS Proof Techniques All 7

DS Basic Logic All 6

DS Discrete Probability All 6

AL Basic Automata, Computability and
Complexity

All 6

DS Basics of Counting All 5

DS Sets, Relations, Functions All 4

DS Graphs and Trees All Core-Tier1 2

IS Basic Machine Learning All 2

Additional topics
CS103 covers some elective material from:

AL/Advanced Computational Complexity
AL/Advanced Automata Theory and Computability

CS109 provides expanded coverage of probability, including:

Continuous distributions (including Uniform, Normal, Exponential, and Beta)
Covariance and Correlation
Limit/Concentration results (including Central Limit Theorem, Markov/Chebyshev bounds)
Parameter estimation (including maximum likelihood and Bayesian estimation)
Simulation of probability distributions by computer

CS109 also includes some elective material from:

IS/Reasoning Under Uncertainty
IS/Advanced Machine Learning

Other comments
Both these courses lectures move quite rapidly. As a result, we often cover the full set of topics in one of the
CS2013 Knowledge Units in less time than proscribed in the guidelines. The “Hours” column in the Body of
Knowledge coverage table reflects the number of hours we spend in lecture covering those topics, not the number
suggested in CS2013 (which is always greater than or equal to the number we report).

- 268 -

CS 250 - Discrete Structures I, Portland Community College

12000 SW 49th Ave, Portland, OR 97219
Doug Jones
cdjones@pcc.edu

Knowledge Areas that contain topics and learning outcomes covered in the course
 Knowledge Area Total Hours of Coverage

 Discrete Structures (DS) 26

 Algorithms and Complexity (AL) 4

Where does the course fit in your curriculum?
CS 250 is the first course in a two-term required sequence in discrete mathematics for Computer Science transfer
students. Students typically complete the sequence in their second year.

College algebra and 1 term of programming are pre-requisites for CS 250. The second course in the sequence (CS
251) requires CS 250 as a pre-requisite.

Approximately 80 students per year complete the discrete mathematics sequence (CS 250 and CS 251).

What is covered in the course?
• Introduction to the Peano Axioms and construction of the natural numbers, integer numbers, rational

numbers, and real numbers.
• Construction and basic properties of monoids, groups, rings, fields, and vector spaces.
• Introduction to transfinite ordinals and transfinite cardinals, and Cantor’s diagonalization methods
• Representation of large finite natural numbers using Knuth’s “arrow notation”
• Introduction to first order propositional logic, logical equivalence, valid and invalid arguments
• Introduction to digital circuits
• Introduction to first order monadic predicate logic, universal and existential quantification, and predicate

arguments
• Elementary number theory, prime factors, Euclid’s algorithm
• Finite arithmetic, Galois Fields, and RSA encryption
• Proof techniques, including direct and indirect proofs, proving universal statements, proving existential

statements, proof forms, common errors in proofs
• Sequences, definite and indefinite series, recursive sequences and series
• Developing and validating closed-form solutions for series
• Well ordering and mathematical induction
• Introduction to proving algorithm correctness
• Second order linear homogeneous recurrence relations with constant coefficients
• General recursive definitions and structural induction
• Introduction to classical (Cantor) set theory, Russell’s Paradox, introduction to axiomatic set theory

(Zermelo-Fraenkel with Axiom of Choice).
• Set-theoretic proofs
• Boolean algebras
• Halting Problem

What is the format of the course?
CS 250 is a 4 credit course with 30 lecture hours and 30 lab hours. Classes typically meet twice per week for
lecture, with lab sessions completed in tutoring labs outside of lecture.

- 269 -

Course material is available online, but this is not a distance learning class and attendance at lectures is required.

How are students assessed?
Students are assessed using in-class exams and homework. There are 5 in-class exams that count for 40% of the
student’s course grade, and 5 homework assignments that account for 60% of the student’s course grade. In-class
exams are individual work only, while group work is permitted on the homework assignments.

It is expected that students will spend 10 to 15 hours per week outside of class time completing their homework
assignments. Surveys indicate a great deal of variability in this - some students report spending 6 hours per week
to complete assignments, other report 20 or more hours per week.

Course textbooks and materials
The core text is Discrete Mathematics with Applications by Susanna S. Epp (Brooks-Cole/Cengage Learning).
The text is supplemented with instructor-developed material to address topics not covered in the core text.

Students are encouraged to use computer programs to assist in routine calculations. Many students write their own
programs, some use products such as Maple or Mathematica. Most calculators are unable to perform the
calculations needed for this course. No specific tools are required.

Why do you teach the course this way?
This is a transfer course designed to meet the lower-division requirements of Computer Science and Engineering
transfer programs in the Oregon University System with respect to discrete mathematics. As such, it serves many
masters - there is no consistent set of requirements across all OSU institutions.

The majority of Portland Community College (PCC) transfer students matriculate to Portland State University,
Oregon Institute of Technology, or Oregon State University, and these institutions have the greatest influence on
this course. PCC changes the course content as needed to maintain compatibility with these institutions.

The most recent major course revision occurred approximately 24 months ago, although minor changes tend to
occur every Fall term. Portland State University is reviewing all of their lower-division Computer Science
offerings, and when they complete their process PCC expects a major revision of CS 250 and CS 251 will be
required.

Students generally consider the discrete mathematics sequence to be difficult. Most students have studied some
real number algebra, analysis, and calculus, but often have very limited exposure to discrete mathematics prior to
this sequence.

Body of Knowledge coverage
KA Knowledge Unit Topics Covered Hours

AL Basic Analysis Differences among best, expected, and worst case
behaviors

Big-O, Big-Omega, Big-Theta definitions

Complexity classes

Note: Remainder of Basic Analysis topics covered in CS
251

4

DS Basic Logic Propositional logic, connectives, truth tables, normal
forms, validity, inference, predicate logical,
quantification, limitations

10

- 270 -

DS Proof Techniques Implications, equivalences, converse, inverse,
contrapositive, negation, contradiction, structure, direct
proofs, disproofs, natural number induction, structural
induction, weak/string induction, recursion, well
orderings

10

DS Basics of Counting Basic modular arithmetic

Other counting topics in CS 251

2

DS Sets, Relations, Functions Sets only: Venn diagrams, union, intersection,
complement, product, power sets, cardinality, proof
techniques.

Relations and functions covered in CS 261

4

Additional topics
Elementary number theory, Peano Axioms, Zermelo-Fraenkel Axioms, Knuth arrow notation, simple digital
circuits, simple encryption/decryption

- 271 -

CS 251 - Discrete Structures II, Portland Community College

12000 SW 49th Ave, Portland, OR 97219
Doug Jones
cdjones@pcc.edu

Knowledge Areas that contain topics and learning outcomes covered in the course
 Knowledge Area Total Hours of Coverage

 Discrete Structures (DS) 22

 Algorithms and Complexity (AL) 8

Where does the course fit in your curriculum?
CS 251 is the second course in a two-term required sequence in discrete mathematics for Computer Science
transfer students. Students typically complete the sequence in their second year.

College algebra (PCC’s MTH 111 course) and 1 term of programming (PCC’s CS 161 course) are pre-requisites
for CS 250. The second course in the sequence (CS 251) requires CS 250 as a pre-requisite.

Approximately 80 students per year complete the discrete mathematics sequence (CS 250 and CS 251).

What is covered in the course?
• Set-based theory of functions, Boolean functions
• Injection, surjection, bijection
• Function composition
• Function cardinality and computability
• General set relations
• Equivalence relations
• Total and partial orderings
• Basic counting techniques: multiplication rule, addition rule, Dirichlet’s Box Principle
• Combinations and permutations
• Pascal’s Formula and the Binomial Theorem
• Kolmogorov Axioms and expected value
• Markov processes
• Conditional probability and Bayes’ Theorem
• Classical graph theory: Euler and Hamilton circuits
• Introduction to spectral graph theory, isomorphisms
• Trees, weighted graphs, spanning trees
• Algorithm analysis
• Formal languages
• Regular expressions
• Finite-state automata

What is the format of the course?
CS 251 is a 4 credit course with 30 lecture hours and 30 lab hours. Classes typically meet twice per week for
lecture, with lab sessions completed in tutoring labs outside of lecture.

Course material is available online, but this is not a distance learning class and attendance at lectures is required.

- 272 -

How are students assessed?
Students are assessed using in-class exams and homework. There are 5 in-class exams that count for 40% of the
student’s course grade, and 5 homework assignments that account for 60% of the student’s course grade. In-class
exams are individual work only, while group work is permitted on the homework assignments.

It is expected that students will spend 10 to 15 hours per week outside of class time completing their homework
assignments. Surveys indicate a great deal of variability in this - some students report spending 6 hours per week
to complete assignments, other report 20 or more hours per week.

Course textbooks and materials
The core text is Discrete Mathematics with Applications by Susanna S. Epp (Brooks-Cole/Cengage Learning).
The text is supplemented with instructor-developed material to address topics not covered in the core text.

Students are encouraged to use computer programs to assist in routine calculations. Many students write their own
programs, some use products such as Maple or Mathematica. Most calculators are unable to perform the
calculations needed for this course. No specific tools are required.

Why do you teach the course this way?
This is a transfer course designed to meet the lower-division requirements of Computer Science and Engineering
transfer programs in the Oregon University System with respect to discrete mathematics. As such, it serves many
masters - there is no consistent set of requirements across all OSU institutions.

The majority of Portland Community College (PCC) transfer students matriculate to Portland State University,
Oregon Institute of Technology, or Oregon State University, and these institutions have the greatest influence on
this course. PCC changes the course content as needed to maintain compatibility with these institutions.

The most recent major course revision occurred approximately 24 months ago, although minor changes tend to
occur every Fall term. Portland State University is reviewing all of their lower-division Computer Science
offerings, and when they complete their process PCC expects a major revision of CS 250 and CS 251 will be
required.

Students generally consider the discrete mathematics sequence to be difficult. Most students have studied some
real number algebra, analysis, and calculus, but often have very limited exposure to discrete mathematics prior to
this sequence.

Body of Knowledge coverage
KA Knowledge Unit Topics Covered Hours

AL Basic Analysis Empirical measurement and performance
Time and space trade-offs in algorithms
Recurrence relations
Analysis of iterative and recursive algorithms

4

DS Sets, Relations, and Functions Reflexivity, symmetry, transitivity
Equivalence relations
Partial orders
Surjection, injection, bijection, inverse, composition of
functions

4

DS Basics of Counting Counting arguments: cardinality, sum and product rule,
IE principle, arithmetic and geometric progressions,
pigeonhole principle, permutations, combinations,
Pascal’s identity, recurrence relations

10

- 273 -

DS Graphs and Trees Tree, tree traversal, undirected graphs, directed graphs,
weighted graphs, isomorphisms, spanning trees

4

DS Discrete Probability Finite probability space, events, axioms and measures,
conditional probability, Bayes’ Theorem, independence,
Bernoulli and binomial variables, expectation, variance,
conditional independence

4

AL Basic Automata Computability
and Complexity

Finite state machines, regular expressions, Halting
problem

4

Additional topics
Basic linear algebra, graph spectra, Markov processes

- 274 -

CS 175 Computer Graphics, Harvard University

Cambridge, MA
Dr. Steven Gortler
http://www.courses.fas.harvard.edu/~lib175
(Description below based on the Fall 2011 offering)

Knowledge Areas with topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Graphics and Visualization (GV) 19

Software Engineering (SE) 7

Architecture and Organization (AR) 4

Software Development Fundamentals (SDF) 2

Where does the course fit in your curriculum?
This is an elective course taken by students mostly in their third year. It requires C programming experience and
familiarity with rudimentary linear algebra. Courses are on a semester system: 12 weeks long with 2 weekly 1.5-
hour lectures. This course covers fundamental graphics techniques for the computational synthesis of digital
images from 3D scenes. This course is not required but counts towards a breadth in computer science requirement
in our program.

What is covered in the course?
• Shader-based OpenGL programming
• Coordinate systems and transformations
• Quaternions and the Arcball interface
• Camera modeling and projection
• OpenGL fixed functionality including rasterization
• Material simulation
• Basic and advanced use of textures including shadow mapping
• Image sampling including alpha matting
• Image resampling including mip-maps
• Human color perception
• Geometric representations
• Physical simulation in animation
• Ray tracing

What is the format of the course?
This course teaches the use and techniques behind modern shader-based computer graphics using OpenGL. It
begins by outlining the basic shader-based programming paradigm. Then it covers coordinates systems and
transformations. Special care is taken to develop a systematic way to reason about these ideas. These ideas are
extended using quaternions as well as developing a scene graph data structure. The students then learn how to
implement a key-frame animation system using splines. The course then covers cameras as well as some of the key
fixed-function steps such as rasterization with perspective-correct interpolation.
Next, we cover the basics of shader-based material simulation and the various uses of texture mapping (including
environment and shadow mapping). Then, we cover the basics of image sampling and alpha blending. We also
cover image reconstruction as well as texture resampling using Mip-Maps.

http://www.courses.fas.harvard.edu/~lib175�

- 275 -

The course gives an overview to a variety of geometric representations, including details about subdivision
surfaces. We also give an overview of techniques in animation and physical simulation. Additional topics include
human color perception and ray tracing.

How are students assessed?
Students implement a set of 10 to 12 programming and writing assignments.

Course textbooks and materials
In 12 weeks, students complete 10 programming projects in C++, and a final project. Students use Foundations of
3D Computer Graphics by S. J. Gortler as their primary textbook.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

GV Fundamental
Concepts

Basics of Human visual perception (HCI Foundations).
Image representations, vector vs. raster, color models, meshes.
Forward and backward rendering (i.e., ray-casting and rasterization).
Applications of computer graphics: including game engines, cad,
visualization, virtual reality.
Polygonal representation.
Basic radiometry, similar triangles, and projection model.
Use of standard graphics APIs (see HCI GUI construction).
Compressed image representation and the relationship to information
theory.
Immediate and retained mode.
Double buffering.

3

GV Basic Rendering Rendering in nature, i.e., the emission and scattering of light and its
relation to numerical integration.
Affine and coordinate system transformations.
Ray tracing.
Visibility and occlusion, including solutions to this problem such as
depth buffering, Painter’s algorithm, and ray tracing.
The forward and backward rendering equation.
Simple triangle rasterization.
Rendering with a shader-based API.
Texture mapping, including minification and magnification (e.g.,
trilinear MIP-mapping).
Application of spatial data structures to rendering.
Sampling and anti-aliasing.
Scene graphs and the graphics pipeline.

10

GV Geometric Modeling Basic geometric operations such as intersection calculation and
proximity tests
Parametric polynomial curves and surfaces.
Implicit representation of curves and surfaces.
Approximation techniques such as polynomial curves, Bezier curves,
spline curves and surfaces, and non-uniform rational basis (NURB)
spines, and level set method.
Surface representation techniques including tessellation, mesh
representation, mesh fairing, and mesh generation techniques such as
Delaunay triangulation, marching cubes.

6

- 276 -

SDF Development
Methods

Program correctness
 The concept of a specification
 Unit testing
Modern programming environments, Programming using library
components and their APIs
Debugging strategies
Documentation and program style

2

AR Performance
enhancements

Superscalar architecture
Branch prediction, Speculative execution, Out-of-order execution
Prefetching
Vector processors and GPUs
Hardware support for Multithreading
Scalability

3

CN Modeling and
Simulation

Formal models and modeling techniques: mathematical descriptions
involving simplifying assumptions and avoiding detail. The descriptions
use fundamental mathematical concepts such as set and function.

2

SE Tools and
Environments

Software configuration management and version control; release
management
Requirements analysis and design modeling tools
Programming environments that automate parts of program construction
processes

3

SE Software Design The use of components in design: component selection, design,
adaptation and assembly of components, components and patterns,
components and objects, (for example, build a GUI using a standard
widget set).

4

- 277 -

CS371: Computer Graphics, Williams College

Dr. Morgan McGuire
http://www.cs.williams.edu/cs371.html
(Description below based on the Fall 2010 & 2012 offerings)

Knowledge Areas with topics and learning outcomes covered in the course:

Knowledge Area Total Hours of Coverage

Graphics and Visualization (GV) 19

Software Engineering (SE) 7

Architecture and Organization (AR) 4

Software Development Fundamentals (SDF) 2

Where does the course fit in your curriculum?
This is an elective course taken by students mostly in their third year, following at least CS1, CS2, and a computer
organization course. Courses are on a semester system: 12 weeks long with 3 weekly 1-hour lectures and a weekly
four-hour laboratory session with the instructor. This course covers fundamental graphics techniques for the
computational synthesis of digital images from 3D scenes. In the computer science major, this course fulfills the
project course requirement and the quantitative reasoning requirement.

What is covered in the course?
• Computer graphics and its place in computer science
• Surface modeling
• Light modeling
• The Rendering Equation
• Ray casting
• Surface scattering (BSDFs)
• Spatial data structures
• Photon mapping
• Refraction
• Texture Mapping
• Transformations
• Rasterization
• The graphics pipeline
• GPU architecture
• Film production and effects
• Deferred shading
• Collision detection
• Shadow maps

What is the format of the course?
PhotoShop, medical MRIs, video games, and movie special effects all programmatically create and manipulate
digital images. This course teaches the fundamental techniques behind these applications. We begin by building a
mathematical model of the interaction of light with surfaces, lenses, and an imager. We then study the data
structures and processor architectures that allow us to efficiently evaluate that physical model. Students will
complete a series of programming assignments for both photorealistic image creation and real-time 3D rendering
using C++, OpenGL, and GLSL as well as tools like SVN and debuggers and profilers. These assignments

http://www.cs.williams.edu/cs371.html�

- 278 -

cumulate in a multi-week final project. Topics covered in the course include: projective geometry, ray tracing,
bidirectional surface scattering functions, binary space partition trees, matting and compositing, shadow maps,
cache management, and parallel processing on GPUs. The cumulative laboratory exercises bring students through
the entire software research and development pipeline: domain-expert feature set, formal specification,
mathematical and computational solutions, team software implementation, testing, documentation, and
presentation.

How are students assessed?
In 13 weeks, students complete 9 programming projects, two of which are multi-week team projects.

Course textbooks and materials
Students use the iOS app The Graphics Codex as their primary textbook and individually choose one of the
following for assigned supplemental readings, based on their interest: Fundamentals of Computer Graphics, 3rd
Edition, A K Peters; Computer Graphics: Principles and Practice, 3rd Edition, Addison Wesley; or Real-Time
Rendering, 3rd Edition, A K Peters.

Why do you teach the course this way?
In this course, students work from first principles of physics and mathematics, and a body of knowledge from art.
That is, I seek to lead with science and then support it with engineering. Many other CS courses--such as
networking, data structures, architecture, compilers, and operating systems--develop the ability to solve problems
that arise within computer science and computers themselves. In contrast, graphics is about working with problems
that arise in other disciplines, specifically physics and art. The challenge here is not just solving a computer
science problem but also framing the problem in computer science terms in the first place. This is a critical step of
the computational and scientific approach to thinking, and the field of graphics presents a natural opportunity to
revisit it in depth for upper-level students. Graphics in this case is a motivator, but the skills are intentionally
presented as ones that can be applied to other disciplines, for example, biology, medicine, geoscience, nuclear
engineering, and finance. The rise of GPU computing in HPC is a great example of numerical methods and
engineering originating in computer graphics being generalized in just this way.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

GV Fundamental
Concepts

Basics of Human visual perception (HCI Foundations).
Image representations, vector vs. raster, color models, meshes.
Forward and backward rendering (i.e., ray-casting and rasterization).
Applications of computer graphics: including game engines, cad,
visualization, virtual reality.
Polygonal representation.
Basic radiometry, similar triangles, and projection model.
Use of standard graphics APIs (see HCI GUI construction).
Compressed image representation and the relationship to information
theory.
Immediate and retained mode.
Double buffering.

3

GV Basic Rendering Rendering in nature, i.e., the emission and scattering of light and its
relation to numerical integration.
Affine and coordinate system transformations.
Ray tracing.
Visibility and occlusion, including solutions to this problem such as
depth buffering, Painter’s algorithm, and ray tracing.
The forward and backward rendering equation.
Simple triangle rasterization.
Rendering with a shader-based API.

10

- 279 -

Texture mapping, including minification and magnification (e.g., trilinear
MIP-mapping).
Application of spatial data structures to rendering.
Sampling and anti-aliasing.
Scene graphs and the graphics pipeline.

GV Geometric
Modeling

Basic geometric operations such as intersection calculation and proximity
tests.
Parametric polynomial curves and surfaces.
Implicit representation of curves and surfaces.
Approximation techniques such as polynomial curves, Bezier curves,
spline curves and surfaces, and non-uniform rational basis (NURB)
spines, and level set method.
Surface representation techniques including tessellation, mesh
representation, mesh fairing, and mesh generation techniques such as
Delaunay triangulation, marching cubes.

6

SDF Development
Methods

Program correctness
 The concept of a specification
 Unit testing
Modern programming environments, Programming using library
components and their APIs.
Debugging strategies.
Documentation and program style.

2

AR Performance
enhancements

Superscalar architecture.
Branch prediction, Speculative execution, Out-of-order execution.
Prefetching.
Vector processors and GPUs.
Hardware support for Multithreading.
Scalability.

3

CN Modeling and
Simulation

Formal models and modeling techniques: mathematical descriptions
involving simplifying assumptions and avoiding detail. The descriptions
use fundamental mathematical concepts such as set and function.

2

SE Tools and
Environments

Software configuration management and version control; release
management
Requirements analysis and design modeling tools
Programming environments that automate parts of program construction
processes

3

SE Software Design The use of components in design: component selection, design,
adaptation and assembly of components, components and patterns,
components and objects (for example, build a GUI using a standard
widget set).

4

Other comments
http://graphics.cs.williams.edu/courses/cs371/f12/files/welcome.pdf is a carefully-crafted introduction to computer
graphics and this specific style of course that may be useful to other instructors.

http://graphics.cs.williams.edu/courses/cs371/f12/files/welcome.pdf�

- 280 -

Human Aspects of Computer Science, University of York

Department of Computer Science
Paul Cairns
paul.cairns@york.ac.uk

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Human-Computer Interaction (HCI) 18

Brief description of the course’s format and place in the undergraduate curriculum
Students take this course in the first term of Stage 1 (first year) of the undergraduate degree programs in single
honors Computer Science subjects e.g., BSc in Computer Science, MEng in Computer Systems Software
Engineering. It represents 1/6 of the 120 credits required in Stage 1.There are no pre-reqs for obvious reasons and
there are no modules that require it as a pre-requisite. There are usually around 100 students each year.

What is covered in the course?
The course is centered on Human-Computer Interaction. The topics covered are:

• Experimental design and data representation
• Inferential statistics
• Writing up experiments
• User-Centered Design
• Developing requirements through personas and scenarios
• Conceptual design, interface design
• Prototyping: lo-fi and paper
• Visual Design
• Evaluation techniques: heuristics, cognitive walkthrough, experiments

What is the format of the course?
It is face-to-face. Students attend 2 one-hour lectures, 1 two-hour practical and a one-hour reading seminar each
week for 9 weeks of the autumn term. Lectures are a mix of traditional lecturing, small group exercises and class
discussion. Practicals are primarily individual work or group work related to assessments. Reading seminars are
presentations on research papers and class discussions on the papers.

How are students assessed?
There are three assessments. There are two open assessments for which students work in groups of (ideally) four.
The first is to design and conduct an experiment in HCI having been giving a basic experimental hypothesis to
investigate. The second is to do a user-centered design project though there is not time for iteration or formal
evaluation. The third assessment is a closed exam in which students critique a research paper in order to answer
short questions on the paper. Students are expected to do 100 hours of work in total on the assessments roughly split
40:40:20 for the three assessments.

Course textbooks and materials
Preece, J., Rogers, Y. and Sharp, H. (2011) Interaction Design, 3rd edn, Wiley and Sons. (selected chapters)
Harris, P. (2008) Designing and Reporting Experiments in Psychology, 3rd edn, OUP
Cairns P. and Cox A. eds, (2008) Research Methods for HCI, Cambridge. (Chaps 1, 6 and 10).

http://www-module.cs.york.ac.uk/hacs/2HACS_ExperimentsData.pdf�
http://www-module.cs.york.ac.uk/hacs/4HACS_InferentialStats.pdf�
http://www-module.cs.york.ac.uk/hacs/6HACS_WritingUp.pdf�
http://www-module.cs.york.ac.uk/hacs/8HACS_UCD.pdf�
http://www-module.cs.york.ac.uk/hacs/9HACS_Requirements.pdf�
http://www-module.cs.york.ac.uk/hacs/9HACS_Requirements.pdf�
http://www-module.cs.york.ac.uk/hacs/11HACS_ConceptualDesign.pdf�
http://www-module.cs.york.ac.uk/hacs/13HACS_StaticPrototyping.pdf�
http://www-module.cs.york.ac.uk/hacs/15HACS_VisualDesign.pdf�

- 281 -

Other materials are:
R and RStudio are used as the statistics package for analyzing experimental data.

Why do you teach the course this way?
The course was partly designed to fill a need in the recently revised undergraduate curriculum. The two core content
areas were experimental design and HCI. I put these together and produced a research oriented course to show how
experiments are done in HCI. It still has a feel of a course of two halves but the idea of considering a common
subject area helps and the reading seminars are intended to bind the two halves together by showing the students
how research methods lead to advances in HCI that can be used in design.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

HCI Foundations All 4

HCI Designing Interaction Visual design, paper prototyping, UI standards 2

HCI Programming Interactive
Systems

Choosing interaction styles, designing for resource constrained
devices

2

HCI UCD and testing All 4

HCI Statistical methods for HCI Experiment design, EDA, presenting statistical data, using statistical
data, non-parametric testing

6

- 282 -

FIT3063 Human Computer Interaction, Monash University

Australia
Judy Sheard
Judy.sheard@monash.edu

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Human-Computer Interaction (HCI) 16

Where does the course fit in your curriculum?
3rd year of Business Information Systems, Computer Science and Information Technology Systems undergraduate
degrees.
It is compulsory in the Information Technology Systems degree for the following majors: Applications
development, Enterprise information management, Systems development.
The prerequisites are Systems development, Systems design and implementation.
Approx 100 students take the course in 1st and 2nd semester.

What is covered in the course?
This unit provides a detailed understanding of the underpinning theories, principles and practices of interface design
for computer-based systems. It examines issues in the design of system interfaces from a number of perspectives:
user, programmer, designer. It explores the application of the relevant theories in practice. The unit will cover topics
such as methods and tools for developing effective user interfaces, evaluation methods such as the conduct of
usability and heuristic evaluations, design of appropriate interface elements including the design of menus and other
interaction styles. The unit also focuses on designing for a diverse range of users and environments.

Topics covered:

• Background and motivation for HCI
• Human factors
• Theoretical foundations: theories, models, principles, standards, guidelines
• Interface design elements
• Interface design: methods and principles
• Interface design: data gathering and task analysis
• Interaction styles
• Usability
• Accessibility
• Interaction devices
• Future of HCI

What is the format of the course?
Face-to-face, 48 contact hours (24 hours lectures and 24hours tutorials). Students are expected to put in an additional
96 hours out of class

How are students assessed?

1. Discussion forum
• Contributions to a discussion forum during the semester. Each student is expected to contribute 2

postings and comment on one other posting (5%)
2. Class Test (held in week 6 tutorial class (5%)

• in-class exercise – evaluation of a form according to Shneiderman’s principles

- 283 -

3. Assignment (20% + 10%) Due in weeks 10 and 12.
• Stage 1: design of an interface. This will be done in groups.
• Stage 2: heuristic evaluation of the website using Nielsen’s usability principles. This will include a

description of the process used to conduct the evaluation, the evaluation results and recommendations
for changes with supporting evidence. Each group evaluates the design of one other group.

4. Exam (60%)

Course textbooks and materials

Sharp, H., Rogers, Y. & Preece, J. Interaction design: beyond human-computer interaction.
Recommended readings from:

Shneiderman & Plaisant Designing the user interface: Strategies for Effective Human-Computer
Interaction

Why do you teach the course this way?
The course is an amalgam of two HCI courses taught in different degrees in the Faculty. One focused on theory,
design and evaluation and the other on design, application and development. The current course focuses on theory,
design, application and evaluation.
The aim of the course is to give students knowledge and understanding of:

• the underpinning theories relevant to HCI;
• the principles and practices of HCI in designing user interfaces;
• the importance and role of usability and evaluation in systems design;
• the issues relating to user diversity, different types of systems, interaction styles, devices and

environments.
Comments from the students at the start of semester is that the course is easy but by the end they think that it is hard.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

HCI Foundations Contexts for HCI
Processes for user-centered development different measures for evaluation
Physical capabilities that inform interaction design: color, perception
Cognitive models that inform interaction design: attention, perception,
recognition, memory, gulf of expectation and execution.
Accessibility

4

HCI Designing Interaction Principles of graphical user interfaces
Elements of visual design (layout color, fonts, labelling)
Task analysis
Paper prototyping
Keystroke –level evaluation
Help and documentation
User interface standards

4

HCI User-Centered Design
& Testing

Approaches to and characteristics of the design process
Usability
Techniques for data gathering
Prototyping techniques
Evaluation without users
Evaluation with users
Internationalization

4

- 284 -

HCI New Interactive
Technologies

Choosing interaction styles & interaction techniques, Representing
information to users (navigation, representation, manipulation)
Approaches to design: touch and multi-touch interfaces, speech
recognition, natural language processing, ubiquitous.

2

HCI Mixed, Augmented and
Virtual Reality

Sound, haptic devices, augmented virtual reality 2

- 285 -

CO328: Human Computer Interaction, University of Kent

United Kingdom
Sally Fincher; Michael Kölling
s.a.fincher@kent.ac.uk

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Human-Computer Interaction (HCI) 12

Where does the course fit in your curriculum?
This is a compulsory first year course, taught in the second semester. It represents one-eighth of student effort for
the year.

What is covered in the course?
This module provides an introduction to human-computer interaction. Fundamental aspects of human physiology
and psychology are introduced and key features of interaction and common interaction styles delineated. A variety
of analysis and design methods are introduced (e.g., GOMS, heuristic evaluation, user-centred and contextual design
techniques). Throughout the course, the quality of design and the need for a professional, integrated and user-
centered approach to interface development is emphasized. Rapid and low-fidelity prototyping feature as one aspect
of this.

Course topics

• Evaluating interfaces: heuristic evaluation, GOMS
• Evaluation Data & Empirical Data
• Lo-fi Prototyping
• Color, Vision & Perception
• Some Features of Human Memory
• Errors
• Controls, widgets, icons & symbols
• Elements of visual design
• Documentation

What is the format of the course?
The course is taught exclusively face-to-face. There are two lecture slots and one small-group, hands-on class slot
per week, although we don’t always use the lecture slots to deliver lectures.

How are students assessed?
There are 3 assignments:

1. A group assignment to go “out into the world” and observe real behavior. This takes place over three
weeks: the first week to do the observation work, the second to present findings to the class, the third to
write a report – incorporating any insights gained from the presentation. Total expected time: 10 hours for
the observation and presentation; and additional 5 hours for the report.

2. An individual assignment to undertake analysis of an existing interface. This is presented as a 1,500-2,000
word report. Total expected time: 10 hours over three weeks.

3. A group design task using lo-fi prototyping. This is structured with staged deliverables to walk the group
through a design process that includes requirements, brainstorming, ideation, sketching, selection and
prototyping. The total expected time includes scheduled class time: 50 hours, over five weeks.

Together these are worth 50% of the total grade. The remaining 50% is a formal exam.

- 286 -

Course textbooks and materials
There is no required textbook for this course, although we recommend Dan Saffer’s Designing for Interaction (New
Riders, 2009) if students ask. The following readings are required:

• Donald A. Norman, Chapter 1 (from The Design of Everyday Things, MIT Press, 1998)
• Bruce "Tog" Tognazzini, First Principles of Interaction Design
• Marc Rettig and Aradhana Goel, Designing for Experience: Frameworks and Project Stories
• Marc Rettig, Prototyping for Tiny Fingers
• William Horton, Top Ten Blunders by Visual Designers
• George Miller, The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for

Processing Information
• Thomas Kelley, “The Perfect Brainstorm” (from The Art of Innovation, Profile Books, 2002)
• Bill Buxton, “The Anatomy of Sketching” (from Sketching User Experiences, Morgan Kaufmann, 2007)

Why do you teach the course this way?
This course used to be an elective course available to second and third year students. In the recent curriculum review
(2011) it was moved into the first year. It is likely that we will be tweaking this over the next couple of years as we
deliver it to a new cohort. We teach HCI as a full-on, hands-on experience, believing the best way to teach design is
by doing it. Some students (typically the less technical) like it very much; some students (typically the more
technical) find it troubling and “irrelevant”. Both sorts can find it challenging.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

HCI Foundations All 4

HCI Designing Interaction All 4

HCI User-centered design & testing All 4

- 287 -

Human Computer Interaction, University of Cambridge

Alan Blackwell
Alan.Blackwell@cl.cam.ac.uk
http://www.cl.cam.ac.uk/Teaching/current/HCI/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Human-Computer Interaction (HCI) 8

Brief description of the course’s format and place in the undergraduate curriculum
This course is offered to CS majors only, taught in the first four weeks of their third year (a half term). Formal
teaching is 8 lecture hours, supplemented by 2 optional informal tutorial involving student exercises as proposed by
individual tutors. At least one guest lecture is given by a user experience practitioner, young researcher or start-up
founder.

Course description and goals
The goal is to present HCI as a discipline that is concerned with technical advance, and that must integrate different
disciplinary perspectives. Fundamental theoretical issues deal with principles of human perception, visual
representation and purposeful action, discussed in the context of novel interactive technologies. Building on a first
year course in professional software design, the course ends with an overview of systematic approaches to the
design and analysis of user interfaces.

On completing the course, students should be able to

• propose design approaches that are suitable to different classes of user and application;
• identify appropriate techniques for analysis and critique of user interfaces;
• be able to design and undertake quantitative and qualitative studies in order to improve the design of

interactive systems;
• understand the history and purpose of the features of contemporary user interfaces.

Course topics

• The scope and challenges of HCI and Interaction Design.
• Visual representation
• Text and gesture interaction
• Inference-based approaches
• Augmented reality and tangible user interfaces
• Usability of programming languages
• User-centered design research
• Usability evaluation methods

Course textbooks, materials, and assignments

• Interaction Design: Beyond human-computer interaction by Helen Sharp, Yvonne Rogers & Jenny Preece
(multiple editions)

• HCI Models, Theories and Frameworks: Toward a multidisciplinary science edited by John Carroll (2003)
• Research methods for human-computer interaction edited by Paul Cairns and Anna Cox (2008)
• Interaction-Design.org entry on Visual Representation by Alan Blackwell (2011) http://www.interaction-

design.org/encyclopedia/visual_representation.html

http://www.interaction-design.org/encyclopedia/visual_representation.html�
http://www.interaction-design.org/encyclopedia/visual_representation.html�

- 288 -

Suggested assignments (set and assessed by independent tutors) may include empirical comparison of features in
two simple applications, analytic evaluation of a novel interface, or an observational study in a software use context.

Final grade is determined in a traditional written examination. However, students are also encouraged to use HCI
methods to inform design and evaluation of their final year (capstone) project and dissertation.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

HCI Foundations all 1

HCI Designing Interactions all 2

HCI User-Centered Design and Testing all 2

HCI New Interactive Technologies Selection of technologies 2

HCI Design-Oriented HCI HCI as design discipline 1

Additional topics
Usability of programming languages and other structured notations, in terms of the Cognitive Dimensions of
Notations framework.

Other comments
Although this is the course named HCI, students are exposed to HCI issues in a first year course "Software and
Interaction Design".

- 289 -

Human-Computer Interaction, Stanford University

Offered Coursera.org
Scott Klemmer
srk@cs.stanford.edu
hci-class.org

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Human-Computer Interaction (HCI) 7

Where does the course fit in your curriculum?
This course is a free, public, online class based on Stanford’s introductory HCI course. There are no prerequisites.
Enrollment numbers from the last three offerings of the class: 54,270 students, 87,725 students, 33,825 students.

What is covered in the course?
Short-form description: Helping you build human-centered design skills, so that you have the principles and
methods to create excellent interfaces with any technology.

Long-form description: In this course, you will learn how to design technologies that bring people joy, rather than
frustration. You'll learn several techniques for rapidly prototyping and evaluating multiple interface alternatives --
and why rapid prototyping and comparative evaluation are essential to excellent interaction design. You'll learn how
to conduct fieldwork with people to help you get design ideas. How to make paper prototypes and low-fidelity
mockups that are interactive -- and how to use these designs to get feedback from other stakeholders like your
teammates, clients, and users. You'll learn principles of visual design so that you can effectively organize and
present information with your interfaces. You'll learn principles of perception and cognition that inform effective
interaction design. And you'll learn how to perform and analyze controlled experiments online. In many cases, we'll
use Web design as the anchoring domain. A lot of the examples will come from the Web, and we'll talk just a bit
about Web technologies in particular. When we do so, it will be to support the main goal of this course, which is
helping you build human-centered design skills, so that you have the principles and methods to create excellent
interfaces with any technology.

What is the format of the course?
The class is online, spanning 9 weeks. For the first 7 weeks there is approximately 1 hour of recorded lecture content
to view. In the last offering, we experimented with online studios, in which students with similar project topics
shared and gave feedback to each other on a weekly basis via Google Hangouts. We also had weekly lecture
screenings, in which the teaching staff would screen that week’s lectures on Google Hangouts and invite students
who were interested in joining and watching simultaneously. We also encouraged students to form their own online
and in-person study groups.

How are students assessed?
There are three “tracks” for this course:

Apprentice track:
Four quizzes (100%). Students who achieve a reasonable fraction of this (80% or higher) will receive a statement of
accomplishment from us, certifying that you successfully completed the apprentice track. To complete the
apprentice track, we suggest committing 4-5 hours a week.

- 290 -

Studio track:
Six assignments (culminating in design project) (worth 67%) and quizzes (worth 33%). Students who achieve a
reasonable fraction of this (80% or higher) will receive a statement of accomplishment from us, certifying that you
successfully completed the studio track. To complete the studio track, we suggest committing 10 hours per week.

Studio practicum track:
Six assignments (culminating in design project) (worth 100%). This practicum is designed for students seeking to
continue developing their design skills through an additional iteration of assignments. Students who achieve a
reasonable fraction of this (80% or higher) will receive a statement of accomplishment from us, certifying that you
successfully completed the studio practicum. To complete the studio practicum track, we suggest committing 5-6
hours per week. The 6 assignments and 2 of the quizzes use peer assessment to determine scores.

Course textbooks and materials
No textbooks are used, but additional reading on certain topics are referenced in lecture videos and linked to on an
additional resources page. We recommend students use Balsamiq as their low-fidelity prototyping tool and Axure or
Justinmind as their high-fidelity prototyping tool.

Why do you teach the course this way?
This course was first offered in June 2012, following by a second offering in September 2012 and finally in April
2013. The content is based on Stanford’s introductory HCI course (CS 147). The primary difference lies in the level
of programming needed: In the online class, interactive prototypes are created using a prototyping tool, whereas the
Stanford version functionally implements the prototypes. In Fall 2012, CS 147 used the recorded lecture videos from
the online class. In addition, a new class was created at Stanford that would mirror the online assignments (thus
requiring no programming prerequisite). Feedback suggests that the online course is considered challenging,
particularly in terms of its pace.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

HCI Foundations The birth of HCI, the power of prototyping, evaluating designs, needfinding,
design heuristics, direct manipulation, mental models, representation,
distributing cognition, designing studies

4

HCI Designing
Interaction

Task analysis, visual design, information design, rapid prototyping 2

HCI User-centered
design & testing

Needfinding, rapid prototyping, heuristic evaluation, designing experiments 2.5

HCI Statistical Methods
for HCI

In-person and web experimental design, within v. between subjects design,
assigning participants to conditions, chisquared test

1

- 291 -

Human Information Processing (HIP), Open University Netherlands

Gerrit van der Veer
gerrit@acm.org
http://www.opener2.ou.nl/opener/hip/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Human-Computer Interaction (HCI) 6

Where does the course fit in your curriculum?
It is a free (Creative Commons License, and Open Source) course.
It is no fixed part of any curriculum, though recommended for students taking courses like “Web culture”, “Design
of human-computer interaction” or “Context of Computer science” (I regret to mention: all of these are in Dutch.
HIP, though, is often taken by students outside of these courses, e.g., Students of Psychology. HIP is in English.)

What is covered in the course?
• Senses: Short term sensory memory – receptors – stimuli;
• Perception;
• Attention;
• Memory: Long-term memory – working memory;
• Mental models;
• Intention: Decision making and response selection;
• Action: Response execution (motion or behavior) – responses

What is the format of the course?
Fully online:

• short lectures as series of slides inside chapters,
• lab sessions and demos (try it),
• media (printing chapter or slides),
• pointers to further resources (find out more),
• a progress facility (learner-activated indication “Ï completed this slide” with resulting overview of

progress)
• student managed navigation (free order of chapters and sub-chapters; previous and next slide)
• a (student created) login is needed in order to support the individual student’s progress.

How are students assessed?
There are no assignments (because the course is not an official part of any curriculum or course). If relevant, the “try
it yourself” sections have self-assessment and choice of trying again.

Course textbooks and materials
None

Why do you teach the course this way?
The Open University Netherlands is a University for distance education. Our students are adults (25-75 years of
age) mostly professionals. Students are self-motivated
This course is a free facility, developed for free by personal initiative of me and my PhD students, to support adult
learning in the field of human-computer interaction, interaction design and related domains.

http://www.opener2.ou.nl/opener/hip/�

- 292 -

We offer several of these courses, independent of the University curriculum, and the University provides the server
space and uses our courses to advertise.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

CN Interactive Visualization visualization 1

GV Fundamental Concepts human perception 1

HCI Foundations all 4

- 293 -

Software and Interface Design, University of Cambridge

Alan Blackwell
Alan.Blackwell@cl.cam.ac.uk
http://www.cl.cam.ac.uk/Teaching/current/SWIDesign/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Human-Computer Interaction (HCI) 3

Other areas 8

Brief description of the course’s format and place in the undergraduate curriculum
This course is offered to CS majors only, taught over four weeks at the end of their first year (a half term). Formal
teaching is 11 lecture hours, supplemented by 2 optional informal tutorials involving student exercises as proposed
by individual tutors. The course is a prerequisite for a compulsory group design project in the second year of the
degree.

Course description and goals
This course introduces principles and methods for the design of software systems in professional contexts. The
whole of the software development lifecycle is considered, but with special emphasis on user-centered design,
including approaches to capture and analysis of user requirements, iterative prototyping and testing of interactive
systems.

The goal is to present HCI as a discipline that is concerned with technical advance, and that must integrate different
disciplinary perspectives. Fundamental theoretical issues deal with principles of human perception, visual
representation and purposeful action, discussed in the context of novel interactive technologies. Building on a first
year course in professional software design, the course ends with an overview of systematic approaches to the
design and analysis of user interfaces.

On completing the course, students should be able to

• undertake system design in a methodical manner
• proceed from a general system or product requirement to a design that addresses user needs
• develop design models and prototypes in an iterative manner recognizing managerial risks
• evaluate interactive systems, including identification and correction of faults.

Course topics

• Mental models, leading to gulfs of execution and evaluation.
• Observing and describing the needs of users in context
• Methods for iterative modelling and prototyping
• Observational and experimental methods for usability evaluation

Course textbooks, materials, and assignments

• Interaction Design: Beyond human-computer interaction by Helen Sharp, Yvonne Rogers & Jenny Preece
(multiple editions)

• Software Engineering by Pressman (multiple editions)

- 294 -

Suggested assignments (set and assessed by independent tutors) involve carrying out initial phases of a system
design, using as a practice example one of the design briefs that has recently been implemented and exhibited in a
public show by second year students.

Final grade is determined in a traditional written examination, which usually presents a simple interactive system
design problem, and asks students to demonstrate their understanding of design process by reference to that
problem.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

HCI Foundations all 1

HCI Designing Interactions all 1

HCI User-Centered Design and Testing all 1

- 295 -

Computer Systems Security (CS-475), Lewis-Clark State College

Lewiston, Idaho, U.S.A.
Daniel Conte de Leon
dcontedeleon@acm.org

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage (38)
Information Assurance and Security (IAS) 28
Human-Computer Interaction (HCI) 3
Networking and Communication (NC) 2
Social Issues and Professional Practice (SP) 2
Architecture and Organization (AR) 1
Operating Systems (OS) 1
Programming Languages (PL) 1

Where does the course fit in your curriculum?
Context within the Program
This course is usually taken within the last year of an undergraduate degree program in Computer Science. Students
from all four emphasis areas within our Computer Science program are required to take this course. The emphasis
areas are: Computer Science and Mathematics, Information Technology, Information Systems, and Web
Development.

Prerequisites
Students should have finished the introductory CS sequence, a data structures course, a discrete mathematics course
and Calculus, a computer architecture course, and have familiarity with multiple computing languages such as C,
HTML, Python, and SQL. In addition, basic knowledge of computer networks and familiarity with Linux systems
and the shell and command line tools are needed.

What is covered in the course?
Short Description
This course covers the fundamental concepts and practical applications of computing systems security with a holistic
view and an applied approach. Topics include: security concepts and services, physical, operational, and
organizational security, the role of people in systems security, introduction to cryptography and public key
infrastructure, computing systems hardening, secure code, and secure applications development.
The course emphasis is on developing, deploying, and maintaining a secure computing infrastructure with a hands-
on approach.

List of Topics
Topics in this course broadly match topics listed within this CS2013 guidelines and their coverage is detailed in the
Body of Knowledge coverage section below. One additional topic is listed in the Additional topics section.

What is the format of the course?
Schedule and Meetings
Lewis-Clark State College is on a semester-based schedule. Semesters are 16 weeks long including a final exams
week. This course meets face-to-face in a computer laboratory twice a week for a combined lecture and laboratory
session. Each session is 2 hours 30 minutes long, including a 15 minute break. The adjusted number of contact hours
is approximately 68. The number of lecture equivalent contact hours is 38.

- 296 -

Instructional Approach
This course is taught using an interactive and hands-on approach. Students are required to read the textbook before
coming to class session and short quizzes are given almost every week. A hybrid lecture and question and answer
session is given almost every session. Students then move to the computers and network gear to carry out laboratory
tasks in a collaborative class environment. Laboratory and homework reports must be prepared individually. All
posting and submission of coursework is on-line.

Coursework and Submissions
Students are expected to write a laboratory report for each laboratory that is typically due at midnight on the
immediately following Sunday. Similar to the quizzes, there is an average of one laboratory report per week. In
addition to the weekly quizzes and laboratory reports, students must complete about five homework assignments, a
project, a midterm test, and the final exam. The homework assignments vary in content from ethics reports to
reviewing and reporting on relevant publications (e.g., NIST guidelines and ACM and IEEE codes of ethics). The
projects are usually comprised of a hands-on detailed investigation of a security topic of interest to the student and a
subsequent live and hands-on presentation to the class and associated report submission. The final exam is
comprised of 2 parts: a hands-on in-lab 2 hour 30 minute exam and a term report on a given topic.

How are students assessed?
Students receive points relative to the adequate and correct completion of coursework as described above plus points
obtained during the question and answer sessions. The total grade is weighted using a variation of the following
scheme: 1) laboratories, homework, and project 40%, 2) quizzes 25%, 3) mid-term tests 10%, 4) final exams 20%,
and 5) participation 5%. Students are expected to work outside of class sessions an average of 8-10 hours per week.

Course textbooks and materials
The textbook selected for the latest section of this course is: Analyzing Computer Security: A
Threat/Vulnerability/Countermeasure Approach by Charles P. Pfleeger and Shari Lawrence Pfleeger. The textbook
used in the previous section of this course was: Principles of Information Security by Michael E. Whitman and
Herbert J. Mattord. In addition, the following laboratory manual is being used: “Hands-On Information Security
Lab Manual” by Michael E. Whitman and Herbert J. Mattord. On-line accessible materials are also used to
complement the course content and laboratories. For example, the secure coding standards published by CERT and
the Software Engineering Institute, OWASP, and NIST resources.

Systems and Tools
We use a computer laboratory connected to an isolated VLAN. The laboratory has a dedicated switch, multiple
hardware and software configurations including modern and older versions of OSs and applications running on
either virtual or real hardware. During the laboratory sessions students learn to use a variety of (command line and
GUI) network and host scanning, vulnerability analysis, and system hardening tools such as: Wireshark, Metasploit,
Nmap, Nessus or OpenVAS, Bastille, Firewalls, Mutillidae, Gcc and secure libraries. The objective is for students to
learn the limitations of computer-based systems and networks with respect to information assurance and how to
harden, maintain, and create more secure systems.

Why do you teach the course this way?
Course Goals and Rationale
The goal of this course is to introduce students to the challenges, approaches, and techniques for implementing,
deploying, and maintaining secure computing systems and networks. The rationale behind this course is to meet the
need for information assurance content within the CS curriculum at the same time as tailoring to the diversity of
potential career paths in the program's student population.

Course History and Student Perceptions
This course was developed in 2010 and was included as part of an update to the computer science curriculum which
began implementation in the year 2011. This course is usually not viewed as challenging by students, however it is
perceived as content and laboratory intensive.

- 297 -

Body of Knowledge coverage
KA Knowledge Unit Topics Covered Hours
AR Machine-level

representation of data
Review of representation of programs as data, and numeric,
and non-numeric data and arrays. These and the rest of topics
within this KU are covered within our Computer
Architecture course.

1

HCI Human Factors and Security All [Elective]. 3
IAS Foundational Concepts in

Security
All [1 Core-Tier1 hour]. 2

IAS Principles of Secure Design All Core-Tier1 topics plus prevention, detection, and
deterrence, and usable security from Core-Tier2 topics [1
Core-Tier1 hour, 1 Core-Tier2 hour].

3

IAS Defensive Programming All topics in Core-Tier1 except security implications of
parallel programming plus the security updates topic in Core-
Tier2. Also, OS and compiler support from the Elective
topics. [1 Core-Tier1 hour, 1 Core-Tier2 hour].

5

IAS Threats and Attacks All topics in Core-Tier2 [1 Core-Tier2 hour]. 2
IAS Network Security All topics in Core-Tier2 [1 Core-Tier2 hour]. 6
IAS Cryptography All topics in Core-Tier2 [1 Core-Tier2 hour]. Plus

Cryptographic primitives, and symmetric and public key
cryptography from the Elective topics.

4

IAS Web Security Most topics and all learning outcomes [Elective]. 4
IAS Security Policy and

Governance
All topics [Elective]. 2

NC Introduction Review of physical pieces of a network and roles of the
different layers. These and the rest of the topics in this KU
are covered in our Computer Networks course.

0.5

NC Networked Applications Review of naming and addressing schemes and systems.
These and the rest of the topics in this KU are covered in our
Computer Networks course.

1

NC Local Area Networks Review of Ethernet and switching. These and the rest of the
topics in this KU are covered in our Computer Networks
course.

0.5

OS Security and Protection All topics in Core-Tier2, except security mechanisms and
protection, which are covered in our Operating Systems
course.

1

PL Language Translation and
Execution

Review of run-time stack in the context of buffer overflows.
Some of the other topics in this KU such as memory
management are covered within our OO Design and
Implementation course which uses C++.

1

SP Security Policies, Laws, and
Computer Crimes

All topics except crime prevention strategies [Elective]. 2

Additional topics
Computer systems hardening.

Other comments
None.

- 298 -

CS430: Database Systems, Colorado State University

Fort Collins, CO
Indrakshi Ray, Russ Wakefield and Indrajit Ray
iray@cs.colostate.edu, waker@cs.colostate.edu, indrajit@cs.colostate.edu
http://www.cs.colostate.edu/~cs430

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Information Management (IM) 52.5

Information Assurance and Security (IAS) 3.5

Where does the course fit in your curriculum?
This course is an elective for senior undergraduates and first year graduate students offered twice a year in the spring
(on-campus) and summer semesters (both on-campus and online). Typically about 45-55 students take this course
during each offering period. The prerequisite for this course is the third year Software Development Methods
course – CS 314.

Course topics:

• Introduction to DBMS concepts
• Data modeling and database design
• Relational database design
• Query languages
• Storage and indexing
• Query processing
• Transaction processing
• Recovery

What is the format of the course?
Colorado State University uses a semester system: this course is 15 weeks long with 2 one and a half hour of
lectures per week and laboratory session for a total of 4 hours per week on an average. Some of the topics in this
course are covered via projects during the lab sessions. There is a 16th week for final exams. In the past, this course
has been only on campus, but starting in Summer 2011 we are providing it also as a concurrent on-campus and
online course.

How are students assessed?
Students are assessed based on written homeworks, programming projects, and midterm and final exams. The
projects involve a large-scale relational database design using a commercial DBMS such as PostgreSQL, designing
different index structures, query processing and transaction processing, and require written project reports to be
submitted. Students work on the projects individually. Class participation typically contributes around 10% towards
the final grade and wrap up the assessment. We expect students to spend approximately 6-8 hours each week outside
of the classroom on the course.

Course textbooks and materials
The required textbook for this course is Database Management Systems by Ramakrishnan and Gehrke, 3rd edition,
McGraw-Hill 2003. Two textbooks are recommended: (i) Database Systems Concepts by Silberschatz, Korth and
Sudarshan, 6th edition, McGraw-Hill, 2010 and (ii) Database Systems – The Complete Book by Garcia-Molina,

mailto:iray@cs.colostate.edu�
mailto:waker@cs.colostate.edu�
mailto:indrajit@cs.colostate.edu�
http://www.cs.colostate.edu/~cs430�

- 299 -

Ullman and Widom, 2nd edition, Prentice-Hall, 2008. Instructor’s slides and different webpages supplement the
textbook and are distributed via the course home page.

Why do you teach the course this way?
This course is an elective and students do consider it to be challenging but incredibly beneficial to their job
prospects. Many students discuss their knowledge in database administration, database design, database tuning,
query optimization, and knowledge of commercial DBMS and the projects developed in this course with potential
employers.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

IM Information Management Concepts Information storage and retrieval (CT-1)
Information capture and representation (CT-1)
Searching and retrieving (CT-1)
Analysis and indexing (CT-2)
Reliability, security, scalability, efficiency (CT-2)

1.5

IM Database Systems File systems vs. DBMS
Approaches to and evolution of DBMS (CT-2)
Database architecture and data independence (CT-2)
Core DBMS functions and system components (CT-2)
DBMS user, designer, application developer,
administrator (CT-1)

1.5

IM Data Modeling Conceptual modeling – ER model (CT-2)
Logical database design – Relational model, object-
relational model (CT-2)

6

IM Relational Databases Relational database design, schema design, mapping
conceptual schema to relational schema, functional
dependencies, superkeys and candidate keys, foreign
keys, schema decomposition and refinement, loss-less
join and dependency preservation, normal forms – 1NF,
2NF, 3NF, BCNF, multi-valued dependency and 4NF –
entity and referential integrity

9

IM Query Languages Relational algebra
Relational calculus
SQL
SQL queries, constraints and triggers
ODBC, JDBC
Query processing strategies
Query evaluation
Query processing costs

12

IM Indexing Basic structure
Indexes with SQL

1.5

IM Physical Database Design Memory hierarchy, file organization (heap files, clustered
files, sorted files), tree-based indexing (B-tree, B+tree),
hash-based indexing, I/O cost models for indexing,
comparison of indexing techniques, indexes and
performance tuning

15

- 300 -

IM Transaction Processing ACID properties, failure and recovery, concurrency
control, serializability, two phase locking protocols,
deadlocks, logs and logging protocol

6

IAS Foundational Concepts Database security, access control via database views,
integrity, audit

2

IAS Security Policy and Governance Backup and recovery 1.5

Additional topics: None

Other comments: None

- 301 -

Technology, Ethics, and Global Society (CSE 262), Miami University

Oxford, OH
Public research university
Bo Brinkman
Bo.Brinkman@muohio.edu
http://ethicsinacomputingculture.com

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Social Issues and Professional Practice (SP) 20

Human Computer Interaction (HCI) 10

Graphics and Visualization (GV) 5

Intelligent Systems (IS) elective

Where does the course fit in your curriculum?
Open to students of any major, but required for all computer science and/or software engineering majors. The only
pre-requisite is one semester of college writing/composition. Traditional humanities-style course based primarily
on reading and reflecting before class, discussing during class, formal writing after class. Meets three hours per
week for 15 weeks.

What is covered in the course?
Students that successfully complete the course will be able to:

1. Formulate and defend a position on an ethical question related to technology.
2. Describe the main ethical challenges currently posed by technology.
3. Describe the results of group discussion on ethical issues as a consensus position or mutually acceptable

differences of opinion.
4. Analyze a proposed course of action in the context of various cultures, communities, and countries.
5. Demonstrate effective oral and written communication methods to explain a position on the social

responsibilities of software developers and IT workers.

Course topics (Coverage is in lecture hours, out of a total of 45 lecture hours.)
All of the following (27 hours):

1. Moral theories and reasoning. Includes applying utilitarianism, deontological ethics, and virtue ethics.
Discussion of relativism and religious ethics. 3 hours.

2. Professional ethics. Includes definitions of “profession,” codes of ethics, and ACM-IEEE Software
Engineering Code of Ethics and Professional Practice. 3 hours.

3. Privacy. Definitions of privacy, the role of computing in contemporary privacy dilemmas. 6 hours.
4. Intellectual and intangible property. Definitions of copyright, trademark, and patent, especially as they

apply to computer applications and products. Fair use and other limitations to the rights of creators.
Intangible property that is not “creative” in nature. 6 hours.

5. Trust, safety, and reliability. Causes of computer failure, case studies (including Therac-25). 3 hours.
6. Review and exams. 3 hours.
7. Public presentations of independent research projects. 3 hours.

mailto:Bo.Brinkman@muohio.edu�
http://ethicsinacomputingculture.com/�

- 302 -

Selection from the following, at instructor discretion (18 hours):
1. Effects of computing on society and personal identity. Social network analysis, Marshall McLuhan,

bullying and trolling, crowd-sourced knowledge, cybernetics. 6 hours.
2. Democracy, freedom of speech, and computing. The First Amendment, protection of children, state

censorship, corporate censorship, case studies. 6 hours.
3. Computing and vulnerable groups. Case studies of effects of computing on prisoners, the elderly, the

young, racial and ethnic minorities, religious minorities, people with disabilities, people with chronic
diseases, developing countries, and so on. 6 hours.

4. Autonomous and pervasive technologies. Cases related to data surveillance, moral responsibility for
autonomous systems, robots, and systems that function with little human oversight. 6 hours.

What is the format of the course?
Face-to-face, primarily based on discussion. 45 contact hours, 90 hours of out-of-class work. Students read the
textbook outside of class, and in-class time is spent on applying ideas from the textbook to cases or problems.

How are students assessed?
30% based on 4 formal papers, 20% for essay-based exams (one midterm and a final), 35% for class participation
and informal writing assignments, 15% for a public presentation (usually in Pecha Kucha format).

Course textbooks and materials
Readings selected from Brinkman and Sanders, Ethics in a Computing Culture, from Cengage Learning, 2012.
Supplementary readings, videos, and so on selected from the “recommended readings” listings in the book.

Why do you teach the course this way?
Many of the topics of this course are incredibly complicated, and do not have clear right or wrong answers. The
course is designed to encourage students to reflect on the course material, develop their ideas through engagement
with each other, and then document their thinking.

Many schools are successful with distributing SP topics throughout the curriculum, but we found that this made it
very difficult to assess whether or not the material was actually delivered and mastered. By creating a required
course, we ensure that every student gets the material. Opening the course to non-computing majors has
significantly increased the diversity of the course’s audience. This benefits the students of the course, because it
allows the instructor to demonstrate and highlight ethical clashes that arise when people from different academic
disciplines try to work together.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

SP Social Context All Worked
throughout
course

SP Analytical Tools All 3

SP Professional Ethics All except for “role of professional in public policy” and “ergonomics
and healthy computing environments”

3

SP Intellectual Property All except for “foundations of the open source movement” 6

SP Privacy and Civil
Liberties

All, though “Freedom of expression and its limitations” is at
instructor discretion

6-7

- 303 -

SP Professional
Communication

These topics covered across the curriculum, particular in our required
software engineering course and capstone experience

0

SP Sustainability All topics in elective material of course. Covered in about ¾ of
offerings of the course.

0-2

SP History Not covered. This material is covered in an introductory course. 0

SP Economies of
Computing

Not covered, except for “effect of skilled labor supply and demand
on the quality of computing products,” “the phenomenon of
outsourcing and off-shoring; impacts on employment and on
economics,” and “differences in access to computing resources and
the possible effects thereof.” These are elective topics, covered in
about ¾ of offerings of the course.

0-2

SP Security Policies,
Laws and Computer
Crimes

These topics are covered in our computer security course. 0

HCI Human Factors and
Security

Vulnerable groups and computing

5

HCI Collaboration and
Communication

Psychology and social psychology of computing

5

GV Fundamental
Concepts

Media theory and computing

5

Additional topics
Autonomous computing and its dangers – elective topic in the Intelligent Systems KA

- 304 -

CS 662; Artificial Intelligence Programming, University of San
Francisco

Christopher Brooks
cbrooks@usfca.edu
https://sierra.cs.usfca.edu

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Intelligent Systems (IS) 60

Where does the course fit in your curriculum?
The course is taken as a senior-level elective, and as a required course for first-year Master’s students.

What is covered in the course?
An overview of AI, including search, knowledge representation, probabilistic reasoning and decision making
under uncertainty, machine learning, and topics from NLP, information retrieval, knowledge engineering and
multi-agent systems.

What is the format of the course?
Face-to-face. 4 hours lecture per week (either 3x65 or 2x105).

How are students assessed?
Two midterms and a final. Also, heavy emphasis on programming and implementation of techniques. Students
complete 7-9 assignments (see website for examples). Expectation is 3 hours outside of class for every hour of
lecture.

Course textbooks and materials
Russell and Norvig’s Artificial Intelligence: A Modern Approach is the primary text. I prepare lots of summary
material (see website) and provide students with harness code for their assignments in Python. I also make use of
pre-existing packages and tools such as NLTK, Protégé and WordNet when possible.

Why do you teach the course this way?
My goals are:

• Illustrate the ways in which AI techniques can be used to solve real-world problems. I pick a specific
domain (such as Wikipedia or a map of San Francisco) and have the students apply a variety of
techniques to problems in this domain. For example, as the assumptions change, the same SF map
problem can be used for search, constraints, MDPs, planning, or learning.

• Provide students with experience implementing these algorithms. Almost all of our students go into
industry, and need skill in building systems.

• Illustrate connections between techniques. For example, I discuss decision trees and rule learning in
conjunction with forward and backward chaining to show how, once you’ve decided on a representation,
you can either construct rules using human expertise, or else learn them (or both).

mailto:cbrooks@usfca.edu�

- 305 -

Body of Knowledge coverage
KA Knowledge Unit Topics Covered Hours

IS Fundamental Issues 2

IS Basic Search Strategies A*, BFS, DFS, IDA*, problem spaces, constraints 8

IS Basic Knowledge Rep. Predicate logic, forward chaining, backward chaining, resolution, 8

IS Basic Machine Learning Decision trees, rule learning, Naïve Bayes, precision and accuracy,
cross-fold validation

6

IS Adv. KR FOL, inference, ontologies, planning 6

IS Advanced Search Genetic algorithms, simulated annealing 3

IS Reasoning Under
Uncertainty

Probability, Bayes nets, MDPs, decision theory 8

IS NLP Parsing, chunking, n-grams, information retrieval 4

Other comments

I also integrate reflection and pre-post questions – before starting an assignment, students must answer questions
(online) about the material and the challenges they expect to see. I ask similar questions afterward, both for
assessment and to encourage the students to reflect on design decisions.

- 306 -

Intelligenza Artificiale (Artificial Intelligence), Politecnico di Milano

Milano, Italy
Francesco Amigoni
francesco.amigoni@polimi.it
http://home.dei.polimi.it/amigoni/IntelligenzaArtificiale.html

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area/Knowledge Unit Total Hours of Coverage

Intelligent Systems/Fundamental Issues 8

Intelligent Systems/Basic Search Strategies 18

Intelligent Systems/Basic Knowledge Representation and Reasoning 12

Intelligent Systems/Advanced Search 6

Intelligent Systems/Advanced Representation and Reasoning 6

Where does the course fit in your curriculum?
Students usually take the course in the first year of the MSc program in computer engineering.
Usually around 100 students take the course each year. The course is not compulsory. There are no formal
prerequisites. However, some familiarity with logics and computer science is strongly suggested.

What is covered in the course?

• INTRODUCTION TO AI. Historical outline of the discipline. Fundamental concepts. Main research areas
and application fields.

• PROBLEM SOLVING AND SEARCH. State spaces and search methods. Non-informed and informed
search strategies. Constraint satisfaction problems. Games and adversarial search.

• LOGIC AND REASONING. The use of propositional and first order logic for the representation of
knowledge. Knowledge-based reasoning as logical deduction. Inference procedures (forward chaining,
backward chaining, resolution).

• PLANNING. Plan formation and execution. The STRIPS model. Search in plan spaces.
• FOUNDATIONS OF AI. Some critical concepts and philosophical problems of AI.

What is the format of the course?
The course is face-to-face and covers 50 hours, which are organized in 30 hours with instructor and 20 hours with
teaching assistants for exercise practice.

How are students assessed?
Students are assessed by a single final exam. This is in line with most of the courses in Italian universities. The
estimated effort for preparing the final exam is about 100 hours.

Course textbooks and materials
Stuart Russell, Peter Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 2010.

- 307 -

Why do you teach the course this way?
The course aims at fostering the students' ability to apply Artificial Intelligence (AI) models and techniques to the
development of software applications. The students consider the course interesting and medium-challenging.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

IS IS/Fundamental Issues • Overview of AI problems, Examples of successful
recent AI applications

• What is intelligent behavior?
o The Turing test
o Rational versus non-rational reasoning

• Nature of environments
o Fully versus partially observable
o Single versus multi-agent
o Deterministic versus stochastic
o Static versus dynamic
o Discrete versus continuous

• Nature of agents
o Autonomous versus semi-autonomous
o Reflexive, goal-based, and utility-based
o The importance of perception and environmental

interactions
• Philosophical and ethical issues

8

IS IS/Basic Search Strategies • Problem spaces (states, goals and operators), problem
solving by search

• Factored representation (factoring state into variables)
• Uninformed search (breadth-first, depth-first, depth-

first with iterative deepening)
• Heuristics and informed search (hill-climbing, generic

best-first, A*)
• Space and time efficiency of search
• Constraint satisfaction (backtracking methods)

18

IS IS/Basic Knowledge
Representation and Reasoning

• Review of propositional and predicate logic
• Resolution and theorem proving (propositional logic

only)
• Forward chaining, backward chaining

12

IS IS/Advanced Search • Minimax Search, Alpha-beta pruning 6

IS IS/Advanced Representation and
Reasoning

• Planning:
o Partial and totally ordered planning

6

Additional topics
None.

- 308 -

CMSC 471, Introduction to Artificial Intelligence, U. of Maryland,
Baltimore County

Baltimore, MD
Marie desJardins
mariedj@cs.umbc.edu
http://www.csee.umbc.edu/courses/undergraduate/471/fall11/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Intelligent Systems (IS) 38

Programming Languages (PL) 1

Where does the course fit in your curriculum?
Most students take CMSC 471 in their senior year, but some take it as a junior. It is a “core elective” in our
curriculum (students have to take two of the 11 core courses, which also include areas such as databases,
networking, and graphics). Students in the Game track (5-10% of CS majors) must take CMSC 471 as one of their
core electives. The prerequisite course is CMSC 341 (Data Structures, which itself has a Discrete Structures
prerequisite). CMSC 471 is offered once a year, capped at 40 students, and is always full with a waiting list.

What is covered in the course?
Course description: “This course will serve as an introduction to artificial intelligence concepts and techniques.
We will use the Lisp programming language as a computational vehicle for exploring the techniques and their
application. Specific topics we will cover include the history and philosophy of AI, Lisp and functional
programming, the agent paradigm in AI systems, search, game playing, knowledge representation and reasoning,
logical reasoning, uncertain reasoning and Bayes nets, planning, and machine learning. If time permits, we may
also briefly touch on multi-agent systems, robotics, perception, and/or natural language processing.”

What is the format of the course?
The course is face-to-face, two 75-minute sessions per week (three credit hours). The primary format is lecture
but there are many active learning and problem solving activities integrated into the lecture sessions.

How are students assessed?
There are typically six homework assignments (with a mix of programming and paper-and-pencil exercises), a
semester project that can be completed in small groups, and midterm and final exams. Students typically spend
anywhere from 5-20 hours per week outside of class completing the required readings and homeworks.

Course textbooks and materials
The primary textbook is Russell and Norvig’s “Artificial Intelligence: A Modern Approach.” Students are
expected to learn and use the Lisp programming language (CLISP implementation), and Paul Graham’s “ANSI
Common Lisp” is also assigned.

Why do you teach the course this way?
My intention is to give students a broad introduction to the foundational principles of artificial intelligence, with
enough understanding of algorithms and methods to be able to implement and analyze them. Students who have
completed the course should be able to continue into a graduate program of study in AI and be able to successfully
apply what they have learned in this class to solve new problems. I also believe that the foundational concepts of

- 309 -

search, probabilistic reasoning, logical reasoning, and knowledge representation are extremely useful in other
areas even if students don’t continue in the field of AI. Using Lisp exposes them to a functional programming
language and increases their ability to learn a new language and a different way of thinking. Most students
describe the course as one of the most difficult of their undergraduate career, but it also receives very high ratings
in terms of interest and quality.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

IS Fundamental Issues Intelligence, agents, environments, philosophical issues 4

IS Basic Search Strategies Problem spaces, uninformed/informed/local search, minimax,
constraint satisfaction

4

IS Basic Knowledge
Representation and
Reasoning

Propositional and first-order logic, resolution theorem proving 5.5

IS Basic Machine Learning Learning tasks, inductive learning, naive Bayes, decision trees 1.5

IS Advanced Search A* search, genetic algorithms, alpha-beta pruning,
expectiminimax

6

IS Advanced Representation and
Reasoning

Ontologies, nonmonotonic reasoning, situation calculus,
STRIPS and partial-order planning, GraphPlan

3.5

IS Reasoning Under Uncertainty Probability theory, independence, Bayesian networks, exact
inference, decision theory

6

IS Agents Game theory, multi-agent systems 4.5

IS Advanced Machine Learning Nearest-neighbor methods, SVMs, K-means clustering,
learning Bayes nets, reinforcement learning

3

PL Functional Programming Lisp programming 1

Additional topics
N/A

Other comments
Note: Additional electives are offered in Robotics, Machine Learning, Autonomous Agents and Multi-Agent
Systems, and Natural Language Processing.

- 310 -

Introduction to Artificial Intelligence, Case Western Reserve
University

Cleveland, OH, USA
Soumya Ray
sray@case.edu
Course offered Spring 2012: http://engr.case.edu/ray_soumya/ai_course_exemplar/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Intelligent Systems (IS) 30

Where does the course fit in your curriculum?
Students take the course typically in either their junior or senior years. It is required for the BS/CS degree and an
elective for the BA/CS degree. The minimum required prerequisite for this course is an introductory programming
in Java course. A background in data structures and algorithms is strongly recommended but not required. Usually
around 40 students take the course each year. This course is required for graduate level artificial intelligence and
machine learning courses.

What is covered in the course?
• Problem solving with search: uninformed, informed search, search for optimization (hill climbing, simulated

annealing, genetic algorithms), adversarial search (minimax, game trees)
• Logic and Planning: Propositional Logic, syntactic and model-based inference, first order logic (FOL), FOL

inference complexity, unification and resolution, planning as FOL inference, STRIPS encoding, state space
and plan space planning, partial order planning.

• Probability and Machine Learning: Axioms of probability, basic statistics (expectation and variance),
inference by enumeration, Bayesian networks, inference through variable elimination and Monte Carlo, intro
to supervised machine learning, probabilistic classification with naive Bayes, parameter estimation with
maximum likelihood, Perceptrons, parameter estimation with gradient descent, evaluating algorithms with
cross validation, confusion matrices and hypothesis testing.

• Decision making under uncertainty: Intro to sequential decision making, Markov decision processes, Bellman
equation/optimality, value and policy iteration, model-based and model free reinforcement learning, temporal
difference methods, Q learning, Function approximation.

• I also have one lecture on natural language processing with a very brief introduction to language models,
information retrieval and question answering (Watson), but students are not evaluated on this material.

What is the format of the course?
2 Classroom lectures 75 minutes each per week. 3 Office hours per week (1.5 instructor/1.5 TA).

How are students assessed?
The course is divided into 4 parts as outlined above. Each part has two written homework assignments except the
last part which has one (7 total). Each written homework is followed by a quiz (closed book) that tests the material
on that homework (7 total). Written homeworks typically consists of numerical problems and proofs.

There are five programming assignments: 2 on search (1 A*, 1 game trees), 1 on planning, 1 on probabilistic
inference and 1 on Q-learning.

The theoretical part (homeworks + best 6 quizzes) is worth 60%. The programming part is worth 40%.

- 311 -

Students are expected to spend about 6 hours per week on the homework and programming assignments.
All assignments (not quizzes) can be done in pairs (optional).

Course textbooks and materials
Textbook: Artificial Intelligence: A Modern Approach, 3rd edition, Russell and Norvig, supplemented by notes for
the machine learning part

Programs are in Java. Programming assignments are implemented in the SEPIA environment. SEPIA (Strategy
Engine for Programming Intelligent Agents) is a strategy game similar to an RTS (e.g., Warcraft, Age of Empires
etc) that my students and I have built.

Why do you teach the course this way?
I reviewed and restructured this course in 2011.

The course is intended to be a broad coverage of AI subfields. Unfortunately AI is too broad to cover everything,
but I try to hit many of the key points. It also mostly follows the textbook, which I have found is less confusing for
students (some do not like jumping around a book). I try to balance exposure to the theoretical aspects with
fun/interesting implementation.

For the quizzes and homework, having many short ones gives more frequent feedback to students about how well
they understand the material, as well as distributes the risk of them losing too many points in any one assignment
because they were having a bad day. I evaluate students in a quiz immediately after a homework because they
have the material fresh in their minds at that point. Doing assignments in pairs builds teamwork and community,
reduces the pressure of assignments and should be more fun.

From the student evaluations, the course is not viewed as “challenging” as such, but work-intensive.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

IS Fundamental Issues Overview of AI problems, Examples of successful recent AI
applications
What is intelligent behavior?
The Turing test
Rational versus non-rational reasoning
Nature of environments
Fully versus partially observable
Single versus multi-agent
Deterministic versus stochastic
Static versus dynamic
Discrete versus continuous
Nature of agents
Autonomous versus semi-autonomous
Reflexive, goal-based, and utility-based
The importance of perception and environmental interactions

1.0

IS Basic Search
Strategies

Problem spaces (states, goals and operators), problem solving by
search
Uninformed search (breadth-first, depth-first, depth-first with iterative
deepening)
Heuristics and informed search (hill-climbing, generic best-first, A*)
Space and time efficiency of search
Two-player games (Introduction to minimax search)

4.5

- 312 -

IS Basic Knowledge
Representation and
Reasoning

Review of propositional and predicate logic (cross-reference DS/Basic
Logic)
Resolution and theorem proving (propositional logic only)
DPLL, GSAT/WalkSAT
First Order Logic resolution
Review of probabilistic reasoning, Bayes theorem, inference by
enumeration
Review of basic probability (cross-reference DS/Discrete Probability)
Random variables and probability distributions
Axioms of probability
Probabilistic inference
Bayes’ Rule

7.5

IS Basic Machine
Learning

Definition and examples of broad variety of machine learning tasks,
including classification
Inductive learning
Statistical learning with Naive Bayes and Perceptrons
Maximum likelihood and gradient descent parameter estimation
Cross validation
 Measuring classifier accuracy, Confusion Matrices

6.0

IS Advanced Search Constructing search trees
Stochastic search
Simulated annealing
Genetic algorithms
Implementation of A* search, Beam search
Minimax Search, Alpha-beta pruning
Expectimax search and chance nodes

2.25

IS Advanced
Representation and
Reasoning

Totally-ordered and partially-ordered Planning 1.75

IS Reasoning Under
Uncertainty

Conditional Independence
Bayesian networks
Exact inference (Variable elimination)
Approximate Inference (basic Monte Carlo)

2.0

IS Agents Markov Decision Processes, Bellman Equation/Optimality, Value and
Policy Iteration

1.25

IS Natural Language
Processing

Language models, n-grams, vector space models, bag of words, text
classification, information retrieval, pagerank, information extraction,
question-answering (Watson). [Overview, students are not evaluated on
NLP]

1.25

IS Advanced Machine
Learning

Model based and model free reinforcement learning, temporal
difference learning, Q learning, function approximation

2.5

- 313 -

CS188: Artificial Intelligence, University of California Berkeley

Dan Klein
klein@cs.berkeley.edu
http://inst.eecs.berkeley.edu/~cs188/sp12/announcements.html

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Intelligent Systems (IS) 27

Human-Computer Interaction (HCI) 1

Brief description of the course’s format and place in the undergraduate curriculum
The pre-requisites of this course are:

• CS 61A or 61B: Prior computer programming experience is expected (see below); most students will
have taken both these courses.

• CS 70 or Math 55: Facility with basic concepts of propositional logic and probability are expected (see
below); CS 70 is the better choice for this course.

This course has substantial elements of both programming and mathematics, because these elements are central to
modern AI. Students must be prepared to review basic probability on their own. Students should also be very
comfortable programming on the level of CS 61B even though it is not strictly required.

Course description and goals
This course will introduce the basic ideas and techniques underlying the design of intelligent computer systems. A
specific emphasis will be on the statistical and decision-theoretic modeling paradigm. By the end of this course,
you will have built autonomous agents that efficiently make decisions in fully informed, partially observable and
adversarial settings. Your agents will draw inferences in uncertain environments and optimize actions for arbitrary
reward structures. Your machine learning algorithms will classify handwritten digits and photographs. The
techniques you learn in this course apply to a wide variety of artificial intelligence problems and will serve as the
foundation for further study in any application area you choose to pursue.

Course topics

• Introduction to AI
• Search
• Constraint Satisfaction
• Game Playing
• Markov Decision Processes
• Reinforcement Learning
• Bayes Nets
• Hidden Markov Modeling
• Speech
• Neural Nets
• Robotics
• Computer Vision

http://inst.eecs.berkeley.edu/~cs188/sp12/announcements.html�

- 314 -

Course textbooks, materials, and assignments
The textbook is Russell and Norvig, Artificial Intelligence: A Modern Approach, Third Edition.
All the projects in this course will be in Python. The projects will be on the following topics:

1. Search
2. Multi-Agent Pacman
3. Reinforcement Learning
4. Bayes Net
5. Classification

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

IS Fundamental Issues All 1

IS Basic Search Strategies All 2.5

IS Basic Knowledge Representation and Reasoning Probability, Bayes Theorem 2.5

IS Basic Machine Learning All 1

IS Advanced Search Except Genetic Algorithms 3

IS Reasoning Under Uncertainty 6

IS Agents 0.5

IS Natural Language Processing 0.5

IS Advanced Machine Learning 4

IS Robotics 1

IS Perception and Computer Vision 0.5

HCI Design for non-mouse interfaces 1

Additional topics

• Neural Networks – 2 hours
• DBNs, Particle Filtering, VPI – 0.5 hours

Other comments
 None

http://aima.cs.berkeley.edu/�

- 315 -

Introduction to Artificial Intelligence, University of Hartford

Department of Computer Science
Ingrid Russell
irussell@hartford.edu
http://uhaweb.hartford.edu/compsci/ccli/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Intelligent Systems (IS) 24

Programming Languages (PL) 3

Where does the course fit in your curriculum?
The course is typically taken in the junior or senior year as an upper level elective. It is taken mostly by Computer
Science and Computer Engineering students. The Data Structures course is the prerequisite. There is no required
course that has this course as a prerequisite. Instructors may offer independent study courses that require this
course as a prerequisite. Student enrollment range is 10-24 per offering.

What is covered in the course?
The AI topics below follow the topic coverage in Russell & Norvig’s Artificial Intelligence: A Modern Approach.

• Introduction to Lisp
• Fundamental Issues

What is AI? Foundations of AI, History of AI.
• Intelligent Agents

Agents and Environments, Structure of Agents.
• Problem Solving by Searching

Problem Solving Agents, Searching for Solutions, Uninformed Search Strategies:
Breadth-First Search, Depth-First Search, Depth-limited Search, Iterative Deepening
Depth-first Search, Comparison of Uninformed Search Strategies.

• Informed Search and Exploration
Informed (Heuristic) Search Strategies: Greedy Best-first Search, A* Search, Heuristic
Functions, Local Search Algorithms, Optimization Problems.

• Constraint Satisfaction Problems
Backtracking Search for CSPs, Local Search for CSPs.

• Adversarial Search
Games, Minimax Algorithm, Alpha-Beta Pruning.

• Reasoning and Knowledge Representation
Introduction to Reasoning and Knowledge Representation, Propositional Logic, First Order
Logic, Semantic Nets, Other Knowledge Representation Schemes.

• Reasoning with Uncertainty & Probabilistic Reasoning
Acting Under Uncertainty, Bayes’ Rule, Representing Knowledge in an Uncertain
Domain, Bayesian Networks.

• Machine Learning
Forms of Learning, Decision Trees and the ID3 Algorithm, Nearest Neighbor, Statistical Learning.

http://uhaweb.hartford.edu/compsci/ccli/�

- 316 -

What is the format of the course?
The course is a face-to-face course with 2.5 contact hours per week. It is approximately 50% lecture/discussion
and 50% lab sessions.
How are students assessed?
Two exams and a final exam are given that constitute 45% of the grade. Assignments include programming and
non- programming type problems. Students are given 1-1.5 weeks to complete. A term-long project with 4-5
deliverables is assigned. The project involves the development of a machine learning system. More information
on our approach is included in Section VI.
Grading Policy

Exams 1, 2 30%
Final Exam 15%
Assignments 15%
Term Project 30%
Class Presentation 10%

Course textbooks and materials
Book: Artificial Intelligence: A Modern Approach by Russell and Norvig
Software: Allegro Common Lisp

Why do you teach the course this way?
Our approach to teaching introductory artificial intelligence unifies its diverse core topics through a theme of
machine learning, through a set of hands-on term long projects, and emphasizes how AI relates more broadly with
computer science. Machine learning is inherently connected with the AI core topics and provides methodology and
technology to enhance real-world applications within many of these topics. Using machine learning as a unifying
theme is an effective way to tie together the various AI concepts while at the same time emphasizing AI’s strong
tie to computer science. In addition, a machine learning application can be rapidly prototyped, allowing learning to
be grounded in engaging experience without limiting the important breadth of an introductory course. Our work
involves the development, implementation, and testing of a suite of projects that can be closely integrated into a
one-term AI course.

With funding from NSF, our multi-institutional project, Machine Learning Experiences in Artificial Intelligence
(MLeXAI), involved the development and implementation of a suite of 26 adaptable machine learning projects
that can be closely integrated into a one-term AI course. Our approach would allow for varying levels of
mathematical sophistication, with implementation of concepts being central to the learning process. The projects
have been implemented and tested at over twenty institutions nationwide. Associated curricular modules for each
project have also been developed. Each project involves the design and implementation of a learning system which
enhances a particular commonly-deployed AI application. In addition, the projects provide students with an
opportunity to address not only core AI topics, but also many of the issues central to computer science, including
algorithmic complexity and scalability problems. The rich set of applications that students can choose from spans
several areas including network security, recommender systems, game playing, intelligent agents, computational
chemistry, robotics, conversational systems, cryptography, web document classification, computer vision, data
integration in databases, bioinformatics, pattern recognition, and data mining.

Additional information on MLeXAI, the machine learning projects, and the participating faculty and institutions is
available at the project web page at: http://uhaweb.hartford.edu/compsci/ccli.

http://uhaweb.hartford.edu/compsci/ccli�

- 317 -

Body of Knowledge coverage
KA Knowledge Unit Topics Covered Hrs

PL Lisp A Brief Introduction 3

IS Fundamental Issues AI problems, Agents and Environments, Structure of Agents, Problem
Solving Agents

3

IS Basic Search
Strategies

Problem Spaces, Uninformed Search (Breadth-First, Depth-First Search,
Depth-first with Iterative Deepening), Heuristic Search (Hill Climbing,
Generic Best-First, A*), Constraint Satisfaction (Backtracking, Local
Search)

5

IS Advanced Search Constructing Search Trees, Stochastic Search, A* Search
Implementation, Minimax Search, Alpha-Beta Pruning

3

IS Basic Knowledge
Representation and
Reasoning

Propositional Logic, First-Order Logic, Forward Chaining and Backward
Chaining, Introduction to Probabilistic Reasoning, Bayes Theorem

3

IS Advanced
Knowledge
Representation and
Reasoning

Knowledge Representation Issues, Non-monotonic Reasoning, Other
Knowledge Representation Schemes.

3

IS Reasoning Under
Uncertainty

Basic probability, Acting Under Uncertainty, Bayes’ Rule, Representing
Knowledge in an Uncertain Domain, Bayesian Networks

3

IS Basic Machine
Learning

Forms of Learning, Decision Trees, Nearest Neighbor Algorithm,
Statistical-Based Learning such as Naïve Bayesian Classifier.

4

Additional topics:
A brief introduction to 1-2 additional AI sub-fields. (2 hours)

Additional Comments
The machine learning algorithms covered vary based on the machine learning project selected for the course.

Acknowledgement: This work is funded in part by the National Science Foundation DUE-040949 and DUE-
0716338.

References:
• Russell, I., Coleman, S., Markov, Z. 2012. A Contextualized Project-based Approach for Improving Student

Engagement and Learning in AI Courses. Proceedings of CSERC 2012 Conference, ACM Press, New York,
NY, 9-15, DOI= http://doi.acm.org/10.1145/2421277.242127

• Russell, I., Markov, Z., Neller, T., Coleman, S. 2010. MLeXAI: A Project-Based Application Oriented Model,

ACM Transactions on Computing Education, 20(1), pages 17-36.

• Russell, I., Markov, Z. 2009. Project MLeXAI Home Page, http://uhaweb.hartford.edu/compsci/ccli/.

• Russell, S. and Norvig, P. 2010. Artificial Intelligence: A Modern Approach, Upper Saddle River, NJ:

Prentice-Hall.

- 318 -

Computer Networks I, Case Western Reserve University

Cleveland, OH
Prof. Vincenzo Liberatore
vl@case.edu

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Networking and Communication (NC) 39

Where does the course fit in your curriculum?
The course is taken in the senior year and it is required for Computer Science majors. The pre-requisite are junior
standing and the sophomore course on data structures (or consent of instructor). Java programming experience is
also required, and familiarity with a scripting language (awk, python, etc.) is helpful. Certain maturity level in
mathematics, algorithms, and statistics is helpful. It has no required following course. It is a pre-requisite for
Communications Networks II and for the Internet Applications courses (non-required). The most recent offering had
an enrollment of 39 students.

What is covered in the course?
The course covers various aspects of computer networking, including (1) application layer protocols such as HTTP
and SMTP, (2) transport layer (TCP/UDP) and congestion control, (3) routing and IP, and (4) link layer access
protocols including Ethernet and 802.11.
Typical schedule:

Week 1: Network architecture, layering, and protocols.
Week 2: Principles of application-layer, application-layer protocols: FTP, SMTP, DNS.
Week 3: HTTP, Web Caching and content delivery networks. Peer-to-peer applications.
Week 4: Socket programming, introduction to transport layer protocols.
Week 5: Principles of reliable transfer, TCP reliable transfer implementation.
Week 6: TCP reliable transfer cont’d, RTT and timer, flow control, TCP connection management, state
transition. Principles of congestion control.
Week 7: TCP congestion control. TCP performance: response time. TCP throughput
Week 8: Introduction to network layer. Inside a router.
Week 9: IPv4 and IP Addressing. IPv6 and ICMP. Routing algorithms.
Week 10: Internet routing architecture and protocols. Multicast routing.
Week 11: Introduction to link layer. Multiple access protocols.
Week 12: Aloha protocol, CSMA. Efficiency of CSMA/CD. Ethernet.
Week 13: LAN addressing and ARP. ATM networks.
Week 14: Wireless and mobile networks.

What is the format of the course?
Face-to-face lectures, for 3 contact hours/week.

How are students assessed?
6 written homework assignments; 2 course projects (each project takes about one month); midterm exam (about 1 ¼
hour); final exam (3 hours).

Course textbooks and materials
Required textbook: Computer Networking, A Top-Down Approach Featuring the Internet, by James F. Kurose and
Keith W. Ross, 6th edition. Pearson, 2012.

mailto:vl@case.edu�

- 319 -

Why do you teach the course this way?
The goal of the course is to teach the fundamental concepts and principles in today's networks. The course has been
offered for 15+ years, and was made a requirement about 5 years ago. Students consider this course to be of the
same difficulty as other senior-level courses.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

NC Introduction 3

NC Network
Applications

 7

NC Reliable Data
Delivery

 7.5

NC Routing and
Forwarding

 6

NC Local Area
Networks

 9

NC Resource
Allocation

Congestion control, CDN (other topics in this KU are covered in Computer
Networks II, technical elective in Computer Science curriculum)

3.5

NC Mobility Wireless and mobile networks (e.g., 802.11). Mobile-IP not covered in
curriculum.

3

- 320 -

CS144: Introduction to Computer Networking, Stanford University

Stanford, CA, USA
Phil Levis and Nick McKeown
pal@cs.stanford.edu, nickm@stanford.edu
Course URLs:
cs144.stanford.edu

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Networking and Communication (NC) 15

Architecture and Organization (AR) 3

Systems Fundamentals (SF) 7

Where does the course fit in your curriculum?
Seniors dominate the undergraduate enrollment in the course, although some juniors also take the course. It satisfies
a requirement in the Systems track, or counts as a CS elective course for students not in the Systems track. The
course is offered once a year. Generally, 120-160 students take the course. Its prerequisite is a course called
Principles of Computer Systems, where students learn the elements of systems and also become proficient C
programmers.

What is covered in the course?
CS144 is an introductory course on computer networking, specifically the Internet. The course explains how the
Internet works, ranging from how bits are modulated on wireless networks to application-level protocols like
BitTorrent and HTTP. It also explains the principles of network design, such as layering, packet switching, and the
end-to-end argument. Students implement a handful of low-level protocols and services, including reliable transport,
IP forwarding, and a Network Address Translation device. Students gain experience reading and understanding
RFCs (Internet Protocol specifications) as statements of what a system should do. The course grounds many of the
concepts in current practice and recent developments, such as net neutrality and DNS security.

What is the format of the course?
It uses a flipped classroom. Students view ~150 minutes of video instructional material each week, combined with
automatically graded online quizzes. Class time is split between in-class exercises, guest lectures from industry and
academia, and optional discussion sections led by the instructors. There is 100 minutes/week of required in-class
time (exercises and lectures) and 50 minutes/week of optional in-class time (section).

How are students assessed?
Student grades are based on a combination of two exams, four programming assignments, two problem sets, a
technical writing assignment, and online quizzes embedded in the class videos.

Course textbooks and materials
Students read Kurose and Ross’s “Computer Networking” (most recent edition) and Internet standards (RFCs). They
program in C, using open-source software tools developed at Stanford to emulate computer networks (Mininet).

- 321 -

Why do you teach the course this way?
The course is a mixture of principles and practice. We teach principles so that what the students learn will be
applicable not just now, but hopefully far into the future. Examples of principles are layering, the end-to-end
argument, and packet switching. We also teach practice so that students can see and experience how these principles
can be instantiated in a real working system as large and complex as the Internet. We teach using a flipped
classroom because much of the practice is factual material that is best presented in a reference form: students can
review and re-watch videos. We use in-class time to ground these concepts and facts through interactive, real-time
exploration of the Internet using software tools. For example, when the students learn about layers and packet
encapsulation we have them use the Wireshark tool to see what happens when browser requests a web page, and
how the layers come together in individual data packets.

The course dedicates a significant amount of time to packet switching and queuing within the network. The purpose
of this focus is to give students a deep understanding of how the network works and how to explain its behavior. All
of the variability in network behavior is due to queueing and packet switching. While students find some of the
mathematical formulations a bit challenging at first, we spend enough time on the material that they can become
comfortable with them and complete the course understanding not just the edges, but also the inner workings, of the
Internet.

Students consider the course to be challenging, but not the most challenging course in the department. It’s
considered to be in the top 25% in terms of difficulty and workload, in part because debugging networking code is a
very new and difficult to learn skill. It’s the first time most students have ever dealt with distributed programs.

We revise the course every year to keep up to date with how the Internet evolves. The course has been offered six
times (2013 will be the seventh). It was changed to be a flipped classroom in its sixth offering (2012).

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

NC Introduction All 1

NC Networked
Applications

All 2

NC Reliable Data
Delivery

All 4

NC Routing and
Forwarding

All 4

NC Local Area
Networks

All 2

NC Resource Allocation All 1

NC Mobility All 1

AR Interfacing and
Communication

Introduction to networks: communications networks as another layer of
remote access

3

SF Cross-Layer
Communications

Reliability 1

SF State and State
Machines

Digital vs. Analog/Discrete vs. Continuous Systems
Clocks, State, Sequencing
Computers and Network Protocols as examples of State Machines

2

- 322 -

SF Evaluation Performance figures of merit; Amdahl’s law 1

SF Resource Allocation
and Scheduling

Advantages of fair scheduling, preemptive scheduling 1

SF Reliability through
Redundancy

Redundancy through check and retry
Redundancy through redundant encoding (error correcting codes, CRC,
FEC)
How errors increase the longer the distance between the communicating
entities; the end-to-end principle as it applies to systems and networks

2

- 323 -

Computer Networks, Williams College

Williamstown, Massachusetts
Thomas Murtagh
tom@cs.williams.edu

http://www.cs.williams.edu/~tom/courses/336

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Architecture and Organization (AR) 1

Computational Science (CN) 1

Discrete Structures (DS) 1

Information Assurance and Security (IAS) 1

Networking and Communication (NC) 6

Operating Systems (OS) 0.2

Systems Fundamentals (SF) 1.8

See note in “Format of the Course” on number of contact hours

Where does the course fit in your curriculum?
This course is not required in our curriculum. Majors are required to complete two elective courses. This course
fulfils that requirement, but they have many other choices. Data Structures and Computer Organization are
prerequisites. The course is limited to 10 students. Typical enrollment falls between 6 and 10.

What is covered in the course?
The description found in the course catalog says: This course explores the principles underlying the design of
computer networks. We will examine techniques for transmitting information efficiently and reliably over a variety
of communication media. We will look at the addressing and routing problems that must be solved to ensure that
transmitted data gets to the desired destination. We will come to understand the impact that the distributed nature of
all network problems has on their difficulty. We will examine the ways in which these issues are addressed by
current networking protocols such as TCP/IP and Ethernet. Students will meet weekly with the instructor in pairs to
present solutions to problem sets and reports evaluating the technical merit of current solutions to various
networking problems.

What is the format of the course?
The course is offered in a format that is somewhat peculiar to our institution. The format is called a tutorial. In a
tutorial course, the primary form of student faculty contact is weekly meetings in which pairs of students registered
for the course meet with the instructor to discuss their work on an assignment they received a week earlier. In this
course, assignments typically require readings from the text and one or more papers from the literature. The students
are then asked to solve a series of exercises and or answer questions related to the readings. During the meetings, the
students present and discuss their answers to the exercises.

- 324 -

As a result of this format, there are actually only 12 hours of direct student/faculty contact. The hours shown for
various areas in the “Body of Knowledge” section below are therefore out of 10 hours rather than the 36 or so hours
available in a typical lecture-based course.

How are students assessed?
Students complete weekly written assignments, one significant programming project, and take two open-book take-
home examinations.

Course textbooks and materials
The course uses Peterson and Davie, Computer Networks: A Systems Approach as a text. Other readings can be
found on the course web site.

Why do you teach the course this way?
The course was developed shortly after our institution initiated the tutorial format. The motivation for the format
was to strengthen each student’s ability to learn independently and to engage in an intellectual discussion
effectively. As a result, the course design places relatively little emphasis on programming projects and much more
emphasis on analytical problems. This also shifted the topics covered and the emphasis placed on various topics. In
particular, areas that are well suited to mathematical analysis (contention-resolution protocols, error-correcting
codes, etc.) receive more attention than they might if the course were offered in a more traditional lecture/lab format.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

AR Interfacing and Communication Compare common network organizations 1

CN Fundamentals Modelling and abstraction, simulation as dynamic
modelling, create a formal mathematical model and use
for simulation

1

DS Discrete Probability Finite probability space, events
Axioms of probability and probability measures
independence

1

IAS Network Security Network specific threats and attack types (e.g., denial of
service, spoofing, sniffing and traffic redirection, man-in-
the-middle, message integrity attacks, routing attacks, and
traffic analysis); Use of cryptography for data and
network security; Security for wireless

0.5

IAS Cryptography The Basic Cryptography Terminology covers notions
pertaining to the different (communication) partners,
secure/unsecure channel, attackers and their capabilities,
encryption, decryption, keys and their characteristics,
signatures, etc.; Overview of Mathematical Preliminaries
where essential for Cryptography; includes topics in
linear algebra, number theory, probability theory, and
statistics.; Public Key Infrastructure support for digital
signature and encryption and its challenges.

0.5

- 325 -

NC Introduction

All 1.5

NC Networked Applications Naming and address schemes (DNS, IP addresses,
Uniform Resource Identifiers, etc.); HTTP as an
application layer protocol; Multiplexing with TCP and
UDP;

0.5

NC Data Delivery Error control (retransmission techniques, timers); Flow
control (acknowledgements, sliding window); TCP

1

NC Routing and Forwarding Routing versus forwarding; Static routing; Internet
Protocol (IP); Scalability issues (hierarchical addressing)

1

NC Local Area Networks Multiple Access Problem; Common approaches to
multiple access (exponential-backoff, time division
multiplexing, etc.); Local Area Networks; Ethernet;
Switching

0.5

NC Resource Allocation

Need for resource allocation; Fixed allocation (TDM,
FDM, WDM) versus dynamic allocation; End-to-end
versus network assisted approaches; Fairness; Principles
of congestion control; Approaches to Congestion
(Content Distribution Networks, etc.)

1

NC Mobility 802.11 networks

0.5

OS Overview of Operating Systems

Mechanisms to support client-server models

0.2

SF State-State Transition-State
Machines

Computers and Network Protocols as examples of State
Machines

0.2

SF Parallelism Request parallelism (e.g., web services) vs. Task
parallelism (map-reduce processing); Client-Server/Web
Services, Thread (Fork-Join), Pipelining

0.3

SF Resource Allocation and
Scheduling

Kinds of scheduling: first-come, priority; advantages of
fair scheduling, pre-emptive scheduling

0.3

- 326 -

SF Reliability through Redundancy How errors increase the longer the distance between the
communicating entities; the end-to-end principle as it
applies to systems and networks; Redundancy through
check and retry; Redundancy through redundant encoding
(error correcting codes, CRC, FEC)

1

- 327 -

CSCI 432 Operating Systems, Williams College

Williamstown, MA
Jeannie Albrecht
jeannie@cs.williams.edu
http://www.cs.williams.edu/~jeannie/cs432/index.html

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Operating Systems (OS) 30

Systems Fundamentals (SF) (Overlap with OS hours)

Networking and Communication (NC) 2

Parallel and Distributed Computing (PD) (Overlap with OS hours)

Where does the course fit in your curriculum?
Operating Systems is typically taken by juniors and seniors. It is not compulsory, although it does satisfy our
“project course” requirement, and students are required to take at least one project course to complete the major.
The prerequisites are Computer Organization and either Algorithms or Programming Languages. The latter
requirement is mostly used to ensure a certain level of maturity rather than specific skills or knowledge. Average
class size is 15-20 students.

What is covered in the course?
This course explores the design and implementation of computer operating systems. Topics include historical
aspects of operating systems development, systems programming, process scheduling, synchronization of concurrent
processes, virtual machines, memory management and virtual memory, I/O and file systems, system security,
OS/architecture interaction, and distributed operating systems. The concepts in this course are not limited to any
particular operating system or hardware platform. We discuss examples that are drawn from historically significant
and modern operating systems including Unix, Windows, Mach, and the various generations of Mac OS.

The objective of this course is threefold: to demystify the interactions between the software written in other courses
and hardware, to familiarize students with the issues involved in the design and implementation of modern operating
systems, and to explain the more general systems principles that are used in the design of all computer systems.

- 328 -

What is the format of the course?
The course format is primarily lectures with some interactive discussion. There are no officially scheduled lab
sessions, but a few lectures are held in the lab to help with project setup.

How are students assessed?
Student evaluation is largely based on 4 implementation projects that include significant programming, as well as 2-
3 written homework assignments, 6-8 research paper evaluations, and a midterm exam. Projects typically span 2-3
weeks and require 20-30 hours of work each. Written homework assignments and paper evaluations require 3-10
hours of work each.

Course textbooks and materials
Textbook: Modern Operating Systems, 3rd ed., by Andrew Tanenbaum
Other assigned reading material: 6-8 research papers

Programming Project One: Inverted Index in C++ (warm-up project)
Programming Project Two: Threads and Monitors in C++
Programming Project Three: Virtual Memory Manager in C++
Programming Project Four: Smash the Stack in C++

Why do you teach the course this way?
The course combines classical OS concepts with more modern technologies. The combination of textbook readings
as well as select research papers gives students a breadth of knowledge about current and recent OS topics. The
programming projects are challenging, but most students are able to successfully finish all of them in the allotted
time.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

OS Overview of Operating Systems Role and purpose of OS, key design issues,
influences of security and networking

2

OS Operating System Principles Structuring methods, abstractions,
processes, interrupts, dual-mode (kernel vs.
user mode) operation

3

OS/PD/
SF

Concurrency (OS)/Communication and
Coordination (PD)/Parallelism (SF)

Structures, atomic access to OS objects,
synchronization primitives, spin-locks

5

OS/PD/
SF

Scheduling and Dispatch (OS)/System
Performance Evaluation (OS)/Parallel
Performance (PD)/Resource Allocation and
Scheduling (SF)

Preemptive and non-preemptive
scheduling, evaluating scheduling policies,
processes and threads

4

OS Memory Management Virtual memory, paging, caching,
thrashing

4

- 329 -

OS Security and Protection Access control, buffer overflow exploits,
OS mechanisms for providing security and
controlling access to resources

4

OS/SF Virtual Machines (OS)/Cross-Layer
Communications (SF)/Virtualization and
Isolation (SF)

Types of virtualization, design of different
hypervisors, virtualization trade-offs

3

OS Device Management Briefly discuss device drivers, briefly
discuss mechanisms used in interfacing a
range of devices

1

OS File Systems File system design and implementation,
files, directories, naming, partitioning

3

OS Fault Tolerance Discuss and define relevance of fault
tolerance, reliability, and availability in OS
design

1

NC Reliable Data Delivery OS role in reliable data delivery 0.5

NC Networked Applications/Introduction Role of OS in network naming schemes,
role of layering

1

NC Routing and Forwarding Role of OS in routing and forwarding 0.5

OS Real Time and Embedded Systems 0

Additional topics

Other comments
I have often contemplated replacing Project Four with one that focused on File Systems rather than Security.
However, the students really enjoy the Stack Smashing project, and we do not offer another course that focuses on
Security in our curriculum.

- 330 -

CS 420, Operating Systems, Embry-Riddle Aeronautical University

Prof. Nick Brixius
brixiusn@erau.edu

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Operating Systems (OS) 24

Parallel and Distributed Computing (PD) 5

Systems Fundamentals (SF) 4

Brief description of the course’s format and place in the undergraduate curriculum
Third or fourth year course – prerequisite is CS225, Computer Science II and third year standing – 3 semester
credits – 3 hours lecture per week.

Course description and goals
The course will study the basic concepts, design and implementation of operating systems. Topics to be covered
include an overview of basic computing hardware components, operating system structures, process management,
memory management, file systems, input/output systems, protection and security. The Windows and UNIX/Linux
operating systems will be reviewed as implementation examples.

The coursework will include “hands-on” application of reading assignments and lecture material through
homework assignments, including several programming projects.

Course topics
1. Overview of an Operating System
2. Computing Hardware Overview
3. Process Management
4. CPU Scheduling
5. Deadlocks and Synchronization
6. Memory Management
7. File systems and storage
8. Distributed Systems

Course textbooks, materials, and assignments
Textbook: Silberschatz, A., Galvin, P.B. and Gagne, G. (2010) Operating System Concepts with Java. Addison
Wesley Publishing Co., New York. (Eighth Edition) ISBN 978-0-470-50949-4

Java and the Java Virtual Machine are used for programming assignments

Assignment One: Java threads, OS components
Assignment Two: Process states and process management
Assignment Three: Process Scheduling and race conditions
Assignment Four: Concurrency and deadlocks

- 331 -

Assignment Five: Memory management
Assignment Six: File systems and HDD scheduling
Assignment Seven: Network support and distributed systems

Body of Knowledge coverage
KA Knowledge Unit Topics Covered Hours

OS OS/Overview of Operating Systems High-level overview of all topics 2

OS OS/Operating System Principles Processes, process control, threads. 2

OS OS/Scheduling and Dispatch Preemptive, non-preemptive scheduling, schedulers and
policies, real-time scheduling

3

SF SF/Resource Allocation and
Scheduling

Kinds of scheduling 2

OS OS/Concurrency Exclusion and synchronization; deadlock 3

OS OS/Memory Management Memory management, working sets and thrashing;
caching

3

OS OS/File Systems Files (metadata, operations, organization, etc.);
standard implementation techniques; file system
partitioning; virtual file systems; memory mapped files,
journaling and log structured file systems

2

SF SF/Virtualization & Isolation Rationale for protection and predictable performance,
levels of indirection, methods for implementing virtual
memory and virtual machines

2

OS OS/Virtual Machines Paging and virtual memory, virtual file systems, virtual
file, portable virtualization, hypervisors

2

OS OS/Device Management Characteristics of serial & parallel devices, abstracting
device differences, direct memory access, recovery
from failures

3

PD PD/Parallelism Fundamentals Multiple simultaneous computations; programming
constructs for creating parallelism, communicating, and
coordinating;

2

PD PD/Distributed Systems Distributed message sending; distributed system and
service design;

3

OS OS/Security and Protection Overview of system security, policy, access control,
protection, authentication

2

OS OS/Real Time and Embedded
Systems

Memory/disk management requirements in real-time
systems; failures, risks, recovery; special concerns in
real-time systems

2

- 332 -

CPSC 3380 Operating Systems, U. of Arkansas at Little Rock

Dr. Peiyi Tang
pxtang@ualr.edu

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Operating Systems (OS) 24

Parallel and Distributed Computing (PD) 5

Systems Fundamentals (SF) 4

Course description and goals
An operating system (OS) defines an abstraction of hardware and manages resource sharing among the computer’s
users. The OS shares the computational resources such as memory, processors, networks, etc. while preventing
individual programs from interfering with one another. After successful completion of the course, students will
learn how the programming languages, architectures, and OS interact.

Course topics
After a brief history and evolution of OS, the course will cover the major components of OS. Topics will include
process, thread, scheduling, concurrency (exclusion and synchronization), deadlock (prevention, avoidance, and
detection), memory management, IO management, file management, virtualization, and OS’ role for realizing
distributed systems. The course will also cover protection and security with respect to OS.

Course textbooks, materials, and assignments
Textbook: “Operating System Concepts'' by A. Silberschatz, P. Galvin and G. Gagne, John Wiley & Sons, 2009,
ISBN: 978-0-470-12872-5

Lab System: Nachos 4.3 (in C++).

Assignment One: Program in Execution
Assignment Two: Process and Thread
Assignment Three: Synchronization with Semaphores
Assignment Four: Synchronization with Monitors

- 333 -

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

OS OS/Overview of
Operating Systems

Overview of OS basics 2

OS OS/Operating System
Principles

Processes, process control, threads 2

OS OS/Scheduling and
Dispatch

Preemptive, non-preemptive scheduling, schedulers and policies,
real-time scheduling

3

SF SF/Resource
Allocation and
Scheduling

Kinds of scheduling 2

OS OS/Concurrency Exclusion and synchronization; deadlock 3

OS OS/Memory
Management

Memory management, working sets and thrashing; caching 3

OS OS/File Systems Files (metadata, operations, organization, etc.); standard
implementation techniques; file system partitioning; virtual file
systems; memory mapped files, journaling and log structured file
systems

2

SF SF/Virtualization &
Isolation

Rationale for protection and predictable performance, levels of
indirection, methods for implementing virtual memory and virtual
machines

2

OS OS/Virtual Machines Paging and virtual memory, virtual file systems, virtual file, portable
virtualization, hypervisors

2

OS OS/Device
Management

Characteristics of serial & parallel devices, abstracting device
differences, direct memory access, recovery from failures

3

PD PD/Parallelism
Fundamentals

Multiple simultaneous computations; programming constructs for
creating parallelism, communicating, and coordinating

2

PD PD/Distributed
Systems

Distributed message sending; distributed system and service design 3

OS OS/Security and
Protection

Overview of system security, policy, access control, protection,
authentication

2

OS OS/Real Time and
Embedded Systems

Memory/disk management requirements in real-time systems;
failures, risks, recovery; special concerns in real-time systems

2

- 334 -

582219 Operating Systems, University of Helsinki

Department of Computer Science
Dr. Teemu Kerola
teemu.kerola@cs.helsinki.fi
https://www.cs.helsinki.fi/en/courses/582219

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Operating Systems (OS) 23

Systems Fundamentals (SF) 4

Parallel and Distributed Computing (PD) 3

Architecture and Organization (AR) 2

Brief description of the course’s format and place in the undergraduate curriculum
Pre-requisites: Computer Organization I (24h). Course targeted to 2nd year students. Course consists of 18 lectures
(2h) and 9 homework practice sessions (2h).
Follow-up courses: Distributed Systems, Mobile Middleware, OS lab project (in planning).

Course description and goals
Understand OS services to applications, concurrency problems and solution methods for them, OS basic structure,
principles and methods of OS implementation.

Course topics
OS history, process, threads, multicore, concurrency problems and their solutions, deadlocks and their prevention,
memory management, virtual memory, scheduling, I/O management, disk scheduling, file management, embedded
systems, distributed systems.

Course textbooks, materials, and assignments
Textbook: “Operating Systems – Internals and Design Principles”, 7th ed. by W. Stallings, Pearson Education Ltd,
2012, ISBN 13: 978-0-273-75150-2
Homework 1: Overview, multicore, cache
Homework 2: Processes, threads
Homework 3: Mutual exclusion, scenarios, semaphores, monitors, producer/consumer
Homework 4: Message-passing, readers/writers, deadlocks
Homework 5: Memory management, virtual memory
Homework 6: Scheduling
Homework 7: I/O management
Homework 8: File management, embedded systems
Homework 9: Distributed systems
Exams: 2 (2.5h each)

- 335 -

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

OS OS/Overview of Operating
Systems

Role, functionality, design issues, history, evolution, SMP
considerations

2

AR AR/Memory System
Organization

Cache, TLB 2

SF SF/Computational
Paradigms

Processes, threads, process/kernel states 1

SF SF/Cross-Layer
Communication

Layers, interfaces, RPC, abstractions 1

SF SF/Parallelism Client/server computing, HW-support for synchronization,
multicore architectures

2

OS OS/Operating System
Principles

Process control, OS structuring methods, interrupts, kernel-
mode

2

OS OS/Concurrency Execution scenarios, critical section, spin-locks,
synchronization, semaphores, monitors

4

PD PD/Communication-
Coordination

Message passing, deadlock detection and recovery, deadlock
prevention, deadlock avoidance

2

OS OS/Scheduling and
Dispatch

Scheduling types, process/thread scheduling, multiprocessor
scheduling

4

OS OS/Memory Management Memory management, partitioning, paging, segmentation 2

OS OS/Security and Protection -- covered in Introduction to Computer Security --

OS OS/Virtual Machines Hypervisors, virtual machine monitor, virtual machine
implementation, virtual memory, virtual file systems

3

OS OS/Device Management Serial and parallel devices, I/O organization, buffering, disk
scheduling, RAID, disk cache

2

OS OS/File Systems File organization, file directories, file sharing, disk management,
file system implementation, memory mapped files, journaling
and log structured systems

2

OS OS/Real Time and
Embedded Systems

Real time systems, real time OS characteristics, real-time
scheduling, embedded systems OS characteristics

2

PD PD/Parallel Architectures Multicore, SMP, shared/distributed memory, clusters 1

Other comments
We have special emphasis on concurrency, because more and more applications are executed multithreaded in
multicore environments.

- 336 -

RU STY1 Operating Systems, Reykjavik University

Dr. Ymir Vigfusson
ymir@ru.is
No public website is available

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Operating Systems (OS) 18

Architecture and Organization (AR) 8

Networking and Communication (NC) 4

Systems Fundamentals (SF) 4.5

Brief description of the course’s format and place in the undergraduate curriculum
The course is taught in the 4th semester of a 3-year program with the only prerequisite being first semester Computer
Architecture. By then the students are familiar with several programming languages, including C++, which prepares
them for the low-level C programming used in the course. Lectures are given 2x1.5 hours per week over 12 weeks in
an auditorium, plus 1.5 hours of optional recitation sessions in regular classrooms. Online recordings are provided of
all lectures and sessions. Two big written homework assignments are solved in pairs, and five major lab 2-week
projects. After the Operating Systems course, high-scoring students are invited to a follow-up 3-week computer
security course in which low-level assembly, C programming, reverse engineering and exploit writing skills are
developed further.

Note that our Operating Systems course covers material traditionally taught in introductory Computer Architecture
courses, such as hands-on x86 assembly programming, since we pace down our first-semester Computer
Architecture course while students are learning the ropes.

Course description and goals
The operating system abstracts hardware from software through a multitude of interfaces. Operating systems strive
to share devices, memory and other computational resources between competing users and programs in a fast, robust
and accurate manner. The course will explain what’s under the hood of typical operating system abstractions, with
special emphasis on the treatment of memory and the CPU, including assembly. At the end of the course students
will understand how the OS interacts with hardware, how higher level systems interact with the OS, and be able to
program against these lower-level abstractions.

Course topics
The course covers many of the fundamentals of computer architecture and operating systems: x86 assembly, virtual
memory, caches, processes, signals, threads, process communication, concurrency and deadlocks, scheduling,
dynamic memory management, I/O management, virtual machines and the basics of network programming, file
systems, and security.

Course textbooks, materials, and assignments
Computer Systems: A Programmer's Perspective, by Bryant and O’Hallaron, 2nd edition (February 2010). Addison
Wesley. ISBN 9780136108047.

Lab System: Shared access to a CentOS 5 Linux shell server.

- 337 -

Programming Language: C

Assignment One: Bit manipulation (datalab)
Assignment Two: Reverse engineering C code in x86 assembly (bomblab)
Assignment Three: Write a shell with job control (shelllab)
Assignment Four: Design and implement a memory allocator (malloclab)
Assignment Five: Design and implement a multi-threaded proxy server (proxylab)
Optional Assignment: Write buffer overflows for C programs (buflab)

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

OS Overview of Operating
Systems

Role, purpose, design issues of modern OSes. 1

OS Operating System Principles Processes, process control, threads, interrupts, context-switching 2

AR Machine-level representation
of data

Bits, bytes, words, two-complement representation of numbers,
records, arrays

3

AR Assembly level machine
organization

Von Neumann machine, x86 assembly instructions, heap, stack,
code, subroutine calls, I/O and interrupts

4

OS &
SF

OS/Scheduling and Dispatch
& SF/Resource Allocation
and Scheduling

CPU scheduling, scheduling policies, deadlines, real-time
concerns

2

OS Concurrency Basics of exclusion and synchronization, interrupts, deadlocks,
progress graphs; pthreads interface

3

OS &
SF &
AR

OS/Memory Management &
SF/Proximity & AR/Memory
system org. and arch.

Storage systems, memory management, working sets and
thrashing; latencies, caching, locality, cache consistency, virtual
memory, fault handling

5

PL Runtime systems Dynamic memory management, garbage collection 3

OS File Systems Files (metadata, operations, organization, etc.); standard
implementation techniques; file system partitioning; virtual file
systems; memory mapped files, journaling and log structured file
systems

2

SF SF/Virtualization & Isolation Rationale for protection and predictable performance, levels of
indirection, methods for implementing virtual memory and
virtual machines

2

OS Virtual Machines Paging and virtual memory, virtual file systems, virtual devices
and I/O, hypervisors, sandboxes (specifically the Chrome
sandbox), emulators,

3

OS &
IAS

OS/Security and Protection &
IAS/Defensive Programming

Overview of system security; buffer overflows and exploits,
input sanitation, correct handling of exceptions.
Policy/protection/authentication handled in a different course.

2

- 338 -

SF Support For Parallelism Thread parallelism, event-driven concurrency, client/server web
services

1.5

NC Networked applications DNS, peer-to-peer systems (Chord, BitTorrent), HTTP, socket
APIs, multiplexing with TCP/UDP

4

Additional topics
Reverse engineering, 1 hour

- 339 -

Parallel Programming Principle and Practice, Huazhong U. of Science
and Technology

Wuhan, China
Hai Jin
hjin@hust.edu.cn
http://grid.hust.edu.cn/courses/parallel/

Knowledge Areas that contain topics and learning outcomes covered in the course
Knowledge Area Total Hours of Coverage

Parallel and Distributed Computing (PD) 24

Architecture and Organization (AR) 2

Where does the course fit in your curriculum?
0804021 is an optional course. It is typically taken by third-year undergraduate students and first-year graduate
students in either the Professional Masters’ degree program or the PhD program. Enrollment ranges from 40 to 70
students.
The students are supposed to know the following:

 0810011: “C Programming Language”
 0700183: “Discrete Mathematics”
 0842151: “Fundamentals of Computer System I”
 0842161: “Fundamentals of Computer System II”
 0842191: “Parallel and Sequential Data Structures and Algorithms”
 0800421: “”Operating System Design and Implementation”

Experience with programming in C and C++ is required in order to carry out the laboratory works.

What is covered in the course?
Part 1: Principle
This section covers the very basics of parallel computing, and is intended for someone who is just becoming
acquainted with the subject. It begins with a brief overview, including concepts and terminology associated with
parallel computing. The topics of parallel memory architectures and programming models are then explored. These
topics are followed by a discussion on a number of issues related to designing parallel programs.

 Why Parallel Programming?
 Parallel Architecture
 Parallel Programming Models
 Parallel Programming Methodology
 Parallel Programming: Performance

Part 2: Typical Issues Solved by Parallel Programming
This section concludes with several examples of how to parallelize simple serial programs. Including: threads and
shared memory programming with TBB and OpenMP, SIMD programming model and Cuda & OpenCL,
programming using the Message Passing Paradigm, parallel computing with MapReduce.

 Shared Memory Programming and OpenMP: A High Level Introduction
 Case Studies: Threads programming with TBB
 Programming Using the Message Passing Paradigm
 Introduction to GPGPUs and CUDA Programming Model
 Parallel Computing with MapReduce

Part 3: Parallel Programming Case Study and Assignment
Students in this course are required to complete several assignments, which account for 30% of their grade.

http://grid.hust.edu.cn/courses/parallel/�

- 340 -

What is the format of the course?
0804021 is a 2 credit course with 28 lecture hours and 12 lab hours. Classes typically meet twice per week for
lecture, with lab sessions completed in tutoring labs outside of lecture. Course material is available online. The
course is taught online and face-to-face. Generally there is a combination of lectures, class discussion, case studies,
written term papers, and team research and presentation.

How are students assessed?
Students are assessed on a combination of class attendance, group activities, discussion, projects, participation in
parallel programming competition held by enterprises, and a comprehensive final exam.

Course textbooks and materials
 C Lin, L Snyder. Principles of Parallel Programming. USA: Addison-Wesley Publishing Company, 2008.
 B Gaster, L Howes, D Kaeli, P Mistry, and D Schaa. Heterogeneous Computing With Opencl. Morgan

Kaufmann Publishing and Elsevier, 2011.
 A Grama, A Gupra, G Karypis, V Kumar. Introduction to Parallel Computing (2nd ed.). Addison Wesley,

2003.
 J Jeffers, J Reinders. Intel Xeon Phi Coprocessor High-Performance Programming. Morgan Kaufmann

Publishing and Elsevier, 2013.
 T Mattson, B Sanders, B Massingill. Patterns for Parallel Programming. Addison-Wesley Professional, 2004.

Why do you teach the course this way?
Being funded by the Project of “Parallel Programming Principle and Practice” from the Ministry of Education
(MOE) of the People’s Republic of China to design a syllabus for senior undergraduate students on parallel and
distributed programming, we serve as the China’s first pilot of restructured courses to integrate topics of
CS2013/TCPP Curriculum Initiative on PDC requirements into the undergraduate curriculum.

The goal of the course is to provide an introduction to parallel computing including parallel computer architectures,
analytical modeling of parallel programs, principles of parallel algorithm design. We will introduce existing
mainstream parallel programming environment and present development situation, which will make the students
understand the basic knowledge of parallel programming. The labs will guide students to use tools to simulate an
optimized parallel program, enable them to master skills to design, code, debug, analysis and optimize some
mainstream parallel software.

The course has a good reputation among students. The students that have taken this course won Best MIC
performance award at “Asia Student Supercomputer Challenge 2013” (http:// www.asc-
events.org/13en/index13en.php). This course has been granted an Early Adopter status by the NSF/TCPP curriculum
committee (http://www.cs.gsu.edu/~tcpp/curriculum/?q=list-of-early-adopters-fall-2012.html).

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

PD Parallelism Fundamentals Overview: Parallel computing, architectural demands and trends, goals
of parallelism, communication, coordination

2

PD Parallel Decomposition Independence and partitioning, Data and task decomposition,
Synchronization

1

PD Communication and
Coordination

Shared Memory, Threads, Message Passing, Consistency 2

- 341 -

PD Parallel Algorithms,
Analysis, and
Programming

Shared memory programming and OpenMP, Threads programming with
TBB, Programming using the message passing paradigm, Parallel computing
with MapReduce, GPGPUs and CUDA programming

12

PD Parallel Architecture Pipelining, Superscalar, Out-of-order execution, Vector Processing/SIMD,
Multithreading: pThreads, Uniprocessor memory systems, A parallel zoo of
architectures, Multicore chips

4

PD Parallel Performance Relationship of communication, data locality and architecture, Orchestration
for performance: load balancing, Characteristics: speed- up, cost, scalability,
isoefficiency

2

PD Distributed Systems Distributed computing 1

PD Formal Models and
Semantics

Shared memory model (OpenMP), Threads model (pthread, cilk TBB), MPI,
GPGPU programming model (cuda or openCL), Other models (cloud
MapReduce, Data Flow Model, Systolic Array Model)

2

Additional topics
Motivating Problems (application case studies),
Steps in creating a parallel program,
Tools for development of parallel programs

- 342 -

Introduction to Parallel Programming, Nizhni Novgorod State
University

Nizhni Novgorod, Russia
Victor Gergel
gergel@unn.ru
http://www.hpcc.unn.ru/?doc=98 (In Russian)
http://www.hpcc.unn.ru/?doc=107 (In English)

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Parallel and Distributed Computing (PD) 20

Where does the course fit in your curriculum?
3rd year (5th semester). Compulsory course. Usually has 40-50 students.
The students are supposed to know the following:

• CS101 "Introduction to Programming"
• CS105 "Discrete mathematics"
• CS220 "Computer Architecture"
• CS225 "Operating Systems"
• CS304 "Numerical Methods "

Experience with programming in C is required in order to carry out the laboratory works.

What is covered in the course?
• Introduction to Parallel Programming
• Overview of Parallel System Architectures
• Modeling and Analysis of Parallel Computations
• Communication Complexity Analysis of Parallel Algorithms
• Parallel Programming with MPI
• Parallel Programming with OpenMP
• Principles of Parallel Algorithm Design
• Parallel Algorithms for Solving Time Consuming Problems (Matrix calculation, System of linear

equations, Sorting, Graph algorithms, Solving PDE, Optimization)
• Modeling the parallel program executing

What is the format of the course?
In-person lectures. Lectures: 36 contact hours. Labs: 18 hours. Homework: 18 hours.

How are students assessed?
Assignments include reading papers and implementing programming exercises.

Course textbooks and materials
• Gergel V.P. (2007) Theory and Practice of Parallel Programming. Moscow, Intuit. (In Russian)
• Gergel V.P. (2010) High-Performance Computations for Multiprocessor Multicore Systems. Moscow:

Moscow State University. (In Russian)
• Quinn, M. J. (2004). Parallel Programming in C with MPI and OpenMP. New York, NY: McGraw-Hill.

http://www.hpcc.unn.ru/?doc=98�
http://www.hpcc.unn.ru/?doc=107�

- 343 -

• Grama, A., Gupta, A., Kumar V. (2003, 2nd edn.). Introduction to Parallel Computing. Harlow, England:
Addison-Wesley.

• To develop parallel programs C/C++ is used, MS Visual Studio, Intel Parallel Studio, cluster under MS HPC
Server 2008.

Why do you teach the course this way?
The goal of the course is to study the mathematical models, methods and technologies of parallel programming for
multiprocessor systems. Learning the course is sufficient for a successful start to practice in the area of parallel
programming.

The course has a good reputation among students. The students that are studied this course were the winner in the
track “Max Linpack performance” of the Cluster Student Competition at Supercomputing 2011. The course was a
part of the proposal that was the winner of the contest “Curriculum Best Practices: Parallelism and Concurrence”
of European Association “Informatics Europe” (2011) – see. http://www.informatics-
europe.org/services/curriculum-award/105-curriculum-award-2011.html

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

PD Parallelism
Fundamentals

Overview: Information dependencies analysis, decomposition,
synchronization, message passing

2

PD Parallel
Decomposition

Data and task decomposition, Domain specific (geometric)
decomposition 0.5

PD Communication and
Coordination

Basic communication operations, Evaluating communication overhead
2

PD Parallel Algorithms,
Analysis, and
Programming

Characteristics of parallel efficiency,
Spectrum of parallel algorithms (Matrix calculation, System of linear
equations, Sorting, Graph algorithms, Solving PDE, Optimization)
OpenMP, MPI, MS VS, Intel Parallel Studio 10

PD Parallel Architecture Structure of the MIMD class of Flynn’s taxonomy,
SMP, Clusters, NUMA 1.5

PD Parallel Performance Characteristics of parallel efficiency: speed-up, cost, scalability,
isoefficiency. Theoretical prediction of parallel performance and
comparing with computational results 2

PD Formal Models and
Semantics

Information dependencies analysis, Evaluating characteristics of
parallel efficiency (superlinear and linear speed-up, max possible
speed up for a given problem, speed-up of a given parallel algorithm),
Equivalent transformation of parallel programs 2

Additional topics
Isoefficiency,
Redundancy of parallel computations,
Classic illustrative parallel problems (readers-writers, dining philosophers, sleeping barbarian, etc.),
Tools for development of parallel programs,
Formal models based on Information dependencies analysis

- 344 -

CS in Parallel (course modules on parallel computing)
Richard Brown, St. Olaf College
rab@stolaf.edu

Libby Shoop, Macalester College
shoop@macalester.edu

Joel Adams, Calvin College
adams@calvin.edu

http://csinparallel.org

What is CSinParallel?
CSinParallel is not a single course, but is a project that has produced several modules on parallel
computing that are suitable for use in a variety of courses. As such, the description of CSinParallel
modules provided here does not match the standard form for course exemplars in CS2013. Rather, we list
below the modules available from CSinParallel.org at the time of this writing, and indicate for each
module the Knowledge Units from CS2013 that are addressed by that module. The interested reader is
encouraged to explore details of each module at the CSinParallel.org web site.

Description of the Project from the CSinParallel.org Website
CSinParallel modules provide conceptual principles of parallelism and hands-on practice with parallel
computing, in self-contained 1- to 3-day units that can be inserted in various CS courses in multiple
curricular contexts. These modules offer an incremental approach to getting CS undergraduates the
exposure to parallelism they will need as they begin their careers.

CSinParallel Modules

Module Name Author(s)

1 Map-reduce Computing for Introductory Students using WebMapReduce Dick Brown and
Libby Shoop

2 Multicore Programming (3 versions) Dick Brown and
Libby Shoop

3 Concurrent Access to Data Structures (2 versions)
Libby Shoop,
Dick Brown and
Patrick Garrity

4 Parallel Computing Concepts Dick Brown
5 Parallel Sorting Libby Shoop
6 Concurrency and Map-Reduce Strategies in Various Programming Languages Dick Brown
7 Patternlets in Parallel Programming Joel Adams

8 GPU Programming Libby Shoop and
Yu Zhao

9 Heterogeneous Computing Libby Shoop
10 Distributed Computing Fundamentals Libby Shoop
11 Pi Calculus: A Theory of Message Passing Dick Brown
12 Exemplar: Drug Design Dick Brown

13 Exemplar: Computing Pi using Numerical Integration Dick Brown and
EAPF

14 An Advanced Introduction to Map-reduce using WebMapReduce Dick Brown

- 345 -

Body of Knowledge coverage
For each CSinParellel module in the grids below, we indicate with an ‘x’ if a given module
contains coverage of Core (either Tier1 or Tier2) topics from a given Knowledge Unit. This
provides an overview of the topical coverage for each CSinParallel module. The interested
reader can get detailed information on each module from the CSinParallel.org website.
(Knowledge Areas not covered by any CSinParallel module are not listed below.)

1:

 M
ap

-r
ed

uc
e

fo
r

C
S1

/W
M

R

2:
 M

ul
tic

or
e

Pr
o
g
ra

m
m

in
g

3:
 C

o
nc

ur
re

nt
 D

at
a

St
ru

ct
ur

es

4:
 P

ar
al

le
l C

o
m

p
ut

in
g

C
o
nc

ep
ts

5:
 P

ar
al

le
l
So

rt
in

g

6:
 P

ar
al

le
lis

m
 i
n

Pr
o
g
.

La
ng

ua
ge

s

7:
 P

at
te

rn
le

ts

8:
 G

PU
 p

ro
g
ra

m
m

in
g

9:
 H

et
er

o
g
en

eo
us

C
o
m

p
ut

in
g

10
: D

is
tr
ib

ut
ed

 C
om

p
.

Fu
nd

am
en

ta
ls

11
: P

i
C
al

cu
lu

s

12
: D

ru
g
 d

es
ig

n

13
: P

i/
nu

m
er

ic
al

in

te
gr

at
io

n

14
: A

d
va

nc
ed

 M
ap

-
R
ed

uc
e

In
tr
o/

W
M

R

AL

Basic Analysis x

Algorithmic Strategies x

Fund. DS & Alg.

Basic Autom. & Comp.

AR

Digital Logic x x x

Machine-level rep. of data x x

Assembly level mach. org.

Memory org. and arch. x

Interfacing and comm.

CN Fundamentals x x

DS

Sets, Relations, & Functions

Basic Logic x

Proof Techniques x

Basics of Counting

Graphs & Trees

Discrete Probability

- 346 -

1:
 M

ap
-r

ed
uc

e
fo

r
C
S1

/W
M

R

2:
 M

ul
tic

or
e

Pr
o
g
ra

m
m

in
g

3:
 C

o
nc

ur
re

nt
 D

at
a

St
ru

ct
ur

es

4:
 P

ar
al

le
l C

o
m

p
ut

in
g

C
o
nc

ep
ts

5:
 P

ar
al

le
l
So

rt
in

g

6:
 P

ar
al

le
lis

m
 i
n

Pr
o
g
.

La
ng

ua
ge

s

7:
 P

at
te

rn
le

ts

8:
 G

PU
 p

ro
g
ra

m
m

in
g

9:
 H

et
er

o
g
en

eo
us

C
o
m

p
ut

in
g

10
: D

is
tr
ib

ut
ed

 C
om

p
.

Fu
nd

am
en

ta
ls

11
: P

i
C
al

cu
lu

s

12
: D

ru
g
 d

es
ig

n

13
: P

i/
nu

m
er

ic
al

in

te
gr

at
io

n

14
: A

d
va

nc
ed

 M
ap

-
R
ed

uc
e

In
tr
o/

W
M

R

IM

Info. Management Concepts x x

Database Systems

Data Modeling

OS

Overview of OS

Operating Systems Principles

Concurrency

Scheduling and Dispatch x x x x

Memory Management x

Security and Protection

PD

Parallelism Fundamentals x x x x x x x x x x x x x

Parallel Decomposition x x x x x x x x x x

Comm. & Coord. x x x x x x x x x

Parallel Algorithms x x x x x x x x

Parallel Architecture x

SDF

Algorithms and Design x x x x x

Fund. Prog. Concepts x x x

Fund. DS x x x x

Development Methods x x

- 347 -

1:
 M

ap
-r

ed
uc

e
fo

r
C
S1

/W
M

R

2:
 M

ul
tic

or
e

Pr
o
g
ra

m
m

in
g

3:
 C

o
nc

ur
re

nt
 D

at
a

St
ru

ct
ur

es

4:
 P

ar
al

le
l C

o
m

p
ut

in
g

C
o
nc

ep
ts

5:
 P

ar
al

le
l
So

rt
in

g

6:
 P

ar
al

le
lis

m
 i
n

Pr
o
g
.

La
ng

ua
ge

s

7:
 P

at
te

rn
le

ts

8:
 G

PU
 p

ro
g
ra

m
m

in
g

9:
 H

et
er

o
g
en

eo
us

C
o
m

p
ut

in
g

10
: D

is
tr
ib

ut
ed

 C
om

p
.

Fu
nd

am
en

ta
ls

11
: P

i
C
al

cu
lu

s

12
: D

ru
g
 d

es
ig

n

13
: P

i/
nu

m
er

ic
al

in

te
gr

at
io

n

14
: A

d
va

nc
ed

 M
ap

-
R
ed

uc
e

In
tr
o/

W
M

R

SE

Software Processes x x x x x x x x x x x

Software Project Manage.

Tools and Environments

Requirements Engineering

Software Design x x x x x x x x x x x

Software Construction x x x x x x x x x x x x

Software Verif. & Valid.

Software Evolution

Software Reliability

SF

Computational Paradigms x x x x x x x x x x

Cross-Layer Communications x x x

State and State Machines x x

Parallelism x x x x x x x x x x

Evaluation x x x x x

Resource Alloc. & Sched. x x x x x

Proximity x x x x

Virtualization & Isolation

Reliab. through Redundancy x

SP

Social Context x x x x x x x x

Analytical Tools

Professional Ethics

Intellectual Property

Privacy & Civil Liberties

Prof. Communication

Sustainability

- 348 -

CS453: Introduction to Compilers, Colorado State University

Fort Collins, CO
Michelle Strout
mstrout@cs.colostate.edu
http://www.cs.colostate.edu/~cs453

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Programming Languages (PL) 38

Software Engineering (SE) 8

Algorithms and Complexity (AL) 4

Where does the course fit in your curriculum?
This course is an elective for senior undergraduates and first year graduate students offered once a year in the
spring semester. Typically about 20-25 students take this course. The prerequisite for this course is a required
third year Software Development Methods course.

What is covered in the course?
CS 453 teaches students how to implement compilers. Although most computer science professionals do not end
up implementing a full compiler, alumni of this course are surprised by how often the skills they learn are used
within industry and academic settings. The subject of compilers ties together many concepts in computer science:
the theoretical concepts of regular expressions and context free grammars; the systems concept of layers including
programming languages, compilers, system calls, assembly language, and architecture; the embedded systems
concept of an architecture with restricted resources; and the software engineering concepts of revision control,
debugging, testing, and the visitor design pattern. Students write a compiler for a subset of Java called
MeggyJava. We compile MeggyJava to the assembly language for the ATmega328p microcontroller in the Meggy
Jr RGB devices.

Course topics:
• Regular and context free languages including DFAs and NFAs.
• Scanning and parsing

o Finite state machines and push down automata
o FIRST and FOLLOW sets
o Top-down predictive parsing
o LR parse table generation

• Meggy Jr Simple runtime library
• AVR assembly code including the stack and heap memory model
• Abstract syntax trees
• Visitor design pattern
• Semantic analysis including type checking
• Code generation for method calls and objects
• Data-flow analysis usage in register allocation
• Iterative compiler design and development
• Test-driven development and regression testing
• Revision control and pair programming

http://www.cs.colostate.edu/~cs453�
http://www.evilmadscientist.com/article.php/meggyjr�
http://www.evilmadscientist.com/article.php/meggyjr�

- 349 -

What is the format of the course?
Colorado State University uses a semester system: this course is 15 weeks long with 2 one and a half hour of
lectures per week and 1 weekly recitation section (4 total contact hours / week, for approximately 60 total hours
not counting the final exam). There is a 16th week for final exams. In the past this course has been only on
campus, but starting in Spring 2013 we are providing it as a blended on campus and online course.

How are students assessed?
There are 7 programming assignments and 4 written homeworks, which together constitute 50% of the course
grade. The programming assignments lead the students through the iterative development of a compiler written in
Java that translates a subset of Java to AVR assembly code. The AVR assembly code is then assembled and linked
with the avr-gcc tool chain to run on Meggy Jr game devices. The process is iterative in that the first
programming assignment that starts building the compiler results in a compiler that can generate the AVR code for
the setPixel() call; therefore students can write MeggyJava programs that draw 8x8 pictures on their devices.
Later assignments incrementally add features to the MeggyJava language and data structures such as abstract
syntax trees to the compiler. We also have a simulator available at http://code.google.com/p/mjsim/ to enable
debugging of the generated AVR code and for grading purposes. Students start doing their programming
assignments individually, but are then encouraged to work as programming pairs. We expect students to spend
approximately 8-12 hours each week outside of the classroom on the course.

Course textbooks and materials
Lecture notes written by the instructor and materials available online largely replace a textbook, though for
additional resources, we recommend Modern Compiler Implementation in Java (Second Edition) by Andrew
Appel, Cambridge, 2002. Additionally we provide the students with a link and reading assignments for a free
online book Basics in Compiler Design by Torben Mogensen. The lecture notes are available at the webpage
provided above.

Why do you teach the course this way?
We view the compiler course as bringing together many theoretical and practical skills from previous courses and
enabling the students to use these skills within the context of a full semester project. The key elements of this
course are the approach to iterative compiler development, the emphasis on many software development tools such
as debuggers, revision control, etc., and mapping a high level programming language, Java, to a popular assembly
language for embedded systems. All of these elements are new editions to the compiler course in our department
and have been incorporated into the course since 2007. In general the move to targeting an active assembly
language AVR that operates on a game device Meggy Jr has been more popular with the students than the previous
targets of C and then MIPS.

This course is an elective and students do consider it to be challenging. Many students discuss the compiler
developed in this course with potential employers. Additionally graduates report that understanding how a
language maps to assembly helps their debugging skills after starting positions in industry after their degree.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

AL Basic Automata Computability and
Complexity

Finite state machines, regular expressions, and context
free grammars

2

AL Advanced Automata Computability
and Complexity

NFAs, DFAs, their equivalence, and push-down
automata.

2

PL Event Driven and Reactive
Programming

Programming the Meggy Jr game device. 3

PL Program Representation All 1

http://code.google.com/p/mjsim/�

- 350 -

PL Language Translation and Execution All except tail calls, closures, and garbage collection 6

PL Syntax Analysis All 8

PL Compiler Semantic Analysis All 5

PL Code Generation All 6

PL Runtime Systems All 4

PL Static Analysis Data-flow analysis for register allocation 3

PL Language Pragmatics All except lazy versus eager 2

SE Software Verification and Validation Test-driven development and regression testing 4

SE Software Design Use of the visitor design pattern 2

SE Software Processes All Core 1 and Core 2 topics 2

Additional topics
• Iterative compiler development instead of the monolithic phase based approach (lexer, parser, type

checker, code generator).
• Revision control

Other comments: None

- 351 -

Csc 453: Translators and Systems Software, The University of Arizona

Tucson, AZ
Saumya Debray
debray@cs.arizona.edu
http://www.cs.arizona.edu/~debray/Teaching/CSc453/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage
Programming Languages (PL) 35

Where does the course fit in your curriculum?
This course is an upper-division elective aimed at third-year and fourth-year students. It is one of a set of courses
in the “Computer Systems” elective area, from which students are required to take (at least) one. Pre-requisites
are: a third-year course in C and Unix; and a third-year course on data structures; a third-year survey course on
programming languages is recommended but not required. Enrollment is typically around 40.

What is covered in the course?
This course covers the design and implementation of translator-oriented systems software, focusing specifically on
compilers, with some time spent on related topics such as interpreters and linkers.

Course topics:
• Background. Compilers as translators. Other examples of translators: document-processing tools such as

ps2pdf and latex2html; web browsers; graph-drawing tools such as dot; source-to-source translators such
as f2c; etc.

• Lexical analysis. Regular expressions; finite-state automata and their implementation. Scanner-
generators: flex.

• Parsing. Context-free grammars. Top-down and bottom-up parsing. SLR(1) parsers. Parser-generators:
yacc, bison.

• Semantic analysis. Attributes, symbol tables, type checking.
• Run-time environments. Memory organization. Stack-based environments.
• Intermediate representations. Abstract syntax trees, three-address code. Code generation for various

language constructs. Survey of machine-independent code optimization.
• Interpreters. Dispatch mechanisms: byte-code, direct-threading, indirect-threading. Expression

evaluation: Registers vs. operand stack. Just-in-time compilers. Examples: JVM vs. Dalvik for Java;
Spidermonkey for JavaScript; JIT compilation in the context of web browsers.

• Linking. The linking process, linkers and loaders. Dynamic linking.

What is the format of the course?
The University of Arizona uses a semester system. The course lasts 15 weeks and consists of 2.5 hours per week
of face-to-face lectures together with a 50-minute discussion class (about 3.5 contact hours per week, for a total of
about 52 hours not counting exams). The lectures focus on conceptual topics while the discussion section focuses
on the specifics of the programming project.

How are students assessed?
The course has a large programming project (50% of the final score), one or two midterm exams (20%-25% of the
final score), and an optional final exam (25%-30% of the final score).

The programming project involves writing a compiler for a significant subset of C. The front end is generated
using flex and yacc/bison; the back end produces MIPS assembly code, which is executed on the SPIM simulator.

http://www.cs.arizona.edu/~debray/Teaching/CSc453/�

- 352 -

The project consists of a sequence of four programming assignments with each assignment builds on those before
it:

1. html2txt or latex2html: a simple translator from a subset of HTML to ordinary text (html2txt) or from a
subset of LaTeX to HTML (latex2html). Objective: learn how to use flex and yacc/bison.

2. Scanner and parser. Use flex and yacc/bison to generate a front-end for a subset of C.
3. Type-checking.
4. Code generation.

Each assignment is about 2-3 weeks long, with a week between assignments for students to fix bugs before the
next assignment. Students are expected to work individually, and typically spend about 15-20 hours per week on
the project.

Course textbooks and materials
Lecture notes written by the instructor largely replace a textbook. The book Introduction to Compiler Design, by
T. Mogensen, is suggested as an optional text (a free version is available online as Basics of Compiler Design).

Why do you teach the course this way?
The class lectures have the dual purpose of focusing on compiler-specific topics in depth but also discussing the
variety and scope of these translation problems and presenting compilation as an instance of a broader class of
translation problems. Translation problems mapping one kind of structured representation to another arise in a lot
of areas of computing: compilers are one example of this, but there are many others, including web browsers
(Firefox, Chromium), graph drawing tools (dot, VCG), and document formatting tools (LaTeX), to name a few.
Understanding the underlying similarities between such tools can be helpful to students in recognizing other
examples of such translation problems and providing guidance on how their design and implementation might be
approached. It also has the effect of making compiler design concepts relevant to other aspects of their computer
science education. I find it helpful to revisit the conceptual analogies between compilers and other translation
tools (see above) repeatedly through the course, as different compiler topics are introduced.

The programming project is aimed at giving students a thorough hands-on understanding of the nitty-gritty details
of implementing a compiler for a simple language.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours
PL Program Representation All 4
PL Language Translation and

Execution
All 5

PL Syntax Analysis All 8
PL Compiler Semantic Analysis All 8
PL Code Generation All 5
PL Runtime Systems The following topics are covered: Target-platform

characteristics such as registers, instructions,
bytecodes; Data layout for activation records; Just-in-
time compilation.

5

Additional topics
• Structure and content of object files
• static vs. dynamic linking
• Position-independent code
• Dynamic linking

http://www.springer.com/computer/swe/book/978-0-85729-828-7�
http://www.diku.dk/~torbenm/Basics/index.html�

- 353 -

CSCI 434T: Compiler Design, Williams College

Williamstown, MA
Stephen N. Freund
freund@cs.williams.edu
http://www.cs.williams.edu/~freund/cs434-exemplar/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Programming Languages (PL) 33

Architecture and Organization (AR) 3

Software Engineering (SE) 2

Where does the course fit in your curriculum?
Compiler Design is a senior-level course designed for advanced undergraduates who have already taken courses
on computer organization, algorithms, and theory of computation. It is an elective for the Computer Science
major.

What is covered in the course?
Specific topics covered in this course include:

• Overview of compilation
• Lexical analysis
• Context-free grammars, top-down and bottom-up parsing, error recovery
• Abstract syntax trees, symbol tables
• Lexical scoping, types (primitive, record, arrays, references), type checking
• Object-oriented type systems, subtyping, interfaces, traits
• Three-address code and other intermediate representations
• Code generation, data representation, memory management, object layout
• Code transformation and optimization
• Class hierarchy analysis
• Dataflow analysis
• Register allocation
• Run-time systems, just-in-time compilation, garbage collection

What is the format of the course?
This course is offered as a tutorial, and there are no lectures. Students meet with the instructor in pairs each week
for 1-2 hours to discuss the readings and problem set questions. In addition, students work in teams of two or
three on a semester-long project to build a compiler for a Java-like language. The target is IA-64 assembly code.
Students submit weekly project checkpoints that follow the topics discussed in the tutorial meetings. The last
three weeks are spent implementing a compiler extension of their own design. The students also attend a weekly
2-hour lab in which general project issues and ideas are discussed among all the groups.

The project assignment, and some of the related problem set material, is based on a project developed by Radu
Rugina and others at Cornell University.

mailto:freund@cs.williams.edu�
http://www.cs.williams.edu/~freund/cs434-exemplar/�

- 354 -

Given the nature of tutorials, it can be difficult to quantify the number of hours spent on a topic. Below, I base the
hours dedicated to each unit by assuming roughly 3 hours of contact time with the students during each week of
the 12-week semester.

How are students assessed?
Students are assessed via the preparedness and contributions to the weekly discussions, by their written solutions
to problem set questions, and by the quality and correctness of their compiler implementations. Students also give
presentations on their final projects to the entire class.

Course textbooks and materials
The primary textbook is Compilers: Principles, Techniques, and Tools by Aho, Lam, Sethi, and Ullman. Papers
from the primary literature are also included when possible. Supplementary material for background reading and
for the project is provided on a website.

Why do you teach the course this way?
The tutorial format offers a unique opportunity to tailor material specifically to student interest, and to allow them
to explore and learn material on their own. The interactions between tutorial partners in the weekly meetings
develops communication skills and thought processes that cannot be as easily fostered in lecture-style courses.
The group projects also enable students to develop solid software engineering practices and to appreciate the
theoretical foundations of each phase of compilation.

The students all enjoy the tutorial-style and collaborative environment it fosters, and they typically rate this class
among the most challenging offered at Williams.
Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

PL Basic Type Systems All (mostly review of existing knowledge) 2

PL Program
Representation

All 2

PL Language Translation
and Execution

All 3

PL Syntax Analysis All 5

PL Compiler Semantic
Analysis

All 5

PL Code Generation All 5

PL Runtime Systems All 5

PL Static Analysis Relevant program representations, such as basic blocks, control-
flow graphs, def-use chains, static single assignment, etc.
Undecidability and consequences for program analysis
Flow-insensitive analyses: type-checking
Flow-sensitive analyses: forward and backward dataflow analyses
Tools and frameworks for defining analyses
Role of static analysis in program optimization
Role of static analysis in (partial) verification and bug-finding

6

SE Software Design System design principles
Refactoring designs and the use of design patterns.

2

- 355 -

AR Machine-level
representation of data

Bits, bytes, and words
Representation of records and arrays
(This is mostly review, in the context of IA-64)

1

AR Assembly level
machine organization

Assembly/machine language programming
Addressing modes
Subroutine call and return mechanisms
Heap vs. Static vs. Stack vs. Code segments
(This is mostly review, in the context of IA-64)

2

- 356 -

Compilers, Stanford University

Stanford, CA
Alex Aiken
aiken@cs.stanford.edu
Stanford URL of recent offering: http://class2go.stanford.edu/CS143/Spring2013
Coursera self-study course: https://class.coursera.org/compilers-selfservice/class/index

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Programming Languages (PL) 22.5

Where does the course fit in your curriculum?
This course is aimed at students in the 2nd or 3rd year of the Computer Science (CS) major, after both our
introductory theory and introductory systems classes have been taken. Stanford has a track system for
undergraduates to specialize in subareas of CS. Compilers is not required for any track but is one of the options for
the systems track and most students in the systems track take the class.

What is covered in the course?
The course covers the design, definition and implementation of programming languages. Students who have been
through the class will be able to specify and implement language syntax using regular expressions or context free
grammars as appropriate. Students will understand the distinction between no typing, static typing and dynamic
typing and be able to implement simple static type systems as well as perform standard syntax analysis for scoping
of global, local, and class-visible names. Students will understand the difference between compile time and run time
and be able to reason about and make decisions about what should be done at which time. Students will also be
introduced to formal semantics as a form of specification of the behavior of a programming language and be able to
use formal semantics in the construction of a compiler. Run-time structures such as the stack, activation records and
static data such as string constants and dispatch tables are covered. All of the topics up to this point will also be
used as part of a large course project to build a simple compiler for a statically typed object oriented language.
Additional topics include register allocation, garbage collection, dataflow analysis, and optimization.

What is the format of the course?
Stanford is on the quarter system; each quarter is 10 weeks. The class meets for lecture 19 times for 75 minutes
each for a total of 22.5 hours (2.5 contact hours per week). There are extensive office hours in lieu of a discussion
or recitation section.

How are students assessed?
Students have 4 written assignments on the theory (one each on lexical analysis, parsing, type checking and runtime
organization, and code generation and associated topics such as register allocation and garbage collection). There is
also a course project where students implement a compiler for a statically typed object oriented language. I use the
COOL compiler project, which allows students to implement the compiler in either Java or C++. Finally there are
two exams, a midterm and a final. The written assignments are about 10% of the grade, the project 50%, and the
exams 40%.

Course textbooks and materials
I do not teach from a textbook, but instead provide extensive lecture notes and videos and recommend one of several
books as a reference if the students wish to learn more.

http://class2go.stanford.edu/CS143/Spring2013�
https://class.coursera.org/compilers-selfservice/class/index�

- 357 -

Why do you teach the course this way?
I teach the course to try to emphasize the combination of theory and systems knowledge needed to design and
implement a programming language well. Theory concepts are used directly in the project (e.g., the specification
the students are given for the code generation phase is a formal operational semantics of the language). This is
considered a challenging class, but one in which students learn a great deal. The compiler project is also often the
biggest system that students have built, so there is some emphasis on helping students learn how to think about and
organize a large software project.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

PL Object-Oriented
Programming

These topics are covered in introductory courses from the programmer’s
perspective and the emphasis in this class is on implications for language
design and implementation. Topics covered:
Classes, fields, methods, constructors
Subclasses, inheritance, method overriding
Dynamic dispatch
Subtyping, relationship between subtyping and inheritance
Visibility of class members.

1.25

PL Basic Type
Systems

A type as a set of values with a set of operations.
Primitive types, user-defined types.
Association of types to program constructs.
Type safety, static vs. dynamic typing.

Parametric polymorphism is not covered in this course but is covered in a
masters-level course on programming languages that a significant number of
undergraduates take.

1.25

PL Program
Representation
and Execution

Abstract syntax trees vs. concrete syntax. Alternative internal representations
of programs, such as 3-address code.

1.25

PL Language
Translation and
Execution

Interpreters vs. compilers, compiling to different levels of abstraction
(intermediate code, assembly code). The distinction between compile-time and
run-time actions. Run-time representations of objects and method tables. Run-
time organization of memory and implementation of standard constructs
(assignment, loops, if-then-else, method call). Automatic memory
management, including mark-and-sweep, stop-and-copy, and reference
counting; idea of reachable objects over-approximating the set of live objects.
Manual memory management is not covered in this class, but is covered in our
introductory sequence. The implementation of loops and recursion is covered,
but tail-calls and their optimization are not covered.

2.5

PL Syntax Analysis Regular languages, deterministic and non-deterministic finite automata; these
topics are covered quickly as review of earlier discrete math classes. Lexical
analysis. Top down and bottom up parsing, including Recursive descent, LL,
and SLR parsing. Semantic actions.

7.5

PL Compiler
Semantic Analysis

Abstract syntax trees, scope and binding, type checking, non-circular attribute
grammars, both S- and L-attributed.

1.25

- 358 -

PL Code Generation Method dispatch, graph-coloring based register allocation, basic block and
peephole optimizations. Rudimentary instruction selection is covered. In most
years instruction scheduling is not covered; this is included in a masters-level
course on advanced compilation.

1.25

PL Runtime Systems Garbage collection (3 kinds, mark-and-sweep, stop-and-copy, reference
counting). Activation trees, activation records, elements of and organization of
an activation record. Calling sequence (caller side and callee side).

1.25

PL Static Analysis Basic blocks, control-flow graphs. Static single assignment (simplified version
covering basic blocks only). Dataflow analysis, including an example of
forward analysis (constant propagation) and backwards analysis (liveness
analysis). Emphasis on the idea that static analyses make global information
local, computing facts at specific program points that can be used to make
decisions about optimization opportunities and program correctness. The
deeper theory of static analysis (limitations on decidability, may vs. must) is
covered in a masters-level course on advanced compilation.

2.5

PL Type Systems Type checking. Formal type rules, type environments, formal definition of
subtyping. Experience writing, reading, and reasoning about type rules.
Aliasing and its effect on subtyping rules. Formal type system for the language
being implemented in the course, which serves as a specification of the
semantic analysis.

1.25

PL Formal Semantics Syntax vs. semantics. Operational semantics of the language being
implemented in the course project, which serves as a specification of code
generation phase. Lambda calculus and other styles of semantics are not
covered in this course; these are included in a masters-level course on
programming languages.

1.25

PL Language
Pragmatics

Principles of language design, many examples from real languages of good and
questionable designs. Orthogonality. Evaluation order, precedence,
associativity.

1.25

Additional topics
One lecture is usually devoted to a current research topic or applying the ideas in the course to analyze the design of
mainstream language (e.g., Java).

Other comments
None.

- 359 -

Languages and Compilers, Utrecht University

Department of Information and Computing Science
The Netherlands
Johan Jeuring
J.T.Jeuring@uu.nl
http://www.cs.uu.nl/wiki/bin/view/TC/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Programming Languages (PL) 22

Algorithms and Complexity (AL) 10

Where does the course fit in your curriculum?
This is a second year elective course in the Computer Science program of Utrecht University. It assumes students
have taken courses on imperative and functional programming.

What is covered in the course?
The intended learning objectives of this course are:

• To describe structures (i.e., “formulas”) using grammars;
• To parse, i.e., to recognize (build) such structures in (from) a sequence of symbols;
• To analyze grammars to see whether or not specific properties hold;
• To compose components such as parsers, analyzers, and code generators;
• To apply these techniques in the construction of all kinds of programs;
• To familiarize oneself with the concept of computability.

Topics:
• Context-free grammars and languages
• Concrete and abstract syntax
• Regular grammars, languages, and expressions
• Pumping lemmas
• Grammar transformations
• Parsing, parser design
• Parser combinators (top-down recursive descent parsing)
• LL parsing
• LR parsing
• Semantics: datatypes, (higher-order) folds and algebras

What is the format of the course?
This course consists of 16 2-hour lectures, and equally many lab sessions, in which students work on both pen-
and-paper exercises and programming lab exercises, implementing parsers and components of compilers.

How are students assessed?
Students are assessed by means of a written test halfway (2 hours) and at the end of the course (3 hours), and by
means of three programming assignments. Students should spend 32 hours on lectures, another 32 hours on
attending lab sessions, 75 hours on reading lecture notes and other material, and 75 hours on the lab exercises.

- 360 -

Course textbooks and materials
We have developed our own set of lecture notes for the course. We use Haskell to explain all concepts in the
course, and the students use Haskell to implement the programming assignments. The lecture notes for LR parsing
have not been fully developed, and for this we use a chapter from a book from Roland Backhouse.

Why do you teach the course this way?
This course is part of a series of courses, following a course on functional programming, and followed by a course
on compiler construction and a course on advanced functional programming. Together these courses deal with
programming concepts, languages and implementations. All these courses use Haskell as the main programming
language, but several other programming languages or paradigms are used in the examples. For example, in the
third lab exercise of this course, the students have to write a small compiler for compiling the imperative core of
C# to a stack machine.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

PL Program representation All 1

PL Language Translation and
Execution

Interpretation vs. compilation, language translation pipeline 2

PL Syntax analysis All 8

PL Compiler Semantic Analysis Abstract syntax trees, scope and binding resolution, declarative
specifications

4

PL Code Generation Very introductory 1

PL Language Pragmatics Some language design 2

AL Basic Automata
Computability and
Complexity

Finite-state machines, regular expressions, context-free
grammars.

4

AL Advanced Automata Theory
and Computability

Regular and context-free languages. DFA, NFA, but not PDA.
Chomsky hierarchy, pumping lemmas.

6

PL Functional Programming Defining higher-order operations 4

Many, but not all, of the topics of the Knowledge Units above not covered appear in our course on Compiler
Construction.

- 361 -

COMP 412: Topics in Compiler Construction, Rice University

Houston, TX
Keith Cooper
keith@rice.edu
http://www.clear.rice.edu/comp412

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Programming Languages (PL) 21

Algorithms and Complexity (AL) 5

Where does the course fit in your curriculum?
COMP 412 is an optional course. It is typically taken by fourth-year undergraduate students and first-year graduate
students in either the Professional Masters’ degree program or the PhD program. Some advanced third year
students also take the course.
Enrollment ranges from 40 to 70 students.

What is covered in the course?
Scanning, parsing, semantic elaboration, intermediate representation, implementation of the procedure as an
abstraction, implementation of expressions, assignments, and control-flow constructs, brief overview of
optimization, instruction selection, instruction scheduling, register allocation. (Full syllabus is posted on the
website, listed above.)

What is the format of the course?
The course operates as a face-to-face lecture course, with three contact hours per week. The course includes three
significant programming assignments (a local register allocator, an LL(1) parser generator, and a local instruction
scheduler). The course relies on an online discussion forum (Piazza) to provide assistance on the programming
assignments.

How are students assessed?
Students are assessed on their performance on three exams, spaced roughly five weeks apart, and on the code that
they submit for the programming assignments. Exams count for 50% of the grade, with the other 50% derived
from the programming assignments.

The programming assignments take students two to three weeks to complete.

Course textbooks and materials
The course uses the textbook Engineering a Compiler by Cooper and Torczon. (The textbook was written from
the course.) Full lecture notes are available online (see course web site).
Students may use any programming language, except Perl, in their programming assignments. Assignments are
evaluated based on a combination of the written report and examination of the code.

Why do you teach the course this way?
This course has evolved, in its topics, coverage, and programming exercises, over the last twenty years. Students
generally consider the course to be challenging—both in terms of the number and breadth of the concepts
presented and in terms of the issues raised in the programming assignments. We ask students to approximate the

- 362 -

solutions to truly hard problems, such as instruction scheduling; the problems are designed to have a high ratio of
thought to programming.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

AL Basic Automata
Computability and
Complexity

Finite state machines, regular expressions, and context-free grammars 2

AL Advanced
Automata
Theory and
Computability

DFA & NFAs (Thompson’s construction, the subset construction,
Hopcroft’s DFA minimization algorithm, Brzozowski’s DFA minimization
algorithm), regular expressions, context-free grammars (designing CFGs
and parsing them — recursive descent, LL(1), and LR(1) techniques

3

PL Program
Representation

Syntax trees, abstract syntax trees, linear forms (3 address code), plus
lexically scoped symbol tables

2

PL Language
Translation &
Execution

Interpretation, compilation, representations of procedures, methods, and
objects, memory layout (stack, heap, static),
Automatic collection versus manual deallocation

4

PL Syntax Analysis Scanner construction
Parsing: top-down recursive descent parsers, LL(1) parsers and parser
generators, LR(1) parsers and parser generators

6

PL Compiler Semantic
Analysis

Construction of intermediate representations, simple type checking, lexical
scoping, binding, name resolutions; attribute grammar terms, evaluation
techniques, and strengths and weaknesses

3

PL Code Generation How to implement specific programming language constructs, as well as
algorithms for instruction selection (both tree pattern matching and
peephole-based schemes),
Instruction scheduling, register allocation

6

Other comments
The undergraduate compiler course provides an important opportunity to address three of the expected
characteristics of Computer Science graduates:

Appreciation of the Interplay Between Theory and Practice: The automation of scanners and parsers is one of the
best examples of theory put into practical application. Ideas developed in the 1960s became commonplace tools in
the 1970s. The same basic ideas and tools are (still) in widespread use in the 2010’s.

At the same time, compilers routinely compute and use approximate solutions to intractable problems, such as
instruction scheduling and register allocation which are NP-complete in almost any realistic formulation, or
constant propagation which runs into computability issues in its more general forms. In theory classes, students
learn to discern the difference between the tractable and the intractable; in a good compiler class, they learn to
approximate the solution to these problems and to use the results of such approximations.

System-level Perspective: The compiler course enhances the students’ understanding of systems in two quite
different ways. As part of learning to implement procedure calls, students come to understand how an agreement
on system-wide linkage conventions creates the necessary conditions for interoperability between application code
and system code and for code written in different languages and compiled with different compilers. In many ways,

- 363 -

separate compilation is the key feature that allows us to build large systems; the compiler course immerses
students in the details of how compilation and linking work together to make large systems possible.

The second critical aspect of system design that the course exposes is the sometimes subtle relationship between
events that occur at different times. For example, in a compiler, events occur at design time (we pick algorithms
and strategies), at compiler build time (the parser generator constructs tables), at compile time (code is parsed,
optimized, and new code is emitted), and runtime (activation records are created and destroyed, closures are built
and executed, etc.). Experience shows that the distinction between these various times and the ways in which
activities occurring at one time either enable or complicate activities at another time is one of the most difficult
concepts in the course to convey.

Project experience: In this particular course, the project s are distinguished by their intellectual complexity rather
than their implementation complexity. Other courses in our curriculum provide the students with experience in
large-scale implementation and project management. In this course, the focus is on courses with a high ratio of
thought time to coding time. In particular, the students solve abstracted versions of difficult problems: they write a
register allocator for straight-line code; they build a program that parses grammars written in a modified Backus-
Naur Form and generates LL(1) parse tables; and they write an instruction scheduler for straight-line code.
Students work in their choice of programming language. They typically reuse significant amount of code between
the labs.

- 364 -

CSC 131: Principles of Programming Languages, Pomona College

Claremont, CA 91711
Kim B. Bruce
kim@cs.pomona.edu
http://www.cs.pomona.edu/~kim/CSC131F12/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Programming Languages (PL) 38

Parallel and Distributed Computing (PD) 4

Where does the course fit in your curriculum?
This course is generally taken by juniors and seniors, and has a prerequisite of Data Structures (CSC 062) and
Computability and Logic (CSC 081). It is required for all CS majors.

What is covered in the course?
A thorough examination of issues and features in programming language design and implementation, including
language-provided data structuring and data-typing, modularity, scoping, inheritance, and concurrency.
Compilation and run-time issues. Introduction to formal semantics. Specific topics include:

• Overview of compilers and Interpreters (including lexing & parsing)
• Lambda calculus
• Functional languages (via Haskell)
• Formal semantics (mainly operational semantics)
• Writing interpreters based on formal semantics
• Static and dynamic type-checking
• Run-time memory management
• Data abstraction & modules
• Object-oriented languages (illustrated via Java and Scala)
• Shared memory parallelism/concurrency (semaphores, monitors, locks, etc.)
• Distributed parallelism/concurrency via message-passing (Concurrent ML, Scala Actors)

What is the format of the course?
The course meets face-to-face in lecture format for 3 hours per week for 14 weeks.

How are students assessed?
There are weekly homework assignments as well as take-home midterm and final exams. Students are expected to
spend 6 to 8 hours per week outside of class on course material. Problem sets include both paper-and-pencil as
well as programming tasks.

Course textbooks and materials
The course text is “Concepts in Programming Languages”, by John Mitchell, supplemented by various readings.
Lecture notes are posted, as are links to supplementary material on languages and relevant topics.

Why do you teach the course this way?
This course combines two ways of teaching a programming languages course. On the one hand it provides an
overview of the design space of programming languages, focusing on features and evaluating them in terms of
how they impact programmers. On the other hand, there is an important stream focusing on the implementation of

- 365 -

programming languages. A major theme of this part of the course is seeing how formal specifications of a
language (grammar, type-checking rules, and formal semantics) lead to an implementation of an interpreter for the
language. Thus the grammar leads to a recursive descent compiler, type-checking rules lead to the implementation
of a type-checker, and the formal semantics leads to the interpretation of abstract syntax trees.

The two weeks on parallelism/concurrency support in programming languages reflects my belief that students
need to understand how these features work and the variety of ways of supporting parallelism concurrency –
especially as we don’t know what approach will be the most successful in the future.

From the syllabus: “Every student passing this course should be able to:

• Quickly learn programming languages and how to apply them to effectively solve programming
problems.

• Rigorously specify, analyze, and reason about the behavior of a software system using a formally defined
model of the system's behavior.

• Realize a precisely specified model by correctly implementing it as a program, set of program
components, or a programming language.”

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

PL Object-Oriented
Programming

All (with assumed knowledge of OOP from CS1 and CS2 in
Java)

5

PL Functional Programming All (building on material from earlier course covering
functional programming in ML)

5

PL Event-Driven & Reactive
Programming

Previously covered in CS 1 & CS 2 0

PL Basic Type Systems All 5

PL Program Representation All 2

PL Language Translation and
Execution

All 3

PL Syntax Analysis Lexing & top-down parsing (regular expressions and cfg’s
covered in prerequisite)

2

PL Compiler Semantic Analysis AST’s, scope, type-checking & type inference 1

PL Advanced Programming
Constructs

Lazy evaluation & infinite streams
Control abstractions: Exception Handling, continuations,
monads
OO abstraction: multiple inheritance, mixins, Traits,
multimethods
Module systems
Language support for checking assertions, invariants, and pre-
post-conditions

3

PL Concurrency and Parallelism Constructs for thread-shared variables and shared-memory
synchronization
Actor models 
Language support for data parallelism

2

- 366 -

PL Type Systems Compositional type constructors
Type checking
Type inference
Static overloading

2

PL Formal Semantics Syntax vs. semantics 
Lambda Calculus
Approaches to semantics: Operational, Denotational, Axiomatic
Formal definitions for type systems

6

PL Language Pragmatics Principles of language design such as orthogonality
Evaluation order
Eager vs. delayed evaluation

2

PD Parallelism Fundamentals Multiple simultaneous computations
Goals of parallelism vs. concurrency
Programming constructs for creating parallelism,
communicating, and coordinating
Programming errors not found in sequential programming

2

PD Parallel Decomposition Need for Communication & Coordination
Task-based decomposition: threads
Data-parallel decomposition: SIMD, MapReduce, Actors

1

PD Communication &
Coordination

Shared memory
Consistency in shared memory
Message passing
Atomicity: semaphores & monitors
Synchronization

1

- 367 -

CSCI 1730: Introduction to Programming Languages, Brown
University

Providence, RI, USA
Shriram Krishnamurthi
sk@cs.brown.edu
http://www.cs.brown.edu/courses/csci1730/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Programming Languages (PL) 35

Where does the course fit in your curriculum?
The course is designed for third- and fourth-year undergraduates and for PhD students who are either early in their
study or outside this research area. Over the years I have shrunk the prerequisites, so it requires only the first year
introductory computer science sequence, discrete math, and some theory. The course is not required. However, it
consistently has one of the highest enrollments in the department.

What is covered in the course?
The course uses definitional interpreters and related techniques to teach the core of several programming
languages.

The course begins with a quick tour of writing definitional interpreters by covering substitution, environments, and
higher-order functions. The course then dives into several topics in depth:

• Mutation
• Recursion and cycles
• Objects
• Memory management
• Control operators
• Types
• Contracts
• Alternate evaluation models

What is the format of the course?
Classroom time is a combination of lecture and discussion. We learn by exploration of mistakes.

How are students assessed?
There are about ten programming assignments and three written homeworks. The written ones are open-ended and
ask students to explore design alternatives. Advanced students are given a small number of classic papers to read.
Students spend over 10 and up to 20 hours per week on the course.

Course textbooks and materials
The course uses Programming Languages: Application and Interpretation by Shriram Krishnamurthi. All
programming is done in variations of the Racket programming language using the DrRacket programming
environment. Some versions of the course task students with writing programs in a variety of other languages such
as Haskell and Prolog.

- 368 -

Why do you teach the course this way?
My primary goal in the design of this course is to teach “the other 90%”: the population of students who will not
go on to become programming language researchers. My goal is to infect them with linguistic thinking: to
understand that by embodying properties and invariants in their design, languages can solve problems.

Furthermore, most of them, as working developers, will inevitably build languages of their own; I warn them
about classic design mistakes and hope they will learn enough to not make ones of their own.
The course is revised with virtually every offering. Each time we pick one module and try to innovate in the
presentation or learning materials.

Independent student feedback suggests the course is one of the most challenging in the department. Nevertheless,
it does not prevent high enrollments, since students seem to appreciate the linguistic mindset it engenders.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

PL Object-Oriented Programming Object representations and encodings, types 3

PL Functional Programming All 3

PL Basic Type Systems All 9

PL Language Translation and
Execution

Interpretation, representations 3

PL Runtime Systems Value layout, garbage collection, manual memory
management

3

PL Advanced Programming
Constructs

Almost all (varies by year) 6

PL Type Systems All 3

PL Language Pragmatics Almost all (varies by year) 3

PL Logic Programming Relationship to unification and continuations 2

- 369 -

CSC 2/454: Programming Language Design and Implementation,
University of Rochester

Rochester, NY
Michael L. Scott
scott@cs.rochester.edu
www.cs.rochester.edu/u/scott/254/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Programming Languages (PL) 35

Where does the course fit in your curriculum?
CSC 254 is required of all BS candidates in Computer Science. It is most often taken in the junior year, but
sometimes the sophomore or senior. The CS1–CS2 sequence (locally CSC 171–172) is a prerequisite, as is a local
course (CSC 173) that covers (among other things) finite and pushdown automata, regular expressions, and
recursive descent parsing. The course can be taken for graduate credit (as CSC 454) by first-year MS and PhD
students who lack comparable undergraduate background. The course is offered once a year—recently to
approximately 40 students.

What is covered in the course?
CSC 2/454 is an introduction to the design and implementation of programming languages. From the design point
of view, it covers language features as tools for expressing algorithms. From the implementation point of view, it
covers compilers, interpreters, and virtual machines as tools to map those features efficiently onto modern computer
hardware. The course touches on a wide variety of languages, both past and present, with an emphasis on modern
imperative languages, such as C++ and Java, and, to a lesser extent, on functional languages such as Scheme and
Haskell, and dynamic (scripting) languages such as Perl, Python, and Ruby. Rather than dwell on the features of
any particular language, it focus on fundamental concepts and on the differences among languages, the reasons for
those differences, and the implications those differences have for language implementation.
Specific topics include:

• formal aspects of syntax and semantics
• naming, scoping, and binding
• scanning, parsing, semantic analysis, and code generation
• control flow, subroutines, exception handling, and concurrency
• type systems, data abstraction mechanisms, and polymorphism
• run-time systems, virtual machines, and storage management
• imperative, functional, logic-based, and object-oriented programming paradigms
• programming environments and tools

What is the format of the course?
254 has historically been taught in a fairly traditional formal, with two 75-minute lectures per week. The instructor
usually works at the blackboard, however, rather than using prepared slides, and the lectures are highly interactive:
student feedback determines the pace and, to a significant extent, the topics that are covered. We are considering the
introduction of peer-led team learning “workshops,” which have been used with great success in the department’s
intro-level courses.

mailto:scott@cs.rochester.edu?subject=CS%202013%20Course%20Exemplar�
http://www.cs.rochester.edu/u/scott/254/�

- 370 -

How are students assessed?
There are typically six major programming projects, most of which attempt to combine experience with a particular
programming paradigm or mechanism (e.g., concurrency, templates, first-class functions, or glue-style scripting)
with a language implementation issue (e.g., syntax error handling, semantic analysis, interpretation, or symbol table
management).
The first project of the semester asks students to solve a simple combinatorial problem in 5 or 6 different (often
unfamiliar to them) languages—e.g., Ada, C#, Haskell, Prolog, and Python.
Each project is expected to take perhaps 10 hours of time, spread over a two-week period. To encourage students to
begin thinking about projects as soon as they are assigned, most require a set of simple familiarization questions to
be answered (in writing) within the first three days. For the programming itself, students can elect to work alone or
in pairs (with no difference in grading).
There is typically a midterm and a final exam. Projects count for approximately half of the course grade, exams for
the other half. In some semesters, students have been asked to turn in written answers to the routine review
questions in the text, to encourage them to keep up with the reading.

Course textbooks and materials
As text, the course uses the instructor’s Programming Language Pragmatics (third edition, Morgan Kaufmann,
2009). Reading assignments cover most of chapters 1–4 and 6–10, and about half each of chapters 12–15. Major
assignments are typically given in C++ (for templates); Java (for concurrency); Scheme or Haskell; and Perl,
Python, or Ruby. Students are provided with access to Linux machines, though many opt to do most of the work on
personal Windows or Macintosh machines, and then port it to the Linux environment (where grading occurs).

Why do you teach the course this way?
Like many schools, Rochester once had a “survey of programming languages” course and a separate compiler
course. The current course reflects the conviction that language design and language implementation must be
studied together, because neither can be fully understood without the other. We have separate, follow-on courses in
static and dynamic program analysis, and in language-level tools and software development. The goal is to not to
train students to be experts in the use of any particular language, but rather to give them the ability to pick up new
languages quickly, to choose wisely among them in various circumstances, and to appreciate what may be going on
“under the hood.”

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

PL Object-Oriented Programming All 2

PL Functional Programming All 2.5

PL Basic Type Systems All 2.5

PL Program Representation All 2.5

PL Language Translation and Execution All 5

PL Syntax Analysis Regular expressions and scanning; context-
free grammars; top-down vs. bottom-up
parsing; recursive descent & table-driven
top-down parsing; syntax error recovery

3.5

PL Compiler Semantic Analysis All 4

- 371 -

PL Runtime Systems Data layout; storage management; garbage
collection; static and dynamic linking;
language virtual machines

2.5

PL Advanced Programming Constructs Lazy evaluation; exception handling &
signals; mixin inheritance; reflection;
module systems; string manipulation via
pattern matching

4

PL Concurrency and Parallelism Thread creation and management; task
pools; data races; shared-memory
synchronization (language constructs,
implementation)

4

PL Type Systems Compositional type constructors; type
checking and inference; overloading;
polymorphism

1

PL Language Pragmatics Orthogonality; evaluation order,
precedence, associativity; eager vs. delayed
evaluation; iterators

1.5

Additional topics: none

Other comments

• Event-driven and Reactive Programming is covered in CSC 210 (Web Programming) and CSC 212
(Human-Computer Interaction).

• Code Generation and Static Analysis are covered in CSC 2/455 (Software Analysis and Improvement).
• Formal Semantics and Logic Programming are covered to a limited degree in CSC 173 (Computation and

Formal Systems)

- 372 -

CSE341: Programming Languages, University of Washington

Seattle, WA
Dan Grossman
djg@cs.washington.edu
http://www.cs.washington.edu/homes/djg/teachingMaterials/spl/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Programming Languages (PL) 32

Where does the course fit in your curriculum?
This course is aimed at second- and third-year students (after CS1 and CS2 but before advanced elective courses).
 It is no longer required, but it is recommended and the vast majority of students choose to take it.

A version of this course has also been taught as a MOOC on Coursera, first offered in January-March 2013.

What is covered in the course?
Successful course participants will:

• Internalize an accurate understanding of what functional and object-oriented programs mean
• Develop the skills necessary to learn new programming languages quickly
• Master specific language concepts such that they can recognize them in strange guises
• Learn to evaluate the power and elegance of programming languages and their constructs
• Attain reasonable proficiency in the ML, Racket, and Ruby languages and, as a by-product, become more

proficient in languages they already know
Course topics:

• Syntax vs. semantics
• Basic ML programming: Pairs, lists, datatypes and pattern-matching, recursion
• Higher-order functions: Lexical scope, function closures, programming idioms
• Benefits of side-effect free programming
• Type inference
• Modules and abstract types
• Parametric polymorphism
• Subtyping
• Dynamically typed functional programming
• Static vs. dynamic typing
• Lazy evaluation: thunks, streams, memoization
• Implementing an interpreter
• Implementing function closures
• Dynamically typed object-oriented programming
• Inheritance and overriding
• Multiple inheritance vs. interfaces vs. mixins
• Object-oriented decomposition vs. procedural/functional decomposition

… a few more minor topics in the same basic space

What is the format of the course?
The University of Washington uses a quarter system: courses are 10 weeks long with 3 weekly lectures and 1
weekly recitation section (4 total contact hours / week, for approximately 36 total not counting exams).

mailto:djg@cs.washington.edu�
http://www.cs.washington.edu/homes/djg/teachingMaterials/spl/�

- 373 -

How are students assessed?
Over 10 weeks, there are 7 programming assignments, 3 in Standard ML, 2 in Racket, and 2 in Ruby, each done
individually. There is a midterm and a final -- all homeworks and exams are available at the URL above. A
majority of students report spending 8-13 hours / week on the course.

Course Textbooks and Materials
Lecture notes (and/or mp4 videos) written by the instructor largely replace a textbook, though for additional
resources, we recommend Elements of ML Programming by Ullman, the Racket User’s Guide (available online),
and Programming with Ruby by Thomas. The lecture notes and videos are available.

Why do you teach the course this way?
This course introduces students to many core programming-language topics and disabuses them of the notion that
programming must look like Java, C, or Python. The emphasis on avoiding mutable variables and leveraging the
elegance of higher-order functions is particularly important. By not serving as an introductory course, we can rely
on students’ knowledge of basic programming (conditionals, loops, arrays, objects, recursion, linked structures).
Conversely, this is not an advanced course: the focus is on programming and precise definitions, but not theory,
and we do not rely on much familiarity with data structures, algorithmic complexity, etc. Finally, we use three real
programming languages to get students familiar with seeing similar ideas in various forms. Using more than three
languages would require too much treatment of surface-level issues. Using fewer languages would probably be
fine, but ML, Racket, and Ruby each serve their purposes very well. Moving the ML portion to OCaml or F#
would work without problem. Haskell may also be tempting but the course materials very much assume eager
evaluation.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

PL Object-Oriented
Programming

All, with some topics re-enforced from CS1/CS2 (hour count is for just
this course)

4

PL Functional
Programming

All 10

PL Basic Type
Systems

All 5

PL Program
Representation

All 2

PL Language
Translation and
Execution

Only these topics are covered: interpretation vs. compilation, run-time
representation of objects and first-class functions, implementation of
recursion and tail calls. The other topics are covered in another required
course.

2

PL Advanced
Programming
Constructs

Only these topics are covered: Lazy evaluation and infinite streams,
multiple inheritance, mixins, multimethods, macros, module systems,
“eval”. Exception handling and invariants, pre/post-conditions are
covered in another required course.

6

PL Type Systems Only these topics are covered (and at only a very cursory level): Type
inference, Static overloading

2

PL Language
Pragmatics

Only this topic is covered: Eager vs. delayed evaluation 1

Additional topics: Pattern-matching over algebraic data types

- 374 -

CSCI 334: Principles of Programming Languages, Williams College

Williamstown, MA
Stephen N. Freund
freund@cs.williams.edu
http://www.cs.williams.edu/~freund/cs334-exemplar/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Programming Languages (PL) 31

Parallel and Distributed Computing (PD) 5

Information Assurance and Security (IAS) 1

Where does the course fit in your curriculum?
This course is designed for any students who have successfully completed CS1 and CS2. It is required for the
Computer Science major.

What is covered in the course?
Specific topics covered in this course include:

• Functional programming concepts in Lisp
• Syntax, semantics, and evaluation strategies
• ML programming, including basic types, datatypes, pattern matching, recursion, and higher order

functions
• Types, dynamic/static type checking, type inference, parametric polymorphism
• Run-time implementations: stacks, heaps, closures, garbage collection
• Exception handlers
• Abstract types and modularity
• Object-oriented programming and systems design
• Object-oriented language features: objects, dynamic dispatch, inheritance, subtyping, etc.
• Multiple inheritance vs. interfaces vs. traits
• Scala programming, including most basic language features.
• Language-based security mechanisms and sandboxing
• Models of concurrency: shared memory and actors

What is the format of the course?
Semesters are twelve weeks long. This course meets twice per week for 75 minutes, with most of that time being
spent as a lecture, discussing primary literature, or working on interactive programming tasks. (Total lecture
hours: 30)

How are students assessed?
Students are assessed via weekly problem sets, a midterm, and a final. The problem sets include pencil-and-paper
exercises, as well as programming problems in various languages.

Course textbooks and materials
The primary textbook is “Concepts in Programming Languages”, by John Mitchell. This is augmented with
PowerPoint slides and web-based materials on additional topics, as well as some primary literature on the design
goals and histories of various programming languages.

mailto:freund@cs.williams.edu�
http://www.cs.williams.edu/~freund/cs334-exemplar/�

- 375 -

Why do you teach the course this way?
This course presents a comprehensive introduction to the principle features and overall design of programming
languages. The material should enable successful students to

• recognize how a language’s underlying computation model can impact how one writes programs in that
language;

• quickly learn new programming languages, and how to apply them to effectively solve programming
problems;

• understand how programming language features are implemented;
• reason about the tradeoffs among different languages; and
• use a variety of programming languages with some proficiency. These currently include Lisp, ML, Java,

C++, and Scala.
It is also designed to force students to think about expressing algorithms in programming languages beyond C,
Java and similar languages, since those are the languages most students have been previously exposed to in our
CS1, CS2, and systems courses.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

PL Object-Oriented
Programming

All (with assumed knowledge of OOP from CS1 and CS2 in Java) 4

PL Functional Programming All 6

PL Basic Type Systems All 5

PL Program Representation All 1

PL Language Translation and
Execution

All 3

PL Advanced Programming
Constructs

Lazy evaluation
Exception Handling
Multiple inheritance, Mixins, Traits
Dynamic code evaluation (“eval”)

3

PL Concurrency and
Parallelism

Constructs for thread-shared variables and shared-memory
synchronization
Actor models 
Language support for data parallelism

3

PL Type Systems Type inference
Static overloading

2

PL Formal Semantics Syntax vs. semantics 
Lambda Calculus

2

- 376 -

PL Language Pragmatics Principles of language design such as orthogonality
Evaluation order
Eager vs. delayed evaluation

2

IAS Secure Software Design
and Engineering

Secure Design Principles and Patterns (Saltzer and Schroeder,
etc.)
Secure Coding techniques to minimize vulnerabilities in code
Secure Testing is the process of testing that security requirements
are met (including Static and Dynamic analysis).

1

PD Parallelism Fundamentals All 2

PD Parallel Decomposition Need for communication and coordination/synchronization
Task-base decomposition
Data-parallel decomposition
Actors

2

PD Communication &
Coordination

Shared Memory
Message Passing
Atomicity
Mutual Exclusion

1

- 377 -

Programming Languages and Techniques I, University of
Pennsylvania

Philadelphia PA
Stephanie Weirich, Steve Zdancewic, and Benjamin C. Pierce
cis120@cis.upenn.edu
http://www.seas.upenn.edu/~cis120/

Knowledge Areas that contain topics and learning outcomes covered in the course
Knowledge Area Total Hours of Coverage

Programming Languages (PL) 24

Software Development Fundamentals (SDF) 13

Algorithms and Complexity (AL) 2

Discrete Structures (DS) 1

Human-Computer Interaction (HCI) 1

Where does the course fit in your curriculum?
Prerequisites: This is a second course though students with prior programming experience or an AP course often
do not take the first course (CIS110, which covers fundamentals of computer programming in Java, with emphasis
on applications in science and engineering).

Following courses: Discrete Math for CS students (CIS 160), Data structures (CIS 121), Intro to Computer
Systems (CIS 240)

Requirements: The course is required for CIS and related majors, but optional for all other students. Enrollment is
currently 160 students per term.

Student level: Most students are in their first or second year, but there are some non-CS exceptions

What is covered in the course?
• Programming Design and Testing
• Persistent Data Structures & Functional programming
• Trees & Recursion
• Mutable Data Structures (queues, arrays)
• First-class computation (objects, closures)
• Types, generics, subtyping
• Abstract types and encapsulation
• Functional, OO, and Event-driven programming

What is the format of the course?
Three 50-minute lectures per week + one 50 minute lab section (lead by undergraduate TAs)

How are students assessed?
Two midterm exams, plus a final exam

http://www.seas.upenn.edu/~cis120/�

- 378 -

A large portion of the grade comes from 10 weekly-ish programming projects:
 OCaml Finger Exercises
 Computing Human Evolution
 Modularity & Abstraction
 n-Body Simulation
 Mutable Collections
 GUI implementation
 Image Processing
 Adventure Game
 Spellcheck
 Free-form Game

Course textbooks and materials
Programming languages: OCaml and Java (in Eclipse), each for about half the semester
Materials: Lecture slides and instructor-provided course notes (~370 pages)

Why do you teach the course this way?
The goal of CIS 120 is to introduce students (with some programming experience) to computer science by
emphasizing design -- the process of turning informal specifications into running code. Students taking CIS120
learn how to design programs, including:
• test-driven development
• data types and data representation
• abstraction, interfaces, and modularity
• programming patterns (recursion, iteration, events, call-backs, collections, map-reduce, GUIs, ...)
• functional programming
• how and when to use mutable state
• inheritance and object-oriented programming
Beyond experience with program design, students who take the class should have increased independence of
programming, a firm grasp of CS fundamental principles (recursion, abstraction, invariants, etc.), and fluency in
core Java by the end of the semester.

The course was last revised Fall 2010 where we introduced OCaml into the first half of the semester.

The OCaml-then-Java approach has a number of benefits over a single-language course:
• It levels the playing field by presenting almost all the students with an unfamiliar language at the beginning.
• Since we use only a small part of OCaml, we can present enough about the language in a few minutes to dive

directly into real programming problems in the very first class (instead of having to spend several class
sessions at the beginning of the semester reviewing details of a larger language that will be familiar to many
but not all of the students).

• OCaml itself is a functional programming language that encourages the use of immutable data structures;
moreover its type system offers a rich vocabulary for describing different kinds of data.

• When we do come to reviewing aspects of Java in the second part of the course, the discussion is more
interesting (than if we’d started with this at the beginning) because there is a point of comparison.

- 379 -

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

AL Fundamental Data Structures
and Algorithms

Simple numerical algorithms
Sequential and binary search algorithms
Binary search trees
Common operations on Binary Search Trees

2*

DS Graphs and Trees Trees (with*)

HCI Programming Interactive
Systems

Model-view controller
Event management and user interaction
Widget classes and libraries

(with**)

PL Object-Oriented
Programming

All Core topics (Tier 1 and Tier 2) 7

PL Functional Programming All Core topics (Tier 1 and Tier 2) 7

PL Event-Driven and Reactive
Programming

All Core topics (Tier 1 and Tier 2) 4**

PL Basic Type Systems All Core topics except benefits of dynamic typing 3

PL Language Translation and
Execution

Run-time representation of core language constructs such
as objects (method tables) and first-class functions
(closures)
Run-time layout of memory: call-stack, heap, static data

2

PL Advanced Programming
Constructs

Exception Handling 1

SDF Algorithms and Design The concept and properties of algorithms (informal
comparison of algorithm efficiency)
Iterative and Recursive traversal of data structure
Fundamental design concepts and principles (abstraction,
program decomposition, encapsulation and information
hiding, separation of behavior and implementation)

3

SDF Fundamental Programming
Concepts

All Core topics (as a review) 1

SDF Fundamental Data Structures All Core topics except priority queues 5

SDF Development Methods All Core topics except secure coding and contracts 4

- 380 -

15-312 Principles of Programming Languages, Carnegie Mellon
University

Pittsburgh, PA, USA
Robert Harper
rwh@cs.cmu.edu
http://www.cs.cmu.edu/~rwh/courses/ppl

Knowledge Areas that contain topics and learning outcomes covered in the course
Programming Languages (PL) 20
Discrete Structures (DS) 12
Operating Systems (OS) 7
Parallel and Distributed Computing (PD) 5
Algorithms and Complexity (AL) 5

Where does the course fit in your curriculum?
This course fulfills a "Foundations Requirement" in the undergraduate curriculum, which may be met by taking one
of three courses. Approximately 60 students take this course per year, typically in their second or third year. The
core curriculum, consisting of 15-122 Imperative Programming, 15-150 Functional Programming, and 15-251 Ten
Powerful Ideas in Theoretical Computer Science are pre-requisites for this course.

What is covered in the course?
This is a course on the theory of programming languages. Why study these principles? Because they are
fundamental to the design, implementation, and application of programming languages.

Programming language design is often regarded as largely, or even entirely, a matter of opinion, with few, if any,
organizing principles, and no generally accepted facts. Dozens of languages are in everyday use in research
laboratories and in industry, each with its adherents and detractors. The relative merits of languages are debated
endlessly, but always, it seems, with an inconclusive outcome. Some would even suggest that all languages are
equivalent, the only difference being a matter of personal taste. Yet it is obvious that programming languages do
matter!

Yet can we really say that Java is “better” (or “worse”) than C++? Is Scheme “better” than Lisp? Is ML “better”
than either of them? Can we hope to give substance to any of these questions? Or should we simply reserve them for
late night bull sessions over a glass of beer? While there is certainly an irreducible subjective element in
programming language design, there is also a rigorous scientific theory of programming languages that provides a
framework for posing, and sometimes answering, such questions. To be sure there are good questions for which
current theory offers no solutions, but surprisingly many issues are amenable to a rigorous analysis, providing
definite answers to many questions. Programming language theory liberates us from the tar pit of personal opinion,
and elevates us to the level of respectable scientific discourse.

Programming language theory is fundamental to the implementation of programming languages, as well as their
design. While compiler writers have long drawn on the theory of grammars for parsing and on graph theory for
register allocation, the methods used to compile well-known languages such as C do not rely on deep results from
programming language theory. For relatively simple languages, relatively simple compilation methods suffice. But
as languages become more sophisticated, so must more sophisticated methods be employed to compile them.

For example, some programs can be made substantially more efficient if code generation is deferred until some run-
time data is available. A tight inner loop might be ``unrolled'' into a linear instruction sequence once the iteration
bound is determined. This is one example of partial evaluation, a technique for program specialization that rests on

http://www.cs.cmu.edu/~rwh/courses/ppl�

- 381 -

results from programming language theory. To take another example, modern languages such as ML (and proposed
extensions of Java) include what are known as parameterized types to support flexible code re-use. Parameterized
types complicate compilers considerably because they must account for situations in which the type of a variable or
function argument is not known at compile time. The most effective methods for handling parameterized types rely
on typed intermediate languages with quite sophisticated type systems. Here again programming language theory
provides the foundation for building such compilers.

Programming language theory has many applications to programming practice. For example, “little languages” arise
frequently in software systems -- command languages, scripting languages, configuration files, mark-up languages,
and so on. All too often the basic principles of programming languages are neglected in their design, with all too
familiar results. After all, the argument goes, these are “just” scripting languages, or “just” mark-up languages, why
bother too much about them? One reason is that what starts out as “just” an ad hoc little language often grows into
much more than that, to the point that it is, or ought to be, a fully-fledged language in its own right. Programming
language theory can serve as a guide to the design and implementation of special purpose, as well as general
purpose, languages.

Another application of the theory of programming languages is to provide a rigorous foundation for software
engineering. Formal methods for software engineering are grounded in the theory of specification and verification.
A specification is a logical formula describing the intended behavior of a program. There are all kinds of
specifications, ranging from simple typing conditions (“the result is a floating point number between 0 and 1”) to
complex invariants governing shared variables in a concurrent program. Verification is the process of checking that
the implementation indeed satisfies the specification. Much work has gone into the development of tools for
specifying and verifying programs. Programming language theory makes precise the connection between the code
and its specification, and provides the basis for constructing tools for program analysis.

The theory of programming languages provides a “reality check” on programming methodology, that part of
software engineering concerned with the codification of successful approaches to software development. For
example, the merits of object-oriented programming for software development are well known and widely touted.
Object-oriented methodology relies heavily on the notions of subtyping and inheritance. In many accounts these two
notions are confused, or even conflated into one concept, apparently because both are concerned with the idea of one
class being an enrichment of another. But careful analysis reveals that the two concepts are, and must be, distinct:
confusing them leads to programs that violate abstraction boundaries or even incur run-time faults.

The purpose of this course is to introduce the basic principles, methods, and results of programming languages to
undergraduate students who have completed the introductory sequence in computer science at Carnegie Mellon. I
intend for students to develop an appreciation for the benefits (and limitations) of the rigorous analysis of
programming concepts.

The development is based on type theory, a general theory of computation that encompasses all aspects of
programming languages, from the data with which we compute to the means by which we structure programs.
Programming language “features” are viewed as manifestations of type structure. Basic data structures such as
tuples arise as product types, trees and graphs arise as recursive types, and procedures arise as monadic function
types. Each language concept is defined by giving its statics, which specify how it interacts with other parts of a
program, and its dynamics, which specifies how it is executed on a computer. Type safety is the coherence of the
statics with the dynamics; safety is proved as a mathematical theorem governing each language feature. The
specific topics vary from one semester to the next, but the course typically covers finite and infinite data structures,
higher-order functions, continuations, mutable storage, data abstraction and polymorphism, so-called dynamic
typing, parallel computation, laziness, and concurrency, all presented in a single unifying framework.

What is the format of the course?
Two 80 minute lectures per week, one 60 minute recitation, plus office hours with either the teaching assistants or
the professor or both.

- 382 -

How are students assessed?
There is one homework assignment every two weeks involving both a theoretical component, in which students are
expected to prove theorems about languages, and a practical component, in which students are expected to
implement a language concept. The theoretical component develops a new idea or expands on an idea presented in
lecture, and the practical component builds on the theory to guide the implementation. There are two examinations,
an 80 minute open-book midterm examination, and a 180 minute open-book final examination. Homework accounts
for 50% of the grade, the midterm 20%, and the final 30%. Letter grades are assigned relative to overall class
performance, with borderline cases influenced by extra credit problems, participation in class and recitation, and
effort displayed through attendance at office hours and general quality of work. The assignments take
approximately 12 hours to complete.

Course textbooks and materials
Practical Foundations for Programming Languages by Robert Harper, Cambridge University Press, 2013. All
programs are written in Standard ML. All written material is typeset in LaTeX. All homework is graded by hand by
the teaching assistants.

Why do you teach the course this way?
The course has a reputation for being very challenging, but also very stimulating. The students appreciate greatly
the power of types as a scientific theory of programming, and develop great facility with using types and operational
semantics to model computational phenomena and to use these models to prove theorems about systems.

This course is not in any way a taxonomy of programming languages, nor is it a tour of the zoo of popular
languages. Rather it provides a solid grounding in the design, analysis, and implementation of programming
languages, which express a rich variety of computational phenomena.

Body of Knowledge coverage
KA Knowledge Unit Topics Covered Hours
AL Basic Analysis Work, Span,

Asymptotics
2

DS Sets, Relations,
Functions

Inductive definitions 1

DS Logic Constructive and
Classical Logic

1

DS Proof techniques Structural induction,
rule induction

1

OS Concurrency Synchronization,
Communication

6

OS Scheduling Scheduling parallel
computations

1

PD Parallelism
Fundamentals

Deterministic
parallelism, fork/join,
futures

3

PD Parallel Decomposition Fork/Join, Data
Parallelism

1

PD Parallel Algorithms,
Analysis, and
Programming

Parallelizability, Divide
and Conquer, Pipelining

1

PL Object-oriented
Programming

Dynamic Dispatch,
Static and Dynamic
Classification

3

PL Functional
Programming

Pattern matching,
Recursion,
Continuations,
Parallelism, Laziness

12

- 383 -

PL Event-driven and
Reactive Programming

Streams, Process
Calculus

3

PL Basic type systems Type systems for all
language features

3

PL Program Representation Abstract syntax, binding
and scope

1

PL Language Translation
and Execution

Concrete and Abstract
Syntax; Statics;
Dynamics

1

PL Compiler Semantic
Analysis

Type checking,
elaboration

3

PL Advanced Programming
Constructs

Laziness, streams,
Exceptions,
Continuations, Monads,
Dynamic Typing,
Dynamic Dispatch,
Modules

21

PL Type Systems Type safety
(preservation and
progress), Products,
Sums, Recursive Types

3

PL Formal Semantics Structural Operational
Semantics

2

Additional topics
Inductive definitions; abstract syntax with binding and scope; type systems; structural operational semantics; cost
semantics; deterministic parallelism; dynamic typing as a degenerate case of static typing; separation of concurrency
from parallelism; parametricity as a foundation for data abstraction; modal separation of expressions from
commands; distinction between variables (as in mathematics) and assignables (misnamed variables in common
languages); process calculus; recursive types; fixed points for functions and type operators.

Other comments
The classifications into areas and units does not fit my syllabus very well. Many of the topics overlap, so that the
total hours listed does not add up to the total hours for the course. Every single lecture involves type systems and
operational semantics, for example. It is impossible to allocate the time according to the given classifications.
Much of the classifications reflect obsolete conceptual analyses of programming languages in particular, and of
computer science more broadly, making it nearly impossible to fit my course into the given framework.

- 384 -

15-150: Functional Programming, Carnegie Mellon University

Pittsburgh, PA, USA
Daniel R. Licata and Robert Harper
{drl,rwh}@cs.cmu.edu
http://www.cs.cmu.edu/~15150/previous-semesters/2012-spring/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Programming Languages (PL) 18

Parallel and Distributed Computing (PD) 9

Algorithms and Complexity (AL) 8

Software Development Fundamentals (SDF) 7

Discrete Structures (DS) 5

Software Engineering (SE) 1

Where does the course fit in your curriculum?
Functional Programming is a required course, and is typically taken in a student’s first, second, or third semester.
Carnegie Mellon’s required introductory CS courses consist of this course on functional programming, a course on
imperative programming, a course on discrete math, a course on parallel data structures and algorithms, and a course
on computer systems. The only prerequisite for Functional Programming is a basic math course, though students
usually have some prior programming experience. Functional Programming is a prerequisite for the parallel data
structures and algorithms course. The course typically has an enrollment of 200-250 students per semester.
Approximately 1/3 to 1/2 of the students are CS majors, though most of the remaining students are intending to
minor or switch to a CS major.

What is covered in the course?
The four key skills that students learn are
• to write parallel functional programs
• to analyze programs’ sequential and parallel time complexity
• to write mathematical specifications and verify that programs meet them
• to structure programs using modules and abstract types

One central principle of the course design is that the skills of writing, analyzing, and verifying parallel programs are
integrated throughout the semester, rather than separated into units. In the first three weeks of the course, students
learn to write basic sequential functional programs on numbers and lists, to analyze their time complexity, and to
prove mathematical correctness specifications using induction. Parallelism is introduced in the fourth week:
Students learn to write data-parallel functional programs. They learn to analyze not just the usual sequential
complexity of programs, but their parallel complexity, and how this influences algorithm and data structure design.
An early example is sorting: One might think that mergesort would have logarithmic parallel complexity, because as
a sorting problem is repeatedly divided in half, the length of the longest dependency is logarithmic. However, with
lists as the data structure, mergesort has a linear parallel complexity, because just the operation of splitting a list into
two halves takes linear time, independently of how many processors are available. This motivates studying
mergesort on trees, which has a sublinear parallel complexity. Because the parallelism is deterministic, students can
reason about the behavior of their programs as if they were sequential, but run them in parallel. These
programming, analysis, and verification skills continue to be interwoven throughout the remainder of the course, as
students learn more advanced techniques.

- 385 -

Overall, students learn the following aspects of programming, analyzing, and proving:
o The organization of programming languages by types
o Computing by calculation: how programs are evaluated
o Recursive functions and proofs by induction
o Asymptotic analysis and recurrence relations
o Tree parallelism
o Datatypes, pattern-matching, and structural recursion/induction
o Parametric polymorphism
o Higher-order functions
o Continuation-passing style
o Exceptions
o Cost semantics
o Vector parallelism and map-reduce
o Modules and abstract types
o Imperative programming
o Interaction of parallelism and effects
o Laziness and streams

The course is taught in Standard ML. A variety of examples are used to teach these skills, including sequential and
parallel sorting, map-reduce algorithms, regular expression matching, n-body simulation, and game-tree search. The
assignments integrate parallel programming, analysis, and verification. For example, in one key assignment,
students write and prove correct a regular expression matcher, combining an advanced programming technique
called continuation-passing-style with sophisticated inductive reasoning. In another, students implement an
algorithm for n-body simulation that has good sequential and parallel complexity, using a mix of tree- and vector-
parallelism.

What is the format of the course?
The course lasts 14 weeks, and has two 80-minute lectures and one 80-minute lab per week (4 hours total). There
are also significant TA tutoring hours, where students may get help from the TAs while working on homework
problems.

How are students assessed?
There are 10 homework assignments; 8 are one-week assignments and 2 are longer projects. Most of the
assignments include programming, proving, and asymptotic analysis components. Students report spending an
average of 10-15 hours per week on the assignments. Students are allowed to collaborate on assignments, but
ultimately must recreate any collaborative work on their own. There are also 2 in-class exams (midterm and final),
and students are assessed on participation in weekly labs.

Course textbooks and materials
The course uses original lecture notes and assignments that were developed for this class. These are available from
the above Web page.

Why do you teach the course this way?
The course was designed in Spring 2011, as part of a revision of Carnegie Mellon’s introductory curriculum. It has
been taught 8 times over the course of 7 semesters/summers, in Pittsburgh and at CMU Qatar, by 5 different lead
instructors. Each instructor has his/her own take on the course, and the content varies a bit, but all versions teach the
skills and concepts mentioned above. The course has received excellent reviews, and students find it to be very
challenging but also very worthwhile and fun.

The 2013 ACM curriculum states that courses should prepare graduates to succeed in a rapidly changing field, and
be innovative and track recent developments in the field. This course contains novel foundational material on
parallelism and verification, which is based on current and ongoing research on these topics, and will prepare
students to apply these concepts in different settings throughout their careers.

The ACM curriculum gives parallelism special consideration as a design dimension for introductory classes. This
course teaches students to “think parallel,” with sequential programming as a special case. We accomplish this by

- 386 -

teaching a deterministic approach to parallelism that is based on recent research. By doing so, we are able to teach
the essential concepts of parallel programming, in a way that is no more difficult than teaching sequential
programming, and that is abstract enough that students will be able to apply these ideas in various settings. Students
have already returned from summer internships and reported that the course was helpful for their work.

Much of the verification component of the course has been taught for nearly two decades in a previous sophomore-
level course on functional programming, and students have been overwhelmingly positive about the advantages that
this way of thinking about programming gives them.

Regarding the design of the course activities, the most important aspect is integrating programming, analysis, and
proofs throughout the semester, as mentioned above. This gives students time to improve at all three skills, from
their introduction early in the course through various levels of deepening as the course progresses. Another
important aspect is a carefully planned series of lectures, labs (where the students work on problems with TA
assistance), and homework assignments. Students have responded especially well to the lab sessions, which bridge
the gap between listening to ideas in lecture and applying them on the homework assignments.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

AL Basic Analysis Big O notation: use, Recurrence relations, Analysis of
iterative and recursive algorithms

1

AL Algorithmic Strategies Brute-force algorithms, Divide-and-conquer, Recursive
backtracking

3

AL Fundamental Data Structures
and Algorithms

Worst case quadratic sorting algorithms (selection,
insertion), Worst or average case O(N log N) sorting
algorithms (quicksort, heapsort, mergesort), Binary
search trees, Pattern matching and string/text algorithms

3

AL Advanced Data Structures
Algorithms and Analysis

Balanced trees (e.g. red-black trees) 1

DS Basic logic Propositional logic, Logical connectives, Predicate logic 1

DS Proof techniques The structure of mathematical proofs, direct proofs,
disproving by counterexample, induction over natural
numbers, structural induction, weak and strong induction,
recursive mathematical definitions

4

PD Parallelism Fundamentals all 1
PD Parallel Decomposition Need for communication and

coordination/synchronization, Independence and
partitioning, Basic knowledge of parallel decomposition
concepts, Data-parallel decomposition

3

PD Parallel Algorithms, Analysis,
and Programming

All Core-Tier2 5

PL Functional Programming All 6
PL Basic Type Systems All Core-Tier1 plus parametric polymorphism 2
PL Advanced Programming

Constructs
Lazy evaluation and infinite streams, Control
Abstractions, Module systems

7

PL Concurrency and Parallelism Language support for data parallelism 1

- 387 -

PL Type systems Compositional type constructors, Informal introduction to
type checking/inference

2

SDF Algorithms and Design all 1
SDF Fundamental Programming

Concepts
all 2

SDF Fundamental Data Structures Records/structs, Abstract data types and their
implementation, References and aliasing, Linked lists,
Strategies for choosing the appropriate data structure

2

SDF Development Methods Program correctness, Simple refactoring, Documentation
and program style

2

SE Software Verification and
Validation

Verification and validation concepts, Static approaches
and dynamic approaches to verification

1

- 388 -

CIS 133J: Java Programming I, Portland Community College

Portland, OR
Cara Tang
cara.tang@pcc.edu
http://www.pcc.edu/ccog/default.cfm?fa=ccog&subject=CIS&course=133J

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Software Development Fundamentals (SDF) 26

Programming Languages (PL) 11

Algorithms and Complexity (AL) 3

Where does the course fit in your curriculum?
The prerequisite for this course is the course “Software Design”, which covers the basics of software design in a
language-independent manner.

This course can be taken in the first or second year. A two-course programming sequence is required for the CIS
degree, of which 3 are offered in the languages Java, VB.NET, and C++. This course is the first course in the Java
sequence. The second follow-on course is required and a third course in the sequence is optional.

About 290 students take the course each year. While most are working towards a CIS Associate’s degree, some
students take it for transfer credit at a local institution such as OIT (Oregon Tech), and some take it simply to learn
the Java language.

What is covered in the course?

• Object-oriented programming concepts
• Objects, classes
• State, behavior
• Methods, fields, constructors
• Variables, parameters
• Scope, lifetime
• Abstraction, modularization, encapsulation
• Method overloading
• Data types
• Conditional statements, logical expressions
• Loops
• Collection processing
• Using library classes
• UML class diagrams
• Documentation
• Debugging
• Use of an IDE

- 389 -

What is the format of the course?
The course is offered both face-to-face and online. In the face-to-face version, there are 40 classroom hours and at
least 20 optional lab hours. This is a quarter course and typically meets twice a week for two hours over 10 weeks,
with 2 optional lab hours each week.

All classrooms are equipped with a computer at each desk and the classroom time consists of both lecture and
activities on the computers. The lab time is unstructured; students typically work on assignments and ask questions
related to assignments or readings.

The online version of the course has pre-recorded videos guiding the students through the basic concepts and some
of the more difficult content. There are also in-house written materials that supplement the textbook. Discussion
boards provide a forum for questions and class discussions. Assignments and assessment are the same as in the
face-to-face course.

How are students assessed?
Assessment varies by instructor, but in all cases the majority of the final grade comes from programming projects
(e.g., 70%), and a smaller portion (e.g., 30%) from exams.

There are seven programming projects. In six of the projects, students add functionality to existing code, ranging
from adding a single one-line method in the first assignment to adding significant functionality to skeleton code in
the last assignment. In one project students write all code from scratch.

Students are expected to spend approximately two hours outside of class studying and working on assignments for
each one hour they spend in class.

The midterm and final exams consist of multiple choice and true-false questions, possibly with a portion where
students write a small program.

Course textbooks and materials
The textbook is Objects First with BlueJ, and the BlueJ environment is used throughout the course.

Why do you teach the course this way?
This course was previously taught with a more procedural-oriented approach and using a full-fledged IDE. The
switch was made to BlueJ and a true objects-first approach in order to concentrate more on the concepts and less
on syntactical and practical details needed to get a program running. In addition, there is an emphasis on good
program design.

The background and skill level of students in the course varies greatly, and some find it very challenging while
others have no trouble with the course.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

AL Fundamental Data
Structures and
Algorithms

Simple numerical algorithms and sequential search are covered 3

PL Object-Oriented
Programming

Core-tier1 and core-tier2 topics are covered including classes, objects
with state and behavior, encapsulation, visibility, collection classes. The
topics relating to inheritance, subtyping, and class hierarchies are not
covered in this course but are covered in the next course in the sequence.

8

- 390 -

PL Basic Type
Systems

All core-tier1 topics are covered with the exception of discussion of
static typing. Of the core-tier2 topics, only generic types are covered, in
connection with Java collection classes.

2

PL Language
Translation and
Execution

Interpretation vs. compilation is covered, in connection with the Java
language model as contrasted with straight compiled languages such as
C++.

1

SDF Algorithms and
Design

The role of algorithms, problem-solving strategies (excluding recursion),
and fundamental design concepts are covered. The concept and
properties of algorithms, including comparison, has been introduced in a
prerequisite course.

2

SDF Fundamental
Programming
Concepts

All topics except recursion are covered 10

SDF Fundamental Data
Structures

Arrays, records, strings, lists, references and aliasing are covered 12

SDF Development
Methods

All topics are covered, but some of the program correctness subtopics
only at the familiarity level

2

- 391 -

Introduction to Computer Science, Harvey Mudd College

Claremont, CA 91711
Zachary Dodds
dodds@cs.hmc.edu
https://www.cs.hmc.edu/twiki/bin/view/CS5

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Software Development Fundamentals (SDF) 24

Algorithms and Complexity (AL) 9

Architecture and Organization (AR) 7.5

Programming Languages (PL) 3

Parallel and Distributed Computing (PD) 1.5

Where does the course fit in your curriculum?
Every first-semester student at Harvey Mudd College – and about 100 students from sister institutions at the
Claremont Colleges – take one of the sections of this course. It has no prerequisites and is offered in three distinct
“colors”: CS 5 “gold” is for students with no prior experience, CS 5 “black” is for students with some experience,
and CS 5 “green” is a version with a biological context to all of the computational content. 275 students were in
CS 5 in fall 2012.

What is covered in the course?
This course has five distinct modules of roughly three weeks each:
(1) We begin with conditionals and recursion, practicing a functional problem-solving approach to a variety of
homework problems. Python is the language in which students solve all of their assignments in this module.
(2) In the second module students investigate the fundamental ideas of binary representation, combinational
circuits, machine architecture, and assembly language; they complete assignments in each of these topics using
Python, Logisim, and a custom-built assembly language named Hmmm. This unit culminates with the hand-
implementation of a recursive function in assembly, pulling back the curtain on the “magic” that recursion can
sometimes seem.
(3) Students return to Python in the third module, building imperative/iterative idioms and skills that build from
the previous unit’s assembly language jumps. Creating the Mandelbrot set from scratch, Markov text-generation,
and John Conway’s Game of Life are part of this module’s student work.
(4) The fourth module introduces object-oriented skills, again in Python, with students implementing a Date
calculator, a Board class that can host a game of Connect Four, and a Player class that implements game-tree
search.
(5) The fifth module introduces mathematical and theoretical facets of computer science, including finite-state
machines, Turing machines, and uncomputable functions such as Kolmogorov complexity and the halting
problem. Small assignments use JFLAP to complement this in-class content, even as students’ work centers on a
medium-sized Python final project, such as a genetic algorithm, a game using 3d graphics with the VPython
library, or a text-analysis web application.

What is the format of the course?
This is a three-credit course with two 75-minute lectures per week. An optional, but incentivized lab attracts 90+%
of the students to a two-hour supplemental session each week.

- 392 -

How are students assessed?
Students complete an assignment each week of 2-5 programming or other computational problems. Survey from
the past five years show that the average workload has been consistent at about 4 hours/week outside of structured
time, though the distribution does range from one hour to over 12. In addition, there is one in-class midterm exam
and an in-class final exam.

Course textbooks and materials
The course has a textbook that its instructors wrote for it: CS for Scientists and Engineers by its instructors, C.
Alvarado, Z. Dodds, R. Libeskind-Hadas, and G. Kuenning. Beyond that, we use Python, Logisim, JFLAP, and a
few other supplemental materials.

Why do you teach the course this way?
Our CS department redesigned its introductory CS offering in 2006 to better highlight the breadth and richness of
CS over the previous introductory offering. In addition, the department’s redesign sought to encourage more
women to pursue CS beyond this required experience. A SIGCSE ’08. [1] publication, reported the initial
curricular changes and their results, including a significant and sustained increase in the number of women CS
majors. Subsequent publications at SIGCSE, ITiCSE, and Inroads. [2,3,4,5] flesh out additional context for this
effort and several longer-term assessments of the resulting changes.

References:
[1] Dodds, Z., Libeskind-Hadas, R., Alvarado, C., and Kuenning, G. Evaluating a Breadth-First CS 1 for

Scientists. SIGCSE ’08.
[2] Alvarado, C., and Dodds, Z. Women in CS: An Evaluation of Three Promising Practices. SIGCSE ’10.
[3] Dodds, Z., Libeskind-Hadas, R., and Bush, E. When CS1 is Biology1: Crossdisciplinary collaboration as CS

context. ITiCSE '10.
[4] Dodds, Z., Libeskind-Hadas, R., and Bush, E. Bio1 as CS1: evaluating a crossdisciplinary CS context.

ITiCSE ’12.
[5] Alvarado, C., Dodds, Z., and Libeskind-Hadas, R. Broadening Participation in Computing at Harvey Mudd

College. ACM Inroads, Dec. 2012.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

AL AL/Algorithmic Strategies Brute-force, especially as expressed recursively 3

AL AL/Basic Automata, Computability
and Complexity

Precisely those, plus Kolmogorov Complexity 6

AR AR/Digital logic and digital systems Combinational logic design, as well as building flip-
flops and memory from them

3

AR AR/Machine level representation of
data

Binary, two’s complement, other bases 1.5

AR AR/Assembly level machine
organization

Assembly constructs, von Neumann architecture, the
use of the stack to support function calls (and recursion
in particular)

3

- 393 -

PD PD/Parallelism Fundamentals Parallelism vs. concurrency, simultaneous computation,
measuring wall-clock speedup

1.5

PL PL/Object-Oriented Programming Definition of classes: fields, methods, and constructors;
object-oriented design

3

SDF SDF/Algorithms and Design The concept and properties of algorithms; abstraction;
program decomposition

6

SDF SDF/Fundamental Programming
Concepts

Basic syntax and semantics of a higher-level language;
Variables and primitive data types; Expressions and
assignments; functions and recursive functions

12

SDF SDF/Fundamental Data Structures Arrays/Linked lists; Strings; Maps (dictionaries) 6

- 394 -

CpSc 215: Software Development Foundations, Clemson University

School of Computing, Clemson, SC USA 29634
Jason O. Hallstrom
Cathy Hochrine
Murali Sitaraman
Jacob Sorber
{jasonoh,chochri,murali,jsorber}@clemson.edu
http://people.cs.clemson.edu/~jasonoh/courses/cpsc_215_fall_2012/
http://www.cs.clemson.edu/resolve/teaching/teaching.html
www.cs.clemson.edu/resolve/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Software Development Fundamentals (SDF) 18

Programming Languages (PL) 12

Software Engineering (SE) 12

Where does the course fit in your curriculum?
CpSc 215 is a required course taken by all students pursuing a B.A. or B.S. in Computer Science, or a B.S. in
Computer Information Systems. It is typically taken in the first or second semester of the sophomore year. On
average, two sections of 25-30 students each take the course each semester. Students must receive a ‘C’ or better in
CpSc 102 or CpSc 210 prior to taking the course. These courses offer a foundation in basic computational problem
solving using the C programming language, with a brief introduction to object-oriented principles in C++. CpSc 215
serves as a pre-requisite for the majority of the upper-level courses in the computing curriculum at Clemson.

What is covered in the course?
Major topics covered, in their approximate order of coverage, include the following:

• Java Basics: Introduction, interpreted versus compiled languages
• Java Basics: Packages, classpaths, the Java compiler
• Java Basics: The Eclipse integrated development environment
• Java Basics: Parameter passing, shallow versus deep copying, value versus reference semantics
• Java Classes: Fields, methods, accessibility modifiers
• Java Classes: Constructors, overloading
• Java Classes: Static fields, methods, initializers
• Design Patterns: Introduction, historical context
• Design Patterns: Singleton, Flyweight
• Java Libraries: java.io.*, java.util.*, java.net.*, java.math.*
• Java Interfaces: Declaring, implementing, using as types
• Abstract Data Structures: Stacks, queues, sets
• Analytical Reasoning: Introduction to interface contracts
• Analytical Reasoning: Review of basic mathematical types (integers, tuples, strings, sets)
• Analytical Reasoning: Formal contract specifications
• Abstract Data Structures: Partial maps (dictionaries), linked-lists
• Analytical Reasoning: Contract-based Testing and Tracing
• Design Patterns: Decorator

http://people.cs.clemson.edu/~jasonoh/courses/cpsc_215_fall_2012/�
http://www.cs.clemson.edu/resolve/teaching/teaching.html�
http://www.cs.clemson.edu/resolve/�

- 395 -

• Analytical Reasoning: Assertion-checking wrappers (using Decorator)
• Java Exceptions: Concepts, declaring, throwing, catching
• Java Inheritance: Concepts, type system integration, polymorphism
• Design Patterns: Template Method, Strategy
• Algorithms as Components: Parameterized sorting implementations
• Java Generics: Concepts, syntax, subclassing issues
• Design Patterns: Observer
• Analytical Reasoning: Introduction to verification
• Analytical Reasoning: Software verification with objects
• Java Libraries: javax.swing.*, basic Swing development

What is the format of the course?
The course format includes 3 credit hours of lecture and 2 credit hours of laboratory time each week.

Lecture Hours. All lecture hours are face-to-face and involve a mixture of traditional lectures, interactive
programming sessions, and “hands-on” learning activities. The hands-on activities involve pencil and paper
exercises, as well as software-assisted activities performed using an interactive development and reasoning
environment. (See URLs above.) Programming sessions and hands-on activities are typically group-based.

Laboratory Hours. All laboratory hours are face-to-face and involve small group programming exercises. Students
are required to complete one short programming project each week during a 2-hour “closed lab” in one of
Clemson’s computing laboratories.

How are students assessed?
Course grades are assigned based on assessment across five categories:

• Quizzes (15%)
Students are required to complete 4-5 in-class quizzes during the semester. The quizzes vary in duration
from approximately 15 minutes to 25 minutes. The quizzes are weighted equally.

• Closed Labs (10%)
Students are required to complete a short, group-based programming project each week during their
assigned closed laboratory time. To receive full credit for the day, each group must demonstrate a working
solution before the end of the lab session. Partial credit may be assigned for partial solutions. Each lab
session is weighted equally.

• Programming Projects (30%)
Four group-based programming projects are assigned during the semester. The assignments vary in
complexity, duration (1-2.5 weeks), and weight. Assignment scores are based both on the functionality of
the submitted solution and a detailed review of the source code to ensure compliance with stated
requirements and best programming practices.

• Midterm Exam (20%)
The midterm exam is a traditional pencil and paper exam given midway through the semester. The exam
must be completed within one class period. It is closed book, closed notes, closed neighbor.

• Final Exam (25%)
The final exam is a traditional pencil and paper exam given at the end of the semester. The exam must be
completed within 2.5 hours. It is comprehensive.

Course textbooks and materials
The programming components of the course are taught using the Java programming language and the Eclipse
Integrated Development Environment. The analytical reasoning components of the course rely on the RESOLVE
specification language and its Web-Integrated Development and Reasoning Environment. While there is no official
textbook for the course, students are provided with access to online tutorials, problem sets, interactive exercises, and
instructional videos. (See URLs above.)

- 396 -

Why do you teach the course this way?
The course integrates three major themes: object-oriented programming in Java, analytical reasoning, and software
design patterns. The emphasis on object-oriented programming is motivated by the importance of this paradigm in
modern software practice. The emphasis on analytical reasoning is motivated by the supposition that the next
generation of software engineers must be able to reason rigorously about the functionality and performance of the
software they develop and maintain. Traditional trial-and-error methods of software development are insufficient to
build the next generation of high-quality software. The emphasis on software design patterns is motivated by the
wide adoption of patterns in modern software practice, both as prescriptive and descriptive aids.

The “hands-on”, collaborative nature of the course was originally motivated by the success of peer instruction and
other active learning strategies in mathematics and science. Since then, the efficacy of this approach in teaching
software development foundations has been evaluated through over five years of course pilots at Clemson and
several other adopting institutions. Results suggest that the approach has had a positive impact on students’
performance, self-efficacy, and perception of computing as a discipline of study.

Students tend to consider this course one of the more challenging encountered in the first two years of study.
Interestingly, however, the challenge appears to stem more from the object-oriented programming and design
pattern components of the course, rather than the analytical reasoning components.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

SDF Algorithm
Design

Fundamental design concepts and principles 3

SDF Fundamental
Data Structures

Abstract data types and their implementations, References and aliasing, Linked
lists, Strategies for choosing the appropriate data structure

9

SDF Development
Methods

Program Correctness, Modern Programming Environments, Debugging
Strategies

6

PL Object-Oriented
Programming

Object-oriented design, Definition of classes: fields, methods, and constructors,
Subclasses, inheritance, and method overriding, Dynamic dispatch: definition of
method-call, Subtyping, Object-oriented idioms for encapsulation, Using
collection classes, iterators, and other common library components

9

PL Basic Type
Systems

Type safety and errors caused by using values inconsistently with their intended
types, Generic types (parametric polymorphism)

3

SE Software Design Design Patterns 7.5

SE Formal Methods Role of formal specification and analysis techniques in the software
development cycle, Program assertion languages and analysis approaches
(including languages for writing and analyzing pre-and post-conditions), Tools
in support of formal methods

4.5

Notes: Only lecture hours are listed above. Of the 42 hours listed above, there is some overlap among the hours
devoted for SDF, PL, and SE topics; the actual coverage of the topics spans about 39 hours. The course covers a
few additional background topics (3 hours) and includes an exam (1.5 hours).

Additional topics
Connections between software development foundations and discrete structures; mathematical modelling and
verification of object-oriented programs; use of verification tools.

- 397 -

CS1101: Introduction to Program Design, WPI

Worcester, MA
Kathi Fisler and Glynis Hamel
kfisler@cs.wpi.edu, ghamel@cs.wpi.edu
http://web.cs.wpi.edu/~cs1101/a12/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Software Development Fundamentals (SDF) 18

Programming Languages (PL) 8

Algorithms and Complexity (AL) 2

Where does the course fit in your curriculum?
This is the first course in our department’s sequence for majors in Computer Science, Robotics Engineering, and
Interactive Media and Game Development who do not have much prior programming experience (an alternative
course exists for students with AP or similar background). Most students pursuing minors also take this course
(before Spring 2013, there was no alternative introductory course for novice programmers). It does not have
prerequisites. Enrollment has been 300-400 students per year for each of the last 8 years.

Students who take this course and continue in computing go onto one of (1) a course in Object-Oriented Program
Design (for majors and most minors), (2) a non-majors course in C-programming (targeted at students majoring in
Electrical and Computer Engineering), or (3) a Visual Basic course for students majoring in Management and
Information Systems.

What is covered in the course?
Upon completion of this course, the student should be able to:

• Understand when to use and write programs over structures, lists, and trees
• Develop data models for programming problems
• Write recursive and mutually recursive programs using the Racket programming language
• Explain when state is needed in value-oriented programming
• Develop test procedures for simple programs

Course Topics:
• Basic data types (numbers, strings, images, booleans)
• Basic primitive operations (and, or, +, etc.)
• Abstracting over expressions to create functions
• Documenting and commenting functions
• What makes a good test case and a comprehensive test suite
• Conditionals
• Compound data (records or structs)
• Writing and testing programs over lists (of both primitive data and compound data)
• Writing and testing programs over binary trees
• Writing and testing programs over n-ary trees
• Working with higher-order functions (functions as arguments)
• Accumulator-style programs
• Changing contents of data structures
• Mutating variables

mailto:kfisler@cs.wpi.edu�
mailto:ghamel@cs.wpi.edu�
http://web.cs.wpi.edu/~cs1101/a12/�

- 398 -

What is the format of the course?
The course consists of 4 face-to-face lecture hours and 1 lab hour per week, for each of 7 weeks (other schools
teach a superset of the same curriculum on a more standard schedule of 3-hours per week for 14 weeks).

How are students assessed?
Students are expected to spend roughly 15 hours per week outside of lectures and labs on the course. We assign
one extended and thematically-related set of programming problems per week (7 in total in the WPI format).
Students work on a shorter programming assignment during the one hour lab; lab assignments are not graded, and
thus students do not usually work on them beyond the lab hour. There are 3 hour long exams. Most students
report spending 12-18 hours per week on the programming assignments.

Course textbooks and materials
Textbook: How to Design Programs, by Felleisen, Findler, Flatt, and Krishnamurthi. MIT Press. Available (for
free) online at www.htdp.org.

Language/Environment: Racket (a variant of Scheme), through the DrRacket programming environment
(www.drracket.org). A web-based environment, WeScheme (www.wescheme.org) is also available. Software is
cross-platform and available for free.

Why do you teach the course this way?
WPI adopted this course in 2004. At the time, our programming sequence started in C++ (for two courses), then
covered Scheme and Java (across two more courses). After deciding that C++ was too rough an entry point for
novice programmers, we redesigned our sequence around program design goals and a smooth language
progression. Our current three-course sequence starts with program design, testing, and core data structures in
Racket (a variant of Scheme), followed by object-oriented design, more advanced testing, and more data structures
in Java, followed by systems-level programming and larger projects in C and C++. Each course in the sequence
exposes more linguistic constructs and programmer responsibilities than the course before.

The “How to Design Programs” curriculum emphasizes data-driven and test-driven program design, following a
step-by-step methodology. Given a programming problem, students are asked to complete the following steps in
order: (1) define the datatypes, (2) write examples of data in each type, (3) write the skeleton of a function that
processes each datatype (using a well-defined, step-by-step process that matches object-oriented design patterns),
(4) write the contract/type signature for a specific function, (5) write test cases for that function, (6) fill in the
skeleton for the main input datatype to complete the function, and (7) run the test cases.

The most useful feature of this methodology is that it helps pinpoint where students are struggling when writing
programs. If a student can’t write a test case for a program, he likely doesn’t understand what the question is
asking: writing test cases early force students to understand the question before writing code. If a student doesn’t
understand the shape of the input data well enough to write down examples of that data, she is unlikely to be able
to write a test case for the program. This methodology helps students and instructors identify where students are
actually struggling on individual programs (put differently, it gives a way to respond to the open-ended “my code
doesn’t work” statement from students). It also provides a way for students to get started even if they are not
confident writing code: they can go from a blank page to a program in a sequence of steps that translate nicely to
worksheets and other aids.

“How to Design Programs” also emphasizes interesting data structures over lots of programming constructs.
Racket has a simple syntax with few constructs. In a typical college-pace course for students with no prior
programming experience, students start working with lists after about 6 hours of lecture and with trees after
roughly 10-12 hours of lecture. The design and programming process scales naturally to tree-shaped data, rather
than require students to learn new programming patterns to handle non-linear data. The process thus lets us weave
together programming, program design, and data structures starting in the first course.

http://www.htdp.org/�
http://www.wescheme.org/�

- 399 -

Finally, the design process from “How to Design Programs” transitions naturally into object-oriented
programming in Java. It takes roughly three lecture hours to teach students how to transform any of their “How to
Design Programs” code into well-structured Java programs. Our Java/Object-Oriented Design course therefore
starts with students able to program effectively with rich, mutually-recursive class hierarchies after under a week
of class time. The natural sequence from “How to Design Programs” into Java is one of the salient curricular
features of this course.

More information about the philosophy and resources are online at www.htdp.org.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

AL Fundamental Data Structures and
Algorithms

Binary Search Trees 2

PL Functional Programming Processing structured data via
functions for data with cases for
each data variant, first-class
functions, function calls have
no side effects

8

SDF Algorithms and Design Problem-solving strategies,
abstraction, program
decomposition

6

SDF Fundamental Programming Concepts All listed except I/O; I/O
deferred to subsequent
programming courses

6

SDF Fundamental Data Structures Records/structs, Linked Lists;
remaining data structures
covered in CS2/Object-Oriented
Design course

2

SDF Development Methods Testing fundamentals, test-
driven development,
documentation and program
style

4

http://www.htdp.org/�

- 400 -

Data Abstraction and Data Structures, Miami University

Oxford OH
Gerald C. Gannod
gannodg@miamioh.edu
http://cs-comm.lib.muohio.edu/collections/show/3

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Software Development Fundamentals (SDF) 12 – core tier 1

Algorithms and Complexity (AL) 2 – core tier 1, 1 – core tier 2

Social Issues and Professional Practice (SP) 1 – core tier 1

Where does the course fit in your curriculum?
The Data Abstraction and Data Structures course is numbered 274 in our program and thus it is expected that
students take this course in the second year of the program. Typically, students take this course in the first semester
of the Fall semester. The course is required and has two prerequisites (CS 2 and the discrete structures course).

What is covered in the course?
This course is being used as an exemplar of how we incorporate communication outcomes into the core curriculum.
As such, the course description looks very much like other courses for data structures and the real difference is in the
execution of the course and how the communication skills are integrated into the assignments.

Course Description:
Abstract data types and their implementation as data structures using object-oriented programming. Use of object-
oriented principles in the selection and analysis of various ADT implementations. Sequential and linked storage
representations: lists, stacks, queues, and tables. Nonlinear data structures: trees and graphs. Recursion, sorting,
searching, and algorithm complexity.

• Apply appropriate data structures and abstract data types (ADT) such as bags, lists, stacks, queues, trees,
tables, and graphs in problem solving.

• Apply object-oriented principles of polymorphism, inheritance, and generic programming when
implementing ADTs for data structures.

• Create alternative representations of ADTs either from implementation or the standard libraries.
• Apply recursion as a problem solving technique.
• Determine appropriate ADTs and data structures for various sorting and searching algorithms.
• Determine time and space requirements of common sorting and searching algorithms.

Communication Assignments:
Examples of communication assignments for this course can be found at this site: http://cs-
comm.lib.muohio.edu/collections/show/3. The assignments incorporate the use of workplace scenarios that provide
context for a programming assignment. Students are required to exercise communication skills in the reading and
writing of technical documentation in support of the technical products including the creation of test case
specifications and API documentation.

What is the format of the course?
The course is taught using the flipped / inverted classroom model. In particular, the students view videos online
prior to coming to class, and then work on programming assignments in class. For the communication outcomes,
many of the learning activities are either performed in class as preparation for programming tasks, or as a

http://cs-comm.lib.muohio.edu/collections/show/3�
http://cs-comm.lib.muohio.edu/collections/show/3�

- 401 -

documentation activity that occurs after labs have concluded. The course is 3 credit hours and typically meets twice
a week for 75 minutes.

How are students assessed?
Students are assessed using a combination of programming projects, in-lab assignments, problem sets, and exams.
Each of the learning activities is accompanied by writing assignment that relates to the programming assignment.
For instance, one assignment requires students to write test cases for a data structure. The test case descriptions
indicate the setup and tear down of the tests as well as the expected outcomes of the test.

Course textbooks and materials
All lecture materials are provided as videos on YouTube:
Data Structures: http://www.youtube.com/playlist?list=PLE827E1949733EACC
C++: http://www.youtube.com/playlist?list=PL318424B457A98D69
Textbooks are provided online via Safari Tech Books online and vary by instructor.

Why do you teach the course this way?
Communication in this course is taught as an integrated part of the technical content. In particular, communication
is taught in the context of the workplace scenarios that emphasize situated learning. As such, rather than teaching
communication as a wholly separate topic, it is taught as a part of the core computer science topics. The course has
incorporated communication outcomes in a couple of occasions since 2010. The course is considered challenging
by the students for a number of reasons, primarily technical.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

SP Professional
Communication

• Reading, understanding and summarizing technical material,
including source code and documentation

• Writing effective technical documentation and materials

1

SDF Fundamental Data
Structures

All 12

AL Basic Analysis All in Core-Tier 1 2

The communication topics not covered in this course are covered elsewhere in the curriculum.

Additional topics
None.

Other comments
This exemplar demonstrates the results of an NSF-funded collaborative project between Miami University and
North Carolina State University (NSF CPATH-II Awards CCF-0939122 and CCF-0939081). The project
emphasizes integration of communication outcomes across the entire curriculum. Details on the project can be
found at the following dissemination website: http://cs-comm.lib.muohio.edu/.

http://www.youtube.com/playlist?list=PLE827E1949733EACC�
http://www.youtube.com/playlist?list=PL318424B457A98D69�
http://cs-comm.lib.muohio.edu/�

- 402 -

Software Engineering Practices, Embry Riddle Aeronautical
University

Daytona Beach, Florida
Salamah Salamah
salamahs@erau.edu

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Software Engineering (SE) 42

Where does the course fit in your curriculum?
This is a junior level course required for students majoring in software engineering, computer engineering, or
computer science. The course is also required by those students seeking a minor in computer science.

The course has an introductory computer science course as a prerequisite.

The typical population of students in the course is between 30-35 students.

What is covered in the course?
Typical outline of course topics includes:

• Introduction to Software Engineering
• Models of Software Process
• Project Planning and Organization
• Software Requirements and Specifications
• Software Design Techniques
• Software Quality Assurance
• Software Testing
• Software Tools and Environments

What is the format of the course?
The course meets twice a week for two hours each day. The course is a mixture of lecture (about 1.5 hours a week)
and group project work. The course is structured around the project development where the students are constantly
producing artifacts related to software development life cycle.

How are students assessed?
Students are assessed through multiple means. This includes

• Individual programming assignments (about 3 per semester)
• In class quizzes
• Homework assignments
• Two midterms
• Semester long team project

Students peer evaluation is also part of the assessment process.

Course textbooks and materials
Watts Humphrey’s Introduction to the Team Software Process is the primary book for the course, but this is also
complemented with multiple reading assignments including journals and other book chapters.

- 403 -

Why do you teach the course this way?
The course is taught as a mini capstone course. It has been taught this way for the last 7 years at least. Students’
comments indicate that the course is challenging in the sense that it drives them away from the perceived notion
that software engineering is mostly about programming. Course is only reviewed annually as part of the
department assessment and accreditation process.

I believe teaching the course based on a semester project is the easiest way to force students to apply the concepts
and get familiar with the artifacts associated with a typical software development process.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

SE Software Process System Level Consideration
Relation of software engineering to Systems
Engineering
Software systems’ use in different domains
Outcome: Core-Tier1 # 1

1

SE Software Process Software Process Models
Waterfall model
Incremental model
Prototyping
V model
Agile methodology
Outcome: Core-Tier1 # 2
Outcome: Core-Tier1 # 3
Outcome: Core-Tier2 # 1
Outcome: Core-Tier2 # 2

2

SE Software Process Software Quality Concepts
Outcome: Elective # 1
Outcome: Elective # 4
Outcome: Elective # 6
Outcome: Elective # 7

4

SE Software Project Management Team Participation
Outcome: Core-Tier2 # 7
Outcome: Core-Tier2 # 8
Outcome: Core-Tier2 # 9
Outcome: Core-Tier2 # 11

2

SE Software Project Management Effort Estimation
Outcome: Core-Tier2 # 12

2

SE Software Project Management Team Management
Outcome: Elective # 2
Outcome: Elective # 4
Outcome: Elective # 5

1

SE Software Project Management Project Management
Outcome: Elective # 6
Outcome: Elective # 7

2

- 404 -

SE Requirements Engineering Fundamentals of software requirements elicitation
and modelling
Outcome: Core-Tier1 # 1

1

SE Requirements Engineering Properties of requirements
Outcome: Core-Tier2 # 1

1

SE Requirements Engineering Software Requirement Elicitation
Outcome: Core-Tier2 # 2

1

SE Requirements Engineering Describing functional Requirements using use cases
Outcome: Core-Tier2 # 2

1

SE Requirements Engineering Non-Functional Requirements
Outcome: Core-Tier2 # 4

1

SE Requirements Engineering Requirements Specifications
Outcome: Elective # 1
Outcome: Elective # 2

2

SE Requirements Engineering Requirements validation
Outcome: Elective # 5

1

SE Requirements Engineering Requirements Tracing
Outcome: Elective # 5

1

SE Software Design Overview of Design Paradigms
Outcome: Core-Tier1 # 1

1

SE Software Design Systems Design Principles
Outcome: Core-Tier1 # 2
Outcome: Core-Tier1 # 3

1

SE Software Design Design Paradigms (OO analysis)
Outcome: Core-Tier2 # 1

1

SE Software Design Measurement and analysis of design qualities
Outcome: Elective # 3

1

SE Software Construction Coding Standards
Outcome: Core-Tier2 # 4

2

SE Software Construction Integration strategies
Outcome: Core-Tier2 # 5

1

- 405 -

SE Software Validation and Verification V&V Concepts
Outcome: Core-Tier2 # 1

1

SE Software Validation and Verification Inspections, Reviews and Audits
Outcome: Core-Tier2 # 3

3

SE Software Validation and Verification Testing Fundamentals
Outcome: Core-Tier2 # 4
Outcome: Core-Tier2 # 5

2

SE Software Validation and Verification Defect Tracking
Outcome: Core-Tier2 # 6

1

SE Software Validation and Verification Static and Dynamic Testing
Outcome: Elective # 1

2

SE Software Validation and Verification Test Driven Development
Test Driven Development Programming Assignment
No available outcome

1

SE Software Evolution

Characteristics of maintainable software
Lecture on software maintenance and the different
types of maintenance
No available outcome

1

SE Software Evolution

Reengineering Systems
Lecture on reverse engineering
No available outcome

1

FM Formal Methods Role of formal specifications in software
development cycle
Outcome 1
Outcome 2
Outcome 3

2

Additional topics
Ethics

- 406 -

CS169: Software Engineering, University of California, Berkeley

Armando Fox & David Patterson
fox@cs.berkeley.edu, pattrsn@cs.berkeley.edu
 https://sites.google.com/site/ucbsaas/

Knowledge Areas that contain topics and learning outcomes covered in the course
Knowledge Area Total Hours of Coverage
Software Engineering (SE) 39

Where does the course fit in your curriculum?
This course is for juniors and seniors majoring in computer science or computer engineering.
The prerequisites are 3 lower-division courses: “61A: Great ideas in Computer Science,” “61B: Programming with
Data Structures,” and “61C: Great Ideas in Computer Architecture.”

The population of students in the course has grown from 35 students in 2010 to 240 students in 2013, due in part to
the extensive revision of the course content described below.

This course is the basis of two massive open online courses (MOOCs) from UC Berkeley and EdX: CS169.1X
covers the first six weeks of the Berkeley course, and CS169.2X covers the next six weeks.

What is covered in the course?

• Introduction to SaaS and software lifecycles: Waterfall, Spiral, RUP, Agile
• Project Management: Pair programming and Scrum vs. Planning and Project manager
• Requirements Elicitation: User Stories vs. Contracts
• Testing: Behavior Driven Design and Test Driven Development vs. Code then test
• Maintenance: Legacy, Refactoring, and Agile
• Version control systems and releases
• Design patterns
• Performance, reliability, and security

What is the format of the course?
One semester (14 weeks), 3 hours of lecture per week, and 1 hour of TA-led discussion per week.

How are students assessed?
Students are assessed through multiple means. This includes

• Seven programming assignments, which are autograded
• Two midterm exams
• Semester long team project for external non-technical customer done in 4 iterations. Customers give

feedback with each iteration, and a TA grades each iteration.
• Final poster session, including demonstrating the application to the customer.

Course textbooks and materials
Engineering Software as a Service: An Agile Approach Using Cloud Computing,
by Armando Fox and David Patterson, Strawberry Canyon Publisher, 2013.

Why do you teach the course this way?
(The full answer is in the Communications of the ACM article “Viewpoint: Crossing the Software Education
Chasm,” May 2012, pp. 17-22.)

mailto:fox@cs.berkeley.edu�
mailto:pattrsn@cs.berkeley.edu�

- 407 -

Cloud computing and the shift in the software industry toward Software as a Service (SaaS) using Agile
development has led to tools and techniques that are a much better match to the classroom than earlier software
development methods. We leverage the productivity of modern programming frameworks like Ruby on Rails to
allow students to experience the whole software life cycle repeatedly within a single college course, which addresses
many criticisms from industry about software education. By using free-trial online services, students can develop
and deploy their SaaS apps in the cloud without using (overloaded) campus resources. For each software
engineering topic, we describe both the Agile and the “plan-and-document” methodologies: Waterfall, Spiral, and
RUP. This contrast allows students to decide for themselves when each methodology is appropriate for SaaS and
non-SaaS applications.

The experience of many instructors (including ourselves) is that students enjoy learning and using Agile in projects.
Its iteration-based, short-planning-cycle approach is a great fit for the reality of crowded undergraduate schedules
and fast-paced courses. Busy students by nature often procrastinate, and then pull several all-nighters to get a demo
cobbled together and working by the project deadline. Agile not only thwarts this tactic (since students are evaluated
on progress being made each iteration), but in our experience actually leads to real progress using responsible
practices on a more regular basis. We even show how to use Agile techniques on legacy code that wasn’t developed
that way to begin with; that is, Agile is good for more than just writing new code from scratch. Students are much
more likely to actually follow the Agile methodology because the Ruby on Rails tools make it easy to do so, and
because the advice is genuinely helpful for their projects. Moreover, our surveys of alumni say that Agile teaches
skills that transfer to non-Agile projects.

Body of Knowledge coverage
KA Knowledge Unit Topics Covered Hours

SE Software Processes

Software lifecycle
Waterfall, Spiral, RUP
Agile
Software quality
Outcome: Core-Tier1 #1, #2, #3, #4, #5
Outcome: Core-Tier2 #6, #7
Outcome: Elective #8, #12, #13, #14

3

SE Software Project
Management

Pair Programming
Scrum
Conflict Resolution
Meetings and Agendas
Software Development Estimation
Software risks and risk reduction
Outcome: Core-Tier2 #1, #2, #3, #4, #5, #6, #7, #8, #9
Outcome: Elective #10, #11, #12, #13, #14, #15, #16, #17, #18, #19,
#20, #21, #22, #24, #25

3

SE Tools and
Environments

Configuration management
Version control systems
Tool selection and use
Outcome: Core-Tier2 #1, #2, #3, #4

3

- 408 -

SE Requirements
Engineering

Requirements Elicitation
Use cases and User Stories
Lo-Fi UI
Functional vs. Non-functional requirements
Forward and Backward Tracing
Risk mitigation via prototypes
Outcome: Core-Tier1 #1, #2, #3
Outcome: Core-Tier2 #4, #5, #6
Outcome: Elective #7, #8, #10, #11

4

SE Software Design

Design principles
System design paradigm (SaaS, OO)
Design patterns
Software architectures
Software components
Outcome: Core-Tier1 #1, #2, #3, #4, #5
Outcome: Core-Tier2 #6, #9, #10, #11, #12, #13, #14
Outcome: Elective #14, #17, #18, #20

8

SE Software Construction

Implementing reliability, efficiency, robustness
Secure and defensive programming
Exception handling
Integration strategies: top-down, bottom-up, sandwich
Enhancing legacy code
Security principles of least privilege and fail-safe defaults
Outcome: Core-Tier2 #1, #2, #3, #4, #5, #6, #7
Outcome: Elective #8, #9

4

SE Software Verification
and Validation

Verification vs. Validation
Validation tools
Design and Code Inspections
Testing types and levels: unit, integration, system, etc.
Defect tracking tools
Test plan
Verification and Validation of non-code artifacts
Outcome: Core-Tier2 #1, #2, #3, #4, #5, #6
Outcome: Elective #8, #11, #14

6

SE Software Evolution

Software evolution and life cycles
Change requests
Regression testing
Software reuse
Release management
Outcome: Core-Tier2 #1, #2, #3, #4, #5, #6

5

SE Formal Methods
Role of formal methods
Formal specification languages
Outcome: Elective #1, #3

1

SE Software Reliability

Challenges of very high reliability
Software reliability vs. system reliability
Fault tolerance via redundancy
Outcome: Core-Tier2 #1, #2
Outcome: Elective #7

2

- 409 -

SE-2890 Software Engineering Practices, Milwaukee School of
Engineering

Walter Schilling
 schilling@msoe.edu

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Software Engineering (SE) 29

Where does the course fit in your curriculum?
Second-year course for computer engineers covering SE fundamentals.

Prerequisites: one year of Java software development including use and simple analysis of data structures.
Students have had two one-quarter courses in 8-bit microprocessor development with assembly language and C.

What is covered in the course?
Week 1 - Introduction to software engineering practices
Week 2 - Requirements and Use Cases
Week 3 - Software Reviews, Version Control, and Configuration Management
Week 4/5 - Design: Object domain analysis, associations, behavior
Week 6 - Design and Design Patterns
Week 7 - Java Review (almost a year since last use)
Week 8/9 - Code reviews and software testing
Week 10 - Applications to embedded systems

What is the format of the course?
One-quarter (10-week), two one-hour lectures and one two-hour closed (instructor directed) lab per week.

How are students assessed?
Midterm and final exams, two individual lab projects and on 8-week team development project.

Course textbooks and materials
Gary McGraw, Real Time UML, Third Edition.
Bruce Powel Douglass, Advances in the UML for Real-Time Systems, Addison-Wesley, 2004.

Why do you teach the course this way?
The major goal is to prepare computer engineering students (not SE majors) to work in a small team on a small
project, and to gain an introduction to software engineering practices.

mailto:schilling@msoe.edu�

- 410 -

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

SE Software Processes 4

SE Software Project Management 2

SE Tools and Environments 3

SE Requirements Engineering 6

SE Software Design 10

SE Software Verification & Validation 4

- 411 -

Software Development, Quinnipiac University

Hamden CT
Mark E. Hoffman
mark.hoffman@quinnipiac.edu
http://cs-comm.lib.muohio.edu/collections/show/4

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Software Engineering (SE) 8 – core tier 2, 10 – elective

Software Development Fundamentals (SDF) 6 – core tier 1

Social Issues and Professional Practice (SP) 6 – core tier 1

Where does the course fit in your curriculum?
The Software Development course is numbered 225 in our program. Typical computer science majors take this
course the first semester of their second year. The course is the third course in a three-course programming
sequence preceded by CSC 110 (Programming and Problem Solving) and CSC 111 (Data Structures and
Abstraction), our equivalents of CS1 and CS2, respectively.

What is covered in the course?
Catalog Description
This course presents introductory software engineering concepts including group development, large-scale project
work, and theoretical aspects of object-oriented programming. The course expands on material from previous
courses. Professional behavior and ethics represent an important component of this course.

Course Description:
This course is being used as an exemplar of how we incorporate communication outcomes into the core curriculum.
The catalog description looks very much like other courses for software development; however, the real difference is
in the execution of the course and how the communication skills are integrated into the assignments.

CSC 225 (Introduction to Software Development) is an experiential introduction to software development that
focuses on learning basic software development principles and communications skills by developing an ongoing
project (i.e., the project is carried over and developed during each iteration of the course). Students work as
software development teams in the context of a workplace scenario where assignments are reports to a supervisor
who uses the information reported for subsequent tasks such as reports for upper management. This strategy focuses
students’ learning on selecting critical information for the supervisor to use and presenting it in an accessible and
persuasive manner. Student learning occurs through two sets of linked assignments that use formative assessment to
achieve competence at the first-semester sophomore level.

Communication Assignments:
Examples of communication assignments for this course can be found at this site:
http://cs-comm.lib.muohio.edu/collections/show/4.
The following assignments may be found in the Software Engineering Collection.

• Program Review Report
• Customer Requirements Report
• Prioritized Bug/Enhancement Report

http://cs-comm.lib.muohio.edu/collections/show/4�
http://cs-comm.lib.muohio.edu/collections/show/4�

- 412 -

• Project Management Tools Report
• Preliminary Test Plan
• Scrum Process Management

What is the format of the course?
This is a project-based course where students work in teams of 4-6 students to develop a project carried over from
the prior semester. At the end of the course, student teams package the project for the next semester. Over the first
five weeks of the semester, teams install and learn to operate the inherited project, work with potential customers to
identify bugs and enhancements, develop a prioritized list of bugs and enhancements, select project management
tools, and develop a preliminary test plan. At the end of each week, student teams submit a report and make a
presentation of their findings. The assignments over the first five weeks are linked and cumulative.

The next eight weeks consists of four two-week Scrum Cycles. Teams select items from their backlog (prioritized
list of bug and enhancements) and implement them in one Scrum Cycle. During the Scrum Cycle, students create
and update a work plan and hold short (5 minute) status meetings. At the end of each Scrum Cycle, teams report
(written and oral) progress and demonstrate their work. The assignments over the four two-week Scrum Cycles are
linked and cumulative.

At the end of the course, teams package their project, make a Final Report of their work, and demonstrate their
project to a group of invited guests.

How are students assessed?
Each assignment has a technical rubric and a communications rubric. The technical rubric is specific to each
assignment. Student work is assess holistically.

The communications rubric is the same for all assignments. Subsets of communications items are added
cumulatively with each assignment. Items in the current and prior subsets are assessed holistically.

Students work on a set of linked assignments and receive continuous formative feedback from instructors on
technical and communication skills. By the end each set of linked assignments student teams achieve competence at
a first-semester sophomore level.

Course textbooks and materials

• Andrew Hunt and David Thomas, The Pragmatic Programmer, Addison-Wesley, Reading, MA, 2000.
(Pdf file available on Blackboard.)

• F.P. Brooks, The Mythical Man-Month, Addison-Wesley, Boston, MA, 1995.
• Richard G. Epstein, The Case of the Killer Robot, John Wiley & Sons, Inc., New York, NY, 1997.

Additional material may come from Communications of the ACM, IEEE Computer, or other relevant sources.

Why do you teach the course this way?
Communication in this course is taught as an integrated part of the technical content. In particular, communication
is taught in the context of the workplace scenarios that emphasize situated learning. As such, rather than teaching
communication as a wholly separate topic, it is taught as a part of the core computer science topics. While the
general process of the course (i.e., teams working on an ongoing project with a communications skills emphasis) has
been course since 2005, participation in the CPATH II Project (2010-2012) described in Other Comments afforded
targeted development of assignments integrating technical content and communication skills. The course is
considered challenging by the students for a number of reasons, both technical and communication skills.

- 413 -

Body of Knowledge coverage
KA Knowledge Unit Topics Covered Hours

SP Professional
Communication

• Reading, understanding and summarizing technical material, including
source code and documentation

• Writing effective technical documentation and materials
• Dynamics of oral, written, and electronic team and group

communication
• Communicating professionally with stakeholders
• Utilizing collaboration tools

6

SDF Development
Methods

• Program comprehension
• Program correctness

o The concept of a specification
o Testing fundamentals and test-case generation
o Test-driven development
o Unit testing

• Modern programming environments
o Programming using library components and their APIs

• Debugging strategies
• Documentation and program style

6

SE Process Management All in Core-Tier 2 and Elective 12

SE Tools and
Environments

• Software configuration management and version control; release
management

• Requirements analysis and design modeling tools
• Testing tools including static and dynamic analysis tools Programming

environments that automate parts of program construction processes
o Continuous integration

• Tool integration concepts and mechanisms

6

Additional topics
None.

Other comments
This exemplar demonstrates the results of an NSF-funded collaborative project between Miami University and
North Carolina State University (NSF CPATH-II Awards CCF-0939122 and CCF-0939081). The project
emphasizes integration of communication outcomes across the entire curriculum. Details on the project can be
found at the following dissemination website: http://cs-comm.lib.muohio.edu/.

http://cs-comm.lib.muohio.edu/�

- 414 -

CS2200: Introduction to Systems and Networking, Georgia Institute of
Technology

Atlanta, GA
Kishore Ramachandran
rama@gatech.edu
http://www.cc.gatech.edu/~rama/CS2200-External/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Systems Fundamentals (SF) 42

Where does the course fit in your curriculum?
This course is taken in the second semester of the sophomore year. The pre-requisite for this course is a good
knowledge of C and logic design. It is required for all CS majors wishing to specialize in: operating systems,
architecture, programming language and compilers, system security, and networking. It provides a thorough
understanding of the hardware and the system software and the symbiotic inter-relationship between the two.
Students may take advanced courses in operating systems, architecture, and networking following this course in
the junior and senior years. The course is offered 3 times a year (Fall, Spring, Summer) and the enrolment is
typically around 100 students.

What is covered in the course?
The course represents a novel integrated approach to presenting side by side both the architecture and the
operating system of modern computer systems, so that students learn how the two complement each other in
making the computer what it is. The course consists of five modules, corresponding to the five major building
blocks of any modern computer system: processor, memory, parallelism, storage, and networking. Both the
hardware and system software issues are covered concomitantly in presenting the five units. Topics covered
include

• Processor design including instruction-set design, processor implementation (simple as well as pipelined
with the attendant techniques for overcoming different kinds of hazards), processor performance (CPI,
IPC, execution time, Amdahl’s law), dealing with program discontinuities (interrupts, traps, exceptions),
and design of interrupt handlers

• Processor scheduling algorithms including FCFS, SJF, priority, round robin, with Linux scheduler as a
real world example

• Memory system including principles of memory management in general (paging in particular) and the
necessary hardware support (page tables, TLB), page replacement algorithms, working set concepts, the
inter-relationship between memory management and processor scheduling, thrashing, and context
switching overheads

• Memory hierarchy including different organizations of processor caches, the path of memory access from
the processor through the different levels of the memory hierarchy, interaction between virtual memory
and processor caches, and page coloring

• Parallel programming (using pthreads), basic synchronization (mutex locks, condition variables) and
communication (shared memory), program invariants, OS support for parallel programming, hardware
support for parallel programming, rudiments of multiprocessor TLB and cache consistency

• Basics of I/O (programmed data transfer, DMA), interfacing peripherals to the computer, structure of
device driver software

• Storage subsystem focusing on hard disk (disk scheduling), file systems (naming, attributes, APIs, disk
allocation algorithms), example file systems (FAT, ext2, NTFS)

http://www.cc.gatech.edu/~rama/CS2200-External/�

- 415 -

• Networking subsystem focusing on the transport layer protocols (stop and wait, pipelined, congestion
control, windowing) , network layer protocols (Dijkstra, distance vector) and service models (circuit-,
message-, and packet-switching), link layer protocols (Ethernet, token ring)

• Networking gear (NIC, hubs/repeater, bridge, switch, VLAN)
• Performance of networking (end-to-end latency, throughput, queuing delays, wire delay, time of flight,

protocol overhead).

What is the format of the course?
Three hours of lecture per week; Two hours of TA-led recitation per week to provide help on homeworks and
projects; and 3 hours of unsupervised laboratory per week. Video recordings of classroom lectures (from past
offering) available as an additional study aid.

How are students assessed?
Two midterms, one final, 5 homeworks, 5 projects (two architecture projects: processor datapath and control
implementation, and augmenting processor to handle interrupts; three OS projects: paged virtual memory
management, multithreaded processor scheduler using pthreads, and reliable transport layer implementation using
pthreads). Plus an extra-credit project (a uniprocessor cache simulator).

Course textbooks and materials
Ramachandran and Leahy Jr., Computer Systems: An Integrated Approach to Architecture and Operating Systems,
Addison-Wesley, 2010.

Why do you teach the course this way?
There is excitement when you talk to high school students about computers. There is a sense of mystery as to what
is “inside the box” that makes the computer do such things as play video games with cool graphics, play music—
be it rap or symphony—send instant messages to friends, and so on. What makes the box interesting is not just the
hardware, but also how the hardware and the system software work in tandem to make it all happen. Therefore, the
path we take in this course is to look at hardware and software together to see how one helps the other and how
together they make the box interesting and useful. We call this approach “unraveling the box”—that is, resolving
the mystery of what is inside the box: We look inside the box and understand how to design the key hardware
elements (processor, memory, and peripheral controllers) and the OS abstractions needed to manage all the
hardware resources inside a computer, including processor, memory, I/O and disk, multiple processors, and
network. Since the students take this course in their sophomore year, it also whets the appetite of the students and
gets them interested in systems early so that they can pursue research as undergraduates in systems. The
traditional silo model of teaching architecture and operating systems in later years (junior/senior) restricts this
opportunity. The course was first offered in Fall 1999. It has been offered 3 times every year ever since. Over
the years, the course has been taught by a variety of faculty specializing in architecture, operating systems, and
networking. Thus the content of the course has been revised multiple times; the most recent revision was in 2010.
It is a required course and it has gotten a reputation as a “tough” one, and some students end up taking it multiple
times to pass the course with the required “C” passing grade.

- 416 -

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

SF Processor architecture HLL constructs and Instruction-set design, datapath and control,
microprogrammed implementation, example (MIPS)

6

SF Program discontinuities Interrupts, traps, exceptions, nesting of interrupts, hardware for
dealing with interrupts, interrupt handler code

2

SF Processor performance
metrics

Space and time, memory footprint, execution time, instruction
frequency, IPC, CPI, SPECratio, speedup, Amdahl’s law

1

SF Principles of pipelining Hardwired control, datapath of pipeline stages, pipeline registers,
hazards (structural, data, and control) and solutions thereof
(redundant hardware, register forwarding, branch prediction),
example (Intel Core microarchitecture)

5

SF Processor Scheduling Process context block, Types of schedulers (short-, medium-, long-
term), preemptive vs. non-preemptive schedulers, short-term
scheduling algorithms (FCFS, SJF, SRTF, priority, round robin),
example (Linux O(1) scheduler)

2

SF Scheduling performance
metrics

CPU utilization, throughput, response time, average response
time/waiting time, variance in response time, starvation

1

SF Memory management Process address space, static and dynamic relocation, memory
allocation schemes (fixed and variable size partitions), paging,
segmentation

2

SF Page-based memory
management

Demand paging, hardware support (page tables, TLB), interaction
with processor scheduling, OS data structures, page replacement
algorithms (Belady’s Min, FIFO, LRU, clock), thrashing, working
set, paging daemon

2

SF Processor caches Spatial and temporal locality, cache organization (direct mapped,
fully associative, set associative), interaction with virtual memory,
virtually indexed physically tagged caches, page coloring

3

SF Main memory DRAM, page mode DRAM, Memory buses 0.5

SF Memory system
performance metrics

Context switch overhead, page fault service time, memory pressure,
effective memory access time, memory stalls

0.5

SF Parallel programming Programming with pthreads, synchronization constructs (mutex
locks and condition variables), data races, deadlock and livelock,
program invariants

3

SF OS support for parallel
programming

Thread control block, thread vs. process, user level threads, kernel
level threads, scheduling threads, TLB consistency

1.5

SF Architecture support for
parallel programming

Symmetric multiprocessors (SMP), atomic RMW primitives, T&S
instruction, bus-based cache consistency protocols

1.5

- 417 -

SF Input/output Programmed data transfer, DMA, I/O buses, interfacing peripherals
to the computer, structure of device driver software

1.5

SF Disk subsystem Disk scheduling algorithms (FCFS, SSTF, SCAN, LOOK), disk
allocation algorithms (contiguous, linked list, FAT, indexed, multi-
level indexed, hybrid indexed)

1.5

SF File systems Naming, attributes, APIs, persistent and in-memory data structures,
journaling, example file systems (FAT, ext2, NTFS)

2

SF Transport layer 5-layer Internet Protocol Stack, OSI model, stop-and-wait,
pipelined, sliding window, congestion control, example protocols
(TCP, UDP)

2

SF Network layer Dijkstra’s link state and distance vector routing algorithms, service
models (circuit-, message-, and packet-switching), Internet
addressing, IP network

2

SF Link layer Ethernet, CSMA/CD, wireless LAN, token ring 0.5

SF Networking gear NIC, hub/repeater, bridge, switch, router, VLAN 1

SF Network performance End-to-end latency, throughput, queuing delays, wire delay, time of
flight, protocol overhead

0.5

- 418 -

CS61C: Great Ideas in Computer Architecture, University of California,
Berkeley

Randy H. Katz
randy@cs.Berkeley.edu
http://inst.eecs.berkeley.edu/~cs61c/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Systems Fundamentals (SF) 39

Where does the course fit in your curriculum?
This is a third course in the computer science curriculum for intended majors, following courses in “great ideas in
Computer Science” and “Programming with Data Structures.” It provides a foundation for all of the upper division
systems courses by providing a thorough understanding of the hardware-software interface, the broad concepts of
parallel programming to achieve scalable high performance, and hands-on programming experience in C.

What is covered in the course?
Introduction to C: this includes coverage of the Hardware/Software Interface (e.g., machine and assembly
language formats, methods of encoding instructions and data, and the mapping processes from high level
languages, particularly C, to assembly and machine language instructions). Computer architectures: how
processors interpret/execute instructions, Memory Hierarchy, Hardware Building Blocks, Single CPU Datapath
and Control, and Instruction Level Parallelism. The concept of parallelisms, in particular, task level parallelism,
illustrated with Map-Reduce processing; Data Level Parallelism, illustrated with the Intel SIMD instruction set;
Thread Level Parallelism/multicore programming, illustrated with openMP extensions to the C programming
language.

What is the format of the course?
Three hours of lecture per week, one hour of TA-led discussion per week, two hours of laboratory per week.

How are students assessed?
Laboratories, Homeworks, Exams, Four Projects (Map-Reduce application on Amazon EC2), MIPS Instruction
Set Emulator in C, Memory and Parallelism-Aware Application Improvement, Logic Design and Simulation of a
MIPS processor subset).

Course textbooks and materials
Patterson and Hennessy, Computer Organization and Design, revised 4th Edition, 2012; Kernighan and Ritchie,
The C Programming Language, 2nd Edition; Borroso, The Datacenter as a Computer, Morgan and Claypool
publishers.

Why do you teach the course this way?
The overarching theme of the course is the hardware-software interface, in particular, focusing on what a
programmer needs to know about the underlying hardware to achieve high performance for his or her code.
Generally, this concentrates on harnessing parallelism, in particular, task level parallelism (map-reduce), data level
parallelism (SIMD instruction sets), multicore (openMP), and processor instruction pipelining. The six “great”
ideas presented in the course are (1) Layers of Representation/Interpretation, (2) Moore’s Law, (3) Principle of
Locality/Memory Hierarchy, (4) Parallelism, (5) Performance Evaluation, and (6) Dependability via Redundancy.

- 419 -

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

SF Computational Paradigms C Programming/Cloud 10.5

SF Cross-Layer Communications Compilation/Interpretation 1.5

SF State-State Transition-State Machines Building Blocks, Control, Timing 4.5

SF Parallelism Task/Data/Thread/Instruction 10.5

SF Performance Figures of merit, measurement 1.5

SF Resource Allocation and Scheduling 0

SF Proximity Memory Hierarchy 4.5

SF Virtualization and Isolation Virtual Machines and Memory 3.0

SF Reliability Through Redundancy RAID, ECC 3.0

- 420 -

CSE333: Systems Programming, University of Washington

Department of Computer Science & Engineering
Steven D. Gribble
gribble@cs.washington.edu
http://www.cs.washington.edu/education/courses/cse333/11sp

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Systems Fundamentals (SF) 8

Operating Systems (OS) 7

Programming Languages (PL) 5

Networking and Communication (NC) 3

Architecture and Organization (AR) 3

Software Engineering (SE) 3

Information Management (IM) 1

Where does the course fit in your curriculum?
This is an optional course taken by undergraduates in their second year, following at least CS1, CS2, and a
hardware/software interface course. Students are encouraged to have taken data abstractions/structures. The
course is a prerequisite for several senior-level courses, including operating systems, networking, and computer
graphics. Approximately 60 students take the course per offering; it is offered four times per year (i.e., once each
quarter, including summer).

What is covered in the course?
The major goal of the course is to give students principles, skills, and experience in implementing complex,
layered systems. The course includes a quarter-long programming project in which students: (a) build rudimentary
data structures in C, such as linked lists, chained hash tables, AVL trees; (b) use them to build an in-memory
inverted index and file system crawler; (c) construct a C++-based access methods for writing indexes to disk and
accessing disk-based indexes efficiently; and (d) construct a concurrent (threaded or event-driven) web server that
exposes a search application.

A substantial portion of the course focuses on giving students in-depth C and C++ skills and experience with
practical engineering tools such as debuggers, unit testing frameworks, and profilers. The course stresses the
discipline of producing well-structured and readable code, including techniques such as style guidelines and code
reviews. Additionally, the course covers topics such as threaded vs. event-driven concurrency, the Linux system
call API, memory management, and some security and defensive programming techniques.

The full list of course topics is:

C programming
◦ pointers, structs, casts; arrays, strings
◦ dynamic memory allocation

- 421 -

◦ C preprocessors, multifile programs
◦ core C libraries
◦ error handling without exceptions

C++ programming
◦ class definitions, constructors and destructors, copy constructors
◦ dynamic memory allocation (new / delete), smart pointers, classes with dynamic data
◦ inheritance, overloading, overwriting
◦ C++ templates and STL

Tools and best practices
◦ compilers, debuggers, make
◦ leak detectors, profilers and optimization, code coverage
◦ version control
◦ code style guidelines; code review

Systems topics: the layers below (OS, compiler, network stack)
◦ concurrent programming, including threading and asynchronous I/O
◦ file system API
◦ sockets API
◦ understanding the linker / loader
◦ fork / join, address spaces, the UNIX process model

What is the format of the course?
The course is 10 weeks long, with students meeting for 3 1-hour lectures and a 1-hour lab session per week.

How are students assessed?
Over the 10 weeks, students complete 4 major parts of the programming assignment, ~15 small programming
exercises (handed out at the end of each lecture), ~8 interactive lab exercises, a midterm, and a final exam.
Students spend approximately 10-15 hours per week outside of class on the programming assignment and
exercises.

Course textbooks and materials
Required texts:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective
Harbison & Steele, C: A Reference Manual
Lippman, Lajoie & Moo, C++ Primer

Optional text:
Myers, Effective C++ (optional)

Why do you teach the course this way?
As mentioned above, a major goal of the course is to give students principles, skills, and experience in
implementing complex, layered systems. The course as structured emphasizes significant programming
experience in combination with exposure to systems programming topics.

- 422 -

Body of Knowledge coverage
KA Knowledge Unit Topics Covered Hours

SF Cross-layer Communications abstractions, interfaces, use of libraries; applications
vs. OS services

4

SF Support for Parallelism thread parallelism (fork-join), event-driven
concurrency, client/server web services

3

SF Proximity memory vs. disk latency, demonstrated by in-memory
vs. on-disk indexes

1

AR Assembly level machine org. heap, stack, code segments 2

AR Memory system org. and arch. virtual memory concepts 1

IM Indexing building an inverted file / web index; storing and
accessing indexes efficiently on disk

1

NC Networked applications client/server; HTTP; multiplexing with TCP; socket
APIs

3

OS Principles abstractions, processes, APIs, layering 3

OS Concurrency pthreads interface, basics of synchronization 3

OS File systems files and directories; posix file system API; basics of
file search

1

PL Object-oriented Programming OO design, class definition, subclassing, dynamic
dispatch (all taught based on C++)

3

PL Event-driven programming Events and event handlers, asynchronous I/O and non-
blocking APIs

2

SE Tools and environments Unit testing, code coverage, bug finding tools 1

SE Software construction Coding practices, standards; defensive programming 1

SE Software verification validation Reviews and audits; unit and system testing 1

- 423 -

Ethics in Technology (IFSM304), University of Maryland

University College
Al Fundaburk, PhD
Albert.fundaburk@faculty.umuc.edu
 http://www.umuc.edu/undergrad/ugprograms/ifsm.cfm

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Social Issues and Professional Practice (SP) 48

Brief description of the course’s format and place in the undergraduate curriculum
Recommended pre-requisite: IFSM 201: Concepts and Applications of Information Technology.

IFSM 304 is a required foundation course typically open to all levels from freshman to senior. It is a required
course for all programs in IFSM. The course is typically taught in an eight week on-line and hybrid format.

Course description and goals
This course is a comprehensive study of ethics and of personal and organizational ethical decision making in the
use of information systems in a global environment. The aim is to identify ethical issues raised by existing and
emerging technologies, apply a structured framework to analyze risk and decision alternatives, and understand the
impact of personal ethics and organizational values on an ethical workplace. The objectives of this course are to:

• apply relevant ethical theories, laws, regulations, and policies to decision making to support
organizational compliance

• recognize business needs, social responsibilities, and cultural differences of ethical decision
making to operate in a global environment

• identify and address new and/or increased ethical issues raised by existing and emerging
technologies

• foster and support an ethical workforce through an understanding of the impact of personal
ethics and organizational values

• apply a decision-making framework to analyze risks and decision alternatives at different levels
of an organization

Course topics

• Technology-related Ethical Global issues (multi-national corporation)
• Decision making frameworks to technology-related ethical issues
• Organizational policy to address the technology-related ethical issue
• Research existing or emerging technology and its ethical impact
• Study group presentation of research on existing or emerging technology and related ethical

issues
• a reflective piece on class learning as it applies to ethics in information technology

Course textbooks, materials, and assignments
Reynolds, George Walter (2012) Ethics in Information Technology, 4th edition, Cengage (ISBN: 1111534128)

The course is taught as both hybrid and on-line. It is a writing intensive course requiring written assignments and
student-to-teacher (as well as student-to-student interactions) in discussion conferences. The major assignment
consists of eight weekly conferences, including the analysis of an ethical issue drawn from current events with
global impact/implications. The conference topics consist of privacy, crime, corporate ethics, social media, and
current ethical dilemmas. The significant written assignments include a policy paper, a research paper, a study

http://www.umuc.edu/undergrad/ugprograms/ifsm.cfm�

- 424 -

group developed PowerPoint presentation and the development of a decision matrix to help in analyzing ethical
decisions. The course uses the portfolio method to determine student comprehension of the learning outcomes.

Body of Knowledge coverage
KA Knowledge Unit Topics Covered Hours
SP Social Context Investigate the implications of social media on individualism versus

collectivism and culture.
2

SP Analytical Tools Evaluate stakeholder positions in a given situation.
Analyze basic logical fallacies in an argument.
Analyze an argument to identify premises and conclusion.
Illustrate the use of example and analogy in ethical argument.

6

SP Professional Ethics The strengths and weaknesses of relevant professional codes as
expressions of professionalism and guides to decision-making.
Analyze a global computing issue, observing the role of
professionals and government officials in managing the problem.
The consequences of inappropriate professional behavior.
Develop a computer use policy with enforcement measures.
The consequences of inappropriate personal behavior

7

SP Intellectual Property The philosophical bases of intellectual property.
The rationale for the legal protection of intellectual property.
Describe legislation aimed at digital copyright infringements.
Identify contemporary examples of intangible digital intellectual
property.
Justify uses of copyrighted materials.
The consequences of theft of intellectual property

4

SP Privacy and Civil
Liberties

The philosophical basis for the legal protection of personal privacy.
The the fundamental role of data collection in the implementation of
pervasive surveillance systems.
The impact of technological solutions to privacy problems.
The global nature of software piracy

12

SP Professional
Communication

Write clear, concise, and accurate technical documents following
well-defined standards for format and for including appropriate
tables, figures, and references.
Develop and deliver a good quality formal presentation.
Plan interactions (e.g. virtual, face-to-face, shared documents) with
others in which they are able to get their point across, and are also
able to listen carefully and appreciate the points of others, even
when they disagree, and are able to convey to others that they have
heard.

5

Other comments, such as teaching modality: face-to-face, online or blended.
IFSM 304 is taught as both hybrid and on-line. It is a writing intensive course requiring both written assignments
and student to teacher discussion conferences. Both formats are completed in eight weeks. Both formats use the
same sequence of events, the primary difference is that the hybrid utilizes a face-to-face component. Both the
hybrid and on-line course rely heavily on a faculty led discussion forum to equate theory to practice.
Attachment 1,

Hours Assignment relating to outcomes
Social Context (SP) 5 hours
Investigate the implications of social media on
individualism versus collectivism and culture.

Week 2 conference, Facebook

Analytical Tools (SP) 10 hours
Evaluate stakeholder positions in a given situation. Current Events Article; Privacy-related Matrix

- 425 -

Analyze basic logical fallacies in an argument. Current Events Article; Privacy-related Matrix.
Week 4 conference Hewlett Packard

Analyze an argument to identify premises and conclusion. Current Events Article; Privacy-related Matrix.
Week 6 conference, contributions to economy

Illustrate the use of example and analogy in ethical
argument.

Current Events Article; Privacy-related Matrix.
Week 6 conference, contributions to economy

Professional Ethics (SP) 10 hours
Describe the strengths and weaknesses of relevant
professional codes as expressions of professionalism and
guides to decision-making.

Analyze a global computing issue, observing the role of
professionals and government officials in managing the
problem.

Current Events Article. Week 5 conference,
Computer Crime

Describe the consequences of inappropriate professional
behavior.

The consequences of inappropriate personal behavior Current Events Article. Week 5 conference,
Computer Crime

Develop a computer use policy with enforcement measures. Organizational Policy paper
Intellectual Property (SP) 7 hours
Discuss the philosophical basis of intellectual property. Week 2 conference, Facebook
Discuss the rationale for the legal protection of intellectual
property.

Week 2 conference, Facebook

Describe legislation aimed at digital copyright
infringements.

Week 2 conference, Facebook

Identify contemporary examples of intangible digital
intellectual property

Week 2 conference, Facebook

Justify uses of copyrighted materials.
The consequences of theft of intellectual property

Week 2 conference, Facebook

Privacy and Civil Liberties (SP) 10 hours
Discuss the philosophical basis for the legal protection of
personal privacy.

Reflective paper on class learning; Week 2
conference, Facebook

Recognize the fundamental role of data collection in the
implementation of pervasive surveillance systems (e.g.,
RFID, face recognition, toll collection, mobile

Individual research paper on existing or
emerging technology and related ethical issue.
Week 2 conference, Facebook

Investigate the impact of technological solutions to privacy
problems.

Individual research paper on existing or
emerging technology and related ethical issue.
Week 2 conference, Facebook

Identify the global nature of software piracy. Individual research paper on existing or
emerging technology and related ethical issue.
Week 2 conference, Facebook

Professional Communication (SP) 6 hours
Write clear, concise, and accurate technical documents
following well-defined standards for format and for
including appropriate tables, figures, and references.

Individual research paper on existing or
emerging technology and related ethical issue

Develop and deliver a good quality formal presentation. Group PowerPoint presentation
Plan interactions (e.g. virtual, face-to-face, shared
documents) with others in which they are able to get their
point across, and are also able to listen carefully and
appreciate the points of others, even when they disagree,
and are able to convey to others that they have heard

Group PowerPoint presentation

- 426 -

Technology Consulting in the Community, Carnegie Mellon University

Pittsburgh, PA USA
Global Research University
Joseph Mertz
joemertz@cmu.edu
http://cmu.edu/tcinc

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Social Issues and Professional Practice (SP) 45

Where does the course fit in your curriculum?
This course is taught at the undergraduate and graduate level.

At the undergraduate level, it is an offered in an Information System major and is one option fulfilling a required
core professional course. The prerequisites are meant to filter students who have some maturity to handle the
ambiguous nature of working with a client and some technical skills to share. Therefore they include sophomore
standing, a required freshman writing course, and two courses in computer science (introduction to programming
and data structures). The course is offered each spring semester and typically has 15-20 students enrolled. Most
students are juniors or seniors.

At the graduate level, it is taught in a Masters of Information Systems and Management program as an elective.
There are no prerequisites, but given the timeline of the graduate program, students are always in their 2nd or 3rd
semester when it is offered. It typically has 15-20 students enrolled.

The course has also been offered as an undergraduate Computer Science course.

What is covered in the course?
This course has service, personal, and intellectual goals. Its service goal is to build the technical capacity of
community organizations by providing effective technology consultants. To promote this effectiveness, and to
enrich the intellectual preparation of Carnegie Mellon students, the course teaches students how to:

 Establish a professional working relationship
 Quickly assess a complex technical environment and identify problem areas
 Systematically bring structure to unstructured problems
 Communicate technical ideas to an often non-technical audience
 Negotiate with the client acceptable deliverables for the consulting period
 Develop and execute a work plan
 Use writing skills to maintain working documents that describe, plan, persuade, and coordinate work with

others
 Reflect and learn from their experience as well as the experience of their colleagues
 Broaden their understanding of the relevance of information systems and computer science.

Students routinely find the experience to be very personally satisfying. Student consultants learn that they can be
effective in helping a community organization make better use of its computers, and help its staff and/or volunteers
understand more about the technology. Students also often express that it is refreshing to step outside the grind of
Carnegie Mellon life and do something worthwhile in the community.

- 427 -

Specific topics include:
 Capacity-Building Consulting and Alternative Consulting Models
 Establishing and Managing Professional Relationships
 Gathering and Analyzing Information
 Structuring unstructured problems
 Researching alternative solutions
 Analyzing Buy vs. Build
 Technology Planning
 Developing and Communicating a Scope of Work and Work Plan
 Modelling Technical Problem Solving
 Communicating Difficult Technical Concepts to a Nontechnical Audience
 Documenting and Analyzing Outcomes
 Formulating Persuasive Recommendations
 Synthesizing a Final Consulting Report
 Orally Presenting Project Outcomes
 Reflecting on the Consulting Experience

More detail on these topics and the course materials are available from the course web site or contact me.

What is the format of the course?
Each student in the course is individually matched with a leader in a local community organization. This is typically
a nonprofit organization, school, or a department of municipal government. The student and the partner are expected
to spend at least 3 hours a week together, typically onsite at the organization, and each will be doing work outside of
that time as well.

The course meets twice a week for 80 minutes each class. About half of class time is lecture, and the rest is small or
large group discussion. Four class meetings are special. One is the students' initial meeting with their community
partner. Three class meetings are held in small group discussions lead by senior IT professionals who volunteer to
mentor students in the class.

How are students assessed?
Assessment is based on:
24% - Homework / Preparation for Class. There are around 15 small assignments.
 6% - Status Reports. Students email short updates to all stakeholders after each meeting.
 5% - Peer Reviews. Students assess the quality of feedback they get from other students.
15% - Project Report 1: Describes their consulting situation and proposes a scope of work
15% - Project Report 2: Analyses project outcomes & makes recommendations for future work
20% - Project Report 3: Final Consulting Report
 5% - Final presentation
 5% - Exam reflecting on the consulting process
 5% - Community Partner Evaluations

For the major Project Reports, students are given very clear requirements and outlines of desired content.
Furthermore, the report goes through at least two cycles of review and revision.

The course models good professional conduct. This requires students to keep or reschedule in advance all meetings,
deadlines, and work commitments. To reinforce good professional behavior, unexcused absences and missed
deadlines carry very heavy penalties. However, students who communicate early and well concerning meeting
conflicts or the need for extended time are given that time liberally.

Course textbooks and materials
All materials are available on the course web site. There is no textbook for the class.

- 428 -

Why do you teach the course this way?
I created the course in Spring 1998. In its history over 400 students have worked one-on-one with nearly 300 local
organizations. It has evolved significantly over the past 14 years and continues to do so.

The course goals were stated earlier. In more succinct terms, the course focuses on developing students'
professional leadership and communication skills, and to help them understand the social context of computing.
Leadership skills cannot be learned from a lecture or book. Rather, they can only be learned by doing. Therefore
the class puts students in a leadership position where they are expected to lead a consulting engagement with a
client. They are not working for the client, rather they are leading a process with the client. And they are expected
to investigate the situation, propose and execute a plan, and direct the clients' participation in that plan. Similarly,
students cannot learn good professional communication skills except by using them in an authentic context.

A more thorough discussion of the course and these learning goals can be found in:

Mertz, J. and McElfresh, S. 2010. “Teaching communication, leadership, and the social context of
computing via a consulting course.” In Proceedings of the 41st ACM Technical Symposium on Computer
Science Education (Milwaukee, Wisconsin, USA, March 10 - 13, 2010). SIGCSE '10. ACM, New York,
NY, 77-81. DOI= http://doi.acm.org/10.1145/1734263.1734291

Students find the amount of writing that is required to be challenging. They enjoy the class, however, and by the
end of the semester when they see the effects of their work, they tend to be very satisfied. They especially
appreciate their experience in working with a community partner. Course evaluations are very good.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

SP Social Context Social implications of computing in a networked world 3

SP Analytical Tools Evaluate stakeholder positions in a given situation. 8

SP Professional Ethics The nature of professionalism including care, attention and discipline,
fiduciary responsibility, and mentoring

9

SP Professional Ethics Accountability, responsibility and liability 1

SP Professional
Communication

Reading, understanding and summarizing technical material, including
source code and documentation

2

SP Professional
Communication

Writing effective technical documentation and materials 10

SP Professional
Communication

Dynamics of oral, written, and electronic team and group communication 12

SP Professional
Communication

Communicating professionally with stakeholders 5

SP Professional
Communication

Dealing with cross-cultural environments 1

SP Professional
Communication

Tradeoffs of competing risks in software projects, such as technology,
structure/process, quality, people, market and financial

3

- 429 -

Additional topics
The sustainability of technical solutions within a social context is missing from the current draft of the CS Curricula
2013.

Therefore additional significant topics worth mentioning include:

 Being a sustainable practitioner by taking into consideration cultural and environmental impacts of
implementation decisions (e.g., organizational policies, economic viability, and resource consumption).

 How the sustainability of software systems are interdependent with social systems, including the
knowledge and skills of its users, organizational processes and policies, and its societal context (e.g.,
market forces, government policies).

 Plan sustainability into projects by accounting for the social context in which the software application will
be embedded and deliberately building the capacity to sustain it.

Other comments
This course has been enhanced by the collaboration and teaching of Scott McElfresh who co-taught and taught the
course at a few times at Carnegie Mellon. It has been replicated by Steven Andrianoff at St. Bonaventure. It has
also inspired a similar course at the University of Alaska in Anchorage where Alex Hills uses the same consulting
philosophy and consulting steps and has used and adapted some of my original materials.

Finally, the same approach is embodied in a summer program called Technology Consulting in the Global
Community that places students in a 10-week summer consulting assignment with a government ministry, nonprofit
organization, school, or small business in a developing country.
(See http://cmu.edu/tcingc)

- 430 -

Issues in Computing, Saint Xavier University

Florence Appel
appel@sxu.edu
Per University requirements, all course materials are password-protected. Resources are
available upon request.

Knowledge Areas that contain topics and learning outcomes covered in the course
Knowledge Area Total Hours of Coverage
Social Issues and Professional Practice (SP) 42

Where does the course fit in your curriculum?
Issues in Computing is a required 300-level course intended for all junior and senior computing majors. All
students must have successfully completed English composition and Speech courses prior to their enrollment in
the course. We do admit students who are not at the junior/senior level if they are computing practitioners or have
been computing practitioners prior to enrolling in our program. The course is offered annually and has an
average enrollment of 25.

What is covered in the course?
In the context of widespread computer usage and society’s ever-growing dependence on computer technology, the
course focuses on issues of ethics for the computing professional. A list of topics:

• Introduction to Computer Ethics
• Survey of the tools of ethical analysis
• Practical applications of the tools of ethical analysis
• Professional ethics
• Privacy issues
• Intellectual property protection issues
• Freedom of expression and the Internet
• Ethical dimensions of computer system reliability
• Digital Divide
• Social impact of technology in the workplace, in education, in healthcare

What is the format of the course?
It is a 3 credit hour class that has traditionally been face-to-face, with a growing blended online component. Plans
to offer it completely online are underway. It has been offered in two 1.5 blocks as well as in one 3 hour block.
Within the three contact hours, the distribution of activity is roughly:

• Lecture 15%
• Full class discussion 20%
• Small group work 25%
• Student reports on small group work 15%
• Peer review of assignments 20%
• Individual student presentation 5%

mailto:appel@sxu.edu�

- 431 -

How are students assessed?
The basic grading scheme is designed to emphasize student participation, writing and reflection. Students are
expected to spend 9-12 hours per week on outside classwork:

Homework and class participation…………………………. 40%
 All classroom discussions
 Quizzes/short writing assignments on readings
 Web-based forum discussion postings
Essays on specified topics………………………………………30%
 Ethical analyses of given situations
Exams……………………………………………………………30%
 Take-home midterm
 In-class final

Course textbooks and materials
Current textbook is Brinkman & Sanders, Ethics in a Computing Culture, which is supplemented by Abelson et al,
Blown to Bits, available free of charge in pdf format from bitsbook.com. These books are supplemented heavily
by current and recent articles from the New York Times, Atlantic Monthly, Technology Review, New Yorker,
Chicago Tribune (local), Huffington Post, etc. Readings on computer ethics theory come from the ACM and
IEEE digital libraries as well as other sources. We also make use of a variety of websites, including those
sponsored by civil liberties organizations (e.g., eff.org, aclu.org), privacy advocacy groups (e.g., epic.org,
privacyrights.org), intellectual property rights groups, free/open source advocates (e.g., fsf.org), government sites
(e.g., ftc.gov, fcc.gov); we also draw from ethics education sites such as Michael Sandel’s Justice website
(justiceharvard.org) and Lawrence Hinman’s ethics education site (ethics.sandiego.edu). Additionally, we
reference a library collection of books and films on a variety of computer ethics and social impact themes.

Why do you teach the course this way?
The overarching goal is to educate students about the practice of professional ethics in the computing field. We
situate the special problems faced by computer professionals in the context of widespread computer usage and
society’s ever-growing dependence on computer technology. We work to develop within our students the critical
thinking skills required to identify ethical issues and apply the tools of ethical analysis to address them. Students
find this course to be very demanding; they almost always outside their comfort zones. The curriculum for Issues
in Computing was last reviewed in 2010.

Body of Knowledge coverage
KA Knowledge Unit Topics Covered Hours
SP Social Context All 6
SP Analytical Tools All 6
SP Professional Ethics All 6*
SP Intellectual Property All 6
SP Privacy/Civil Liberties All 6
SP Professional

Communication**
Dynamics of oral, written, electronic team communication
Communicating effectively with stakeholders
Dealing with cross-cultural environments
Trade-offs of competing risks in software projects

3

SP Economies of
Computing**

Effect of skilled labor supply & demand on quality of products
Impacts of outsourcing & off-shoring software development on
employment
Consequences of globalization on the computing profession
Differences in access to computing resources and their effects

6

SP Security Policies, Laws,
Computer Crime

All 3

 *Overlaps many other topics – these instructional hours are dedicated to the topic of professional ethics
**Topics missing from these Knowledge Units are found in other courses in our curriculum, most notably our
Software Engineering course and our Capstone Professional Practice Seminar.

- 432 -

Other comments
Many topics in this course can be integrated throughout the computing curriculum in a manner suggested by the
cross-listings in CS2013 document. This integration can nicely complement a stand-alone course as described
here.

At its core, this course is interdisciplinary, drawing content and pedagogy from computer science, philosophical
ethics, sociology, psychology, law and other disciplines. There is great value in placing primary responsibility for
this course on the computing faculty, who are recognized by students as content experts who know the computing
field’s potentials, limitations and realities. The primary instructor can be joined by faculty members from other
disciplines in the delivery of the course.

- 433 -

Ethics & the Information Age (CSI 194), Anne Arundel Community
College

Arnold, MD
Cheryl Heemstra (crheemstra@aacc.edu), Jonathan Panitz (japanitz@aacc.edu),
Kristan Presnell (lkpresnell@aacc.edu)

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

 Social Issues and Professional Practice (SP) 41 (plus 4 hours testing)

Where does the course fit in your curriculum?
The course covers two requirements: it is a general education humanities course and it is a program requirement
for the Information Assurance and Cybersecurity degree. The course is cross-listed as a Philosophy course since it
fulfills the general education (core) requirement. Students are free to take the course at any time but are
encouraged to take it in the second year. The only prerequisite for the course is eligibility for college English.

What is covered in the course?
Students learn ethics and moral philosophy as a means for providing a framework for ethically grounded decision
making in the information age. Topics include the basic concepts and theories of ethics (moral reasoning and
normative frameworks); basic concepts of argumentation and inductive reasoning; an introduction to cyberethics;
issues related to networking and network security (threats related to breaches, countering breaches; privacy and
personal autonomy (anonymity and accountability, identity theft); intellectual property and ownership rights
(Digital Millennium Copyright Act, digital rights management, alternatives to the property model); computing and
society, social justice, community, and self-identity digital divide, free speech and censorship; professional ethics
and codes of conduct. Four hours are assigned to testing.

What is the format of the course?
CSI 194 Ethics & the Information Age is taught online and face-to-face. Faculty teaching the course are free to
present the material in any way they like. Generally there is a combination of lectures, class discussion, case
studies, written term papers, and team research and presentation.

Course textbooks and materials
Herman T. Tavani. Ethics & Technology, Ethical Issues in an Age of Information and Communication Technology,
3rd Edition, John Wiley & Sons, Inc., 2011

Why do you teach the course this way?
Early in our computer security and networking programs, students are trusted with access to the practices,
procedures and technologies used to attack and protect valuable information assets and systems. This trust
requires an uncompromising commitment to the highest moral and ethical standards. The increasing dependence
on and use of technology has created many ethical dilemmas across many disciplines and professions. Many
schools are requiring this type of course in programs to address these realities. This is a relatively new area and we
would like to be on the cutting edge and provide the work force with students that understand how to apply sound
ethical reasoning to various situations. The goal of this course is to provide students in computer and business-
related fields with the framework and tools for ethical decision-making in their professions and to heighten ethical
awareness of the standards of conduct in these areas.

mailto:crheemstra@aacc.edu�
mailto:japanitz@aacc.edu�
mailto:lkpresnell@aacc.edu�

- 434 -

Ethical decision making is an inductive thought process that is not routinely taught in any normative educational
area. This class, which exists on the cutting edge of technological advance, equips the student to think outside the
box and apply the new rubric of ethical deliberation to the expanding world of the cyber-arena. The course equips
students majoring in Cyberforensics and Cybersecurity to apply practical knowledge to the monumental challenges
they will face in their careers as the world of the cyber-arena becomes more and more pervasive and invasive.

When developing this course, we looked at requiring a philosophical ethics class that would count as a general
education requirement in the humanities. But the issue we had is that the cases in that course would be divorced
from the situations faced by information system security professionals. We wanted the cases to be those that would
fit in with our curriculum. In addition, there was not room in our program to have two courses, so we decided to
develop one that would count as a general education ethics course and present ethical theory as the basis for
examining cases.

We looked at many computer/cyber ethics textbooks and discovered that most of them only provided a cursory
overview of ethical theory, if any. This was not enough to warrant classification under general education. We also
did not want to require two textbooks because we are mindful of textbook costs for our students. We then found
Herman T. Tavani’s text that covered ethical theory in depth and provided the practical cases in the field of
computer ethics.

Body of Knowledge coverage
KA Knowledge Unit Topics Covered Hours
SP Social Context Social Justice

Digital divide
Distributive justice theories
Accessibility issues
Social interaction
Cultural issues
Commerce, Free Speech and Censorship
Define the Internet as public or private space
Regulatory agencies and laws regarding regulation in physical space
Jurisdictional issues with regulating cyberspace
Free speech and hate speech
Free speech and pornography

6

SP Analytical Tools Introduction to Ethical Thought – values, morals, normative analysis
Introduction to Cyberethics
Ethical theories – Virtue Ethics, Utilitarianism, Deontology, Just
Consequentialism, Social Contract Theory
Evaluate stakeholder positions
Concepts of argumentation and debate

12

SP Professional Ethics Moral responsibility of a professional
Pervasive nature of computing applies to all, not only professionals
Professional Codes of Conduct
Principles of the Joint IEEE-CS/ACM Code of Ethics and
Professional Practice
Purpose of a code of ethics
Weaknesses of codes of ethics
Accountability, responsibility and liability

4

- 435 -

SP Intellectual Property Overview and history of intellectual property – trade secrets, patents,
trademarks, copyrights
Philosophical views of property – Labor Theory, Utilitarian Theory,
Personality Theory
Fair Use
Digital Millennium Copyright Act.
Digital Rights management
Alternatives to the property model – GNU project, Open Source
Initiative, Creative Commons
Software piracy

6

SP Privacy and Civil
Liberties

Technology’s impact on privacy
Difference between naturally private and normatively private
situations
Philosophical foundations of privacy rights
Three types of personal privacy – accessibility, decisional, and
informational
How different cultures view privacy
Public and personal information
Information matching technique’s impact on privacy
Legal rights to privacy
Solutions for privacy violations

6

SP Security Policies,
Laws and Computer
Crimes

Need to protect computer data, systems, and networks
Ethical issues related to computer security
Social engineering
Identity theft
Computer hacking
Security issues related to anonymity on the Internet
Cyberterrorism and information warfare
Ethical issues related to cybercrime and cyber-related crimes.

7

Additional topics
Artificial Intelligence and Ambient Intelligence and the impact upon ethical and moral deliberations

- 436 -

Professional Development Seminar, Northwest Missouri State
University

Carol Spradling
c_sprad@nwmissouri.edu
http://catpages.nwmissouri.edu/m/c_sprad/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Social Issues and Professional Practice (SP) 15 hours

Where does the course fit in your curriculum?
Professional Development Seminar, a required, three hour 200 level course for computer science majors, is taken
in the fall of the sophomore year. The student population for this course is approximately 30 undergraduate
computer science majors that are required to take this course for their major and 10 international graduate
computer science students that elect to take this course.

What is covered in the course?
While the course covers Social and Professional Practice topics such as social context, analytical tools,
professional ethics, intellectual property, privacy and civil liberties, this exemplar will focus on professional
communications.

The course provides opportunities for students to develop their professional communication skills. This exemplar
includes examples of four Professional Communication outcomes:
• Write clear, concise, and accurate technical documents following well-defined standards for format and for

including appropriate tables, figures, and references.
• Develop and deliver a good quality formal presentation.
• Plan interactions (e.g. virtual, face-to-face, shared documents) with others in which they are able to get their

point across, and are also able to listen carefully and appreciate the points of others, even when they disagree,
and are able to convey to others that they have heard.

• Describe the strengths and weaknesses of various forms of communication (e.g. virtual, face-to-face, shared
documents)

What is the format of the course?
The course format is face-to-face weekly class meetings with some online threaded discussions which are used to
augment face-to-face class discussions. Most class meetings include a short instructor lecture of no more than 10-
15 minutes followed by small group topic discussions, consisting of groups of no more than 4-5 students.
Additionally, the course utilizes group discussions (face-to-face and online threaded discussion), a group research
project, a group research presentation and a unit on preparing for professional interviews which includes a unit on
technical resume preparation and technical and situational interview preparation. .

Group Discussions
Students are provided a current news article or issue that pertains to the class topic, asked to read the article before
class and then discuss the merits of the article with their group members. Groups of no more than 4-5 students
self-select a note taker and spokesperson. The role of the note taker is to record the summary of the group
discussion and submit the summary of their discussion by the end of the class period. The spokesperson provides
a short summary of their group findings orally to the rest of the class and is provided the opportunity to
communicate the group views with the entire class.

Students are also provided online opportunities to discuss topics using online threaded discussions. The instructor
selects an article or case study that illustrates issues surrounding a particular topic, such as intellectual property or

- 437 -

privacy. Students are asked to share their individual opinions supported by facts to agree either for or against their
particular view. They are also required to respond to other student’s threaded discussions and explain why they
either agree or disagree with the other person’s posts.

Group Research Paper and Presentation
A group of students work to select a research topic, write a group research paper and give a group presentation on
the research topic. The group research paper must utilize peer reviewed references as well as follow APA
formatting. The group research paper and presentation include several individual and group milestones to
encourage students to complete their paper in a timely manner. Students use group collaboration tools in the
preparation of their paper.

Student groups give their group research presentation twice during the semester. The first presentation is
videotaped and posted online. Students are asked to view their portion of the presentation and write a short paper
critiquing their portion of the presentation. Student groups then carry out their final class presentation and are
graded on their group presentation.

Professional Interviews Preparation
Students are asked to prepare a professional technical resume and prepare for a mock interview with a “real”
industry employer. Students are instructed regarding how to write a professional resume that highlights their
technical skills and relevant experiences. Three drafts of their resume are developed in progressive stages. During
this process, students receive critiques on their resume from the instructor, the Career Services Office and an
industry professional. Students are also required to write a cover letter and prepare a list of references.

Students are instructed on how to prepare for a technical and situational interview. Students participate in a class
interview with another student. This practice interview with another student heightens their awareness of what
may occur during a “real” interview. Students are also critiqued on their interview skills through a Mock
Interview Day in which “real” industry professionals conduct a face-to-face interview and provide feedback on the
student’s resume and interview skills.

Students are also required to attend a Career Day to meet “real” employers. They are encouraged to set up
interviews for summer internships or to make contacts for future internships or full-time employment. In short,
students are encouraged to network with employers.

Cross Cultural Skills
Undergraduate and graduate international students work together in groups and are exposed different cultural
viewpoints as well as approaches to problem solving.

How are students assessed?
Students receive course points for their professional communication through group work participation, their
research paper and presentation and their technical resume development and interview practice and preparation.

Professional Communication Assessment is as follows:

Topic Percentage of Final Grade
Technical Resume Development 10%
Technical Interview Development 14%
Group Research Paper 16%
Group Research Presentation 16%
Discussion Threads 7%
Class/Group Participation 20%
Other Assignments 17%

- 438 -

Course textbooks and materials
A textbook is utilized but most materials for the group work, group research paper and presentation and the
professional interview preparation are offered through hand-outs and oral instructions. Students are encouraged to
use online library resources and online current articles to support their work.

Why do you teach the course this way?
Professional communication has been emphasized in this course since 2002. This approach has impacted our
students’ abilities to develop their written and oral communication skills, to learn to discuss social and professional
issues with other students, and has enhanced student’s ability to obtain internships. A side effect of this intense
component of professional communication has allowed students to apply technical skills in a professional
environment.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

SP Professional Communication All 15

The following outcomes are covered in the course under the Professional Communication area.
• Write clear, concise, and accurate technical documents following well-defined standards for format and for

including appropriate tables, figures, and references.
• Develop and deliver a good quality formal presentation.
• Plan interactions (e.g., virtual, face-to-face, shared documents) with others in which they are able to get their

point across, and are also able to listen carefully and appreciate the points of others, even when they disagree,
and are able to convey to others that they have heard.

• Describe the strengths and weaknesses of various forms of communication (e.g., virtual, face-to-face, shared
documents)

- 439 -

The Digital Age, Grinnell College

Grinnell, IA
Janet Davis
davisjan@cs.grinnell.edu
http://www.cs.grinnell.edu/~davisjan/csc/105/2013S

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage
Algorithms and Complexity (AL) 2
Architecture and Organization (AR) 8
Graphics and Visualization (GV) 1
Human-Computer Interaction (HCI) 2
Networking and Communication (NC) 2
Software Development Fundamentals (SDF) 6
Social Issues and Professional Practice (SP) 12

Where does the course fit in your curriculum?
The Digital Age is an introductory course for non-majors. It has no prerequisites and does not serve as a prerequisite
for any other course. The student population for this course is approximately 25 students each year from all three
divisions of the college (science, humanities, and social studies) and all four class years.

What is covered in the course?
The course provides both an introduction to a broad range of computer science topics and discussion of social and
ethical issues. Topics vary according to faculty interest and current events.

The technical topics for spring 2013 include:

• Algorithms & efficiency
• Data representation
• Digital logic
• Computer organization
• HTML
• Usability
• Networks
• Programming in Python

Discussion topics include:

• Ethics
• Software reliability
• Digital data & copyright
• Software as intellectual property
• Artificial intelligence
• Data mining
• Privacy & security
• Online education
• Online voting
• Energy

- 440 -

What is the format of the course?
The course meets face-to-face for 3.25 contact hours per week, split into three 65-minute class sessions. Two
sessions each week consist of lectures and laboratory exercises on technical topics. The third session is a discussion
of social/ethical issues. Students prepare for these discussions by reading several articles and writing a short
response paper.

How are students assessed?
Students are assigned:

• 11 homework assignments (slightly fewer than one per week) – typically one large problem or 2-5 medium
sized problems, often including writeups of in-class lab exercises. For example, when students learn
HTML, they create their own Web site of 2-3 interlinked pages. When they learn digital logic, they design
simple circuits.

• 2 in-class exams: a midterm and a cumulative final.
• 10 reading response papers, 1-2 pages each, one for each discussion topic.
• An “emerging technology analysis”: a 4-5 page paper accompanied by a 4-minute “lightning” presentation.

Students identify a new technology (reported within the last two years) and analyze its social or ethical
implications.

Course textbooks and materials
The course currently does not use a textbook. Online readings are used to augment lectures on some technical topics.

Readings on social and ethical issues are drawn from the CACM, particularly the columns, which often focus on
social and ethical issues. For example, the following readings are assigned for the topic of energy and sustainability:

• P. Kurp. Green computing. CACM 51(10): 11-13.
• G. Mone. Redesigning the data center. CACM 55(10): 14-16.
• M. Garrett. Powering down. CACM 51(9): 43-46.
• R.T. Watson. Corbett, M.C. Boudreau, and J. Webster. An information strategy for environmental

sustainability. CACM 55(7): 28-30.
• T. Kostyk and J. Herkert. Societal implications of the emerging smart grid. CACM 55(11): 34-36.

Readings from the CACM are sometimes augmented with online news articles about current events.

Why do you teach the course this way?
The course is intended to appeal to a broad range of students, but particularly those who are interested in
approaching computing from the perspective of intellectual curiosity and informed citizenship. Students who want to
learn to program or who intend to become computer science majors typically begin with our other introductory
course, CSC 151, Functional Problem Solving.

Major objectives for the course include:

• Fluency in basic computing concepts, components, and operation
• Learning how computers can be used to solve problems and create new things
• Sharpening analytical and problem-solving skills
• Understanding legal, social, and ethical implications of both existing and potential technologies

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours
AL Basic Analysis Best, expected, worst case

Empirical measurements of performance
1

AL Basic Automata Computability
and Complexity

Intractable problems
Halting problem

1

- 441 -

AR Digital logic and digital

systems
Logic circuits
Building blocks of a computer

2

AR Machine-level representation
of data

Bits, bytes, and words
Numeric data representation and number bases
Fixed- and floating-point systems
Signed and twos-complement representations
Representation of non-numeric data (character codes,
graphical data)

4

AR Assembly level machine
organization

Basic organization of the von Neumann machine
Control unit; instruction fetch, decode, and execution
Assembly/machine language programming
Instruction formats

2

GV Fundamental Concepts Standard image formats, including lossless and lossy
formats

1

HCI Foundations Contexts for HCI (anything with a user interface:
webpage, business applications, mobile applications,
games, etc.)
Different measures for evaluation: utility, efficiency,
learnability, user satisfaction.
Physical capabilities that inform interaction design: color
perception, ergonomics
Cognitive models that inform interaction design:
attention, perception and recognition, movement, and
memory.
Gulfs of expectation and execution.
Accessibility: interfaces for differently-abled populations
(e.g., blind, motion-impaired)

2

NC Introduction Organization of the Internet (Internet Service Providers,
Content Providers, etc.)
Physical pieces of a network (hosts, routers, switches,
ISPs, wireless, LAN, access point, firewalls, etc.)
Roles of the different layers (application, transport,
network, datalink, physical)

1

NC Networked Applications Naming and address schemes (DNS, IP addresses,
Uniform Resource Identifiers, etc.)
Distributed applications (client/server, peer-to-peer,
cloud, etc.)
HTTP as an application layer protocol

1

SDF Algorithms and Design The concept and properties of algorithms
○ Informal comparison of algorithm efficiency (e.g.,
operation counts)
The role of algorithms in the problem-solving process
Problem-solving strategies
○ Iterative traversal of data structures
○ Divide-and-conquer strategies

2

SDF Fundamental Programming
Concepts

Basic syntax and semantics of a higher-level language
Variables and primitive data types (e.g., numbers,
characters, Booleans)
Expressions and assignments
Simple I/O including file I/O
Conditional and iterative control structures

4

- 442 -

SP Social Context Online education
Electronic voting
Robots and artificial intelligence
Self-directed research & presentations on emerging
technology

5

SP Analytical Tools Ethical argumentation
Ethical theories and decision-making
Moral assumptions and values

1

SP Professional Ethics Accountability, responsibility and liability (e.g. software
correctness, reliability and safety)

1

SP Intellectual Property Intellectual property rights
Intangible digital intellectual property (IDIP)
Legal foundations for intellectual property protection
Digital rights management
Copyrights, patents
Foundations of the open source movement
Software piracy

2

SP Privacy and Civil Liberties Legal foundations of privacy protection
Privacy implications of widespread data collection

2

SP Sustainability Explore global social and environmental impacts of
computer use and disposal (particularly energy)

1

Additional topics
HTML (2 hours)

- 443 -

COS 126: General Computer Science, Princeton University

Princeton, NJ
Robert Sedgewick and Kevin Wayne
rs@cs.princeton.edu, wayne@cs.princeton.edu
http://www.cs.princeton.edu/courses/archive/spring12/cos226/info.php
http://algs4.cs.princeton.edu

Knowledge Areas that contain topics and learning outcomes covered in the course
Knowledge Area Total Hours of Coverage

Software Development Fundamentals (SDF) 11

Algorithms and Complexity (AL) 11

Architecture and Organization (AR) 5

Programming Languages (PL) 4

Computational Science (CN) 1

Social Issues and Professional Practice (SP) 1

Intelligent Systems (IS) 1

Where does the course fit in your curriculum?
This course is an introduction to computer science, intended for all first-year students. It is intended to be
analogous to commonly accepted introductory courses in mathematics, physics, biology, and chemistry. It is not
just a “first course for CS majors” but also an introduction to the field that is taken by over 60% of all Princeton
students.

What is covered in the course?
We take an interdisciplinary approach to the traditional CS1 curriculum, where we teach students to program while
highlighting the role of computing in other disciplines, then take them through fundamental precepts of the field of
computer science. This approach emphasizes for students the essential idea that mathematics, science, engineering,
and computing are intertwined in the modern world, while at the same time preparing students to use computers
effectively for applications in computer science, physics, biology, chemistry, engineering, and other disciplines.
Instructors teaching students who have successfully completed this course can expect that they have the
knowledge and experience necessary to enable them to adapt to new computational environments and to
effectively exploit computers in diverse applications. At the same time, students who choose to major in computer
science get a broad background that prepares them for detailed studies in the field.
Roughly, the first half of the course is about learning to program in a modern programming model, with
applications. The second half of the course is a broad introduction to the field of computer science.

• Introduction to programming in Java. Elementary data types, control flow, conditionals and loops, and
arrays.

• Input and output.
• Functions and libraries.
• Analysis of algorithms, with an emphasis on using the scientific method to validate hypotheses about

algorithm performance.
• Machine organization, instruction set architecture, machine language programming.
• Data types, APIs, encapsulation.
• Linked data structures, resizing arrays, and implementations of container types such as stacks and queues.

http://algs4.cs.princeton.edu/�

- 444 -

• Sorting (mergesort) and searching (binary search trees).
• Programming languages.
• Introduction to theory of computation. Regular expressions and finite automata.
• Universality and computability.
• Intractability.
• Logic design, combinational and sequential circuits.
• Processor and memory design.
• Introduction to artificial intelligence.

What is the format of the course?
The material is presented in two one-hour lectures per week, supported by two one-hour sections covered by
experienced instructors teaching smaller groups of students. Roughly, one of these hours is devoted to presenting
new material that might be covered in a lecture hour; the other is devoted to covering details pertinent to
assignments and exams.

How are students assessed?
Programming projects. The bulk of the assessment is weekly programming assignments, which usually involve
solving an interesting application problem that reinforces a concept learned in lecture. Students spend 10-20 hours
per week on these assignments and often consult frequently with section instructors for help. Examples include:

• Monte Carlo simulation of random walks.
• Graphical simulation of the N-body problem.
• Design and plot a recursive pattern.
• Implement a dynamic programming solution to the global DNA sequence alignment problem.
• Simulate a linear feedback shift register and use it to encrypt/decrypt an image.
• Simulate plucking a guitar string using the Karplus-Strong algorithm and use it to implement an

interactive guitar player.
• Implement two greedy heuristics to solve the traveling salesperson problem.
• Re-affirm the atomic nature of matter by tracking the motion of particles undergoing Brownian motion,

fitting this data to Einstein's model, and estimating Avogadro's number.

In-class programming tests. At mid-term and at the end of the semester, students have to solve mini-programming
assignments (that require 50-100 lines of code to solve) in a supervised environment in 1.5 hours. Practice
preparation for these tests is a significant component in the learning experience.
Hourly exams. At mid-term and at the end of the semester, students take traditional hourly exams to test their
knowledge of the course material.

Course textbooks and materials.
The first half of the course is based on the textbook Introduction to Programming in Java: An Interdisciplinary
Approach by Robert Sedgewick and Kevin Wayne (Addison-Wesley, 2008). The book is supported by a public
“booksite” (http://introcs.cs.princeton.edu) that contains a condensed version of the text narrative (for reference
while online), Java code for the algorithms and clients in the book and many related algorithms and clients, test
data sets, simulations, exercises, and solutions to selected exercises. The booksite also has lecture slides and other
teaching material for use by faculty at other universities.
A separate website specific to each offering of the course contains detailed information about schedule, grading
policies, and programming assignments.

Why do you teach the course this way?
The motivation for this course is the idea that knowledge of computer science is for everyone, not just for
programmers and computer science students. Our goal is to demystify computation, empower students to use it
effectively and to build awareness of its reach and the depth of its intellectual underpinnings. We teach students to
program in a familiar context to prepare them to apply their skills in later courses in whatever their chosen field
and to recognize when further education in computer science might be beneficial.

http://algs4.cs.princeton.edu/�

- 445 -

Prospective computer science majors, in particular, can benefit from learning to program in the context of
scientific applications. A computer scientist needs the same basic background in the scientific method and the
same exposure to the role of computation in science as does a biologist, an engineer, or a physicist.
Indeed, our interdisciplinary approach enables us to teach prospective computer science majors and prospective
majors in other fields of science and engineering in the same course. We cover the material prescribed by CS1, but
our focus on applications brings life to the concepts and motivates students to learn them. Our interdisciplinary
approach exposes students to problems in many different disciplines, helping them to more wisely choose a major.
Our reach has expanded beyond the sciences and engineering, to the extent that we are one of the most popular
science courses taken by students in the humanities and social sciences, as well.

Body of Knowledge coverage
KA Knowledge Unit Topics Covered Hours

SDF Algorithms and Design

The concept and properties of algorithms.
The role of algorithms in the problem-solving process.
Problem-solving strategies. Implementation of algorithms.
Fundamental design concepts and principles

2

SDF Fundamental
Programming Concepts

Basic syntax and semantics of a higher-level language.
Variables and primitive data types. Expressions and
assignments. I/O. Conditional and iterative control structures

3

SDF Fundamental Data
Structures

Arrays, stacks, queues, priority queues, strings, references,
linked structures, resizable arrays. Strategies for choosing the
appropriate data structure.

3

SDF Development Methods

Program correctness. Modern programming environments.
Debugging strategies.
Documentation and program style.

3

PL Object-Oriented
programming Object-oriented design, encapsulation, iterators. 2

PL Basic Type Systems Primitive types, reference types. Type safety, static typing.
Generic types. 2

AL Basic Analysis

Asymptotic analysis, empirical measurements. Differences
among best, average, and worst case behaviors of an algorithm.
Complexity classes, such as constant, logarithmic, linear,
quadratic, and exponential. Time and space trade-offs in
algorithms.

2

AL Algorithmic Strategies Brute-force, greedy, divide-and-conquer, and recursive
algorithms. Dynamic programming, reduction. 2

- 446 -

AL
Fundamental Data
Structures and
Algorithms

Binary search. Insertion sort, mergesort. Binary search trees,
hashing. Representations of graphs. Graph search. 3

AL
Basic Automata,
Computability and
Complexity

Finite-state machines, regular expressions, P vs. NP, NP-
completeness, NP-complete problems 2

AL
Advanced Automata,
Computability and
Complexity

Languages, DFAs. Universality. Computability. 2

AR Architecture and
Organization

Overview and history of computer architecture, Combinational
vs. sequential logic

1

AR Machine Representation
of Data

Bits, bytes, and words, Numeric data representation and
number bases, Fixed- and floating-point systems, Signed and
twos-complement representations. Representation of non-
numeric data. Representation of records and arrays

1

AR Assembly level machine
organization

Basic organization of the von Neumann machine. Control unit;
instruction fetch, decode, and execution. Instruction sets and
types. Assembly/machine language programming. Instruction
formats. Addressing modes

2

AR Functional Organization

Control unit. Implementation of simple datapaths.

1

CN Fundamentals Introduction to modeling and simulation. 1

IS Fundamental Issues

Overview of AI problems. Examples of successful recent AI
applications

1

SP History

History of computer hardware and software. Pioneers of
computing.

1

- 447 -

CSCI 0190: Accelerated Introduction to Computer Science, Brown
University

Providence, RI, USA
Shriram Krishnamurthi
sk@cs.brown.edu
http://www.cs.brown.edu/courses/csci0190/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Programming Languages (PL) 13

Software Development Fundamentals (SDF) 10

Software Engineering (SE) 6

Algorithms and Complexity (AL) 5

Parallel and Distributed Computing (PD) 1

Where does the course fit in your curriculum?
Brown has three introductory computing sequences as routes into the curriculum. The other two are spread over a
whole year, and cover roughly a semester of content in programming and a semester of algorithms and data
structures. This course, which is one of these, compresses most of this material into a single semester.

Students elect into this course, either through high school achievement or performance in the early part of one of
the other sequences.

Approximately 30 students it every year, compared to 300-400 in the other two sequences.

What is covered in the course?
The course is a compressed introduction into programming along with basic algorithms and data structures. It
interleaves these two. The data structures cover lists, trees, queues, heaps, DAGs, and graphs; the algorithms go up
through classic ones such as graph shortest paths and minimum spanning trees. The programming is done entirely
with pure functions. It begins with graphical animations (such as simple video games), then higher-order
functional programming, and encodings of laziness.

What is the format of the course?
Classroom time is a combination of lecture and discussion. We learn by exploration of mistakes.

How are students assessed?
There are about ten programming assignments. Students spend over 10 and up to 20 hours per week on the course.

Course textbooks and materials
There is no textbook. Students are given notes and code from class.

All programming is done in variations of the Racket programming language using the DrRacket programming
environment.

- 448 -

Why do you teach the course this way?
The material of the course is somewhat constrained by the department’s curricular needs. However, the
arrangement represents my desires.

In interleaving programming and algorithmic content to demonstrate connections between them, I am especially
interested in ways in which programming techniques enhance algorithmic ones: for instance, the use of
memoization to alter a computation’s big-O performance (and the trade-offs in program structure relative to
dynamic programming).

The course is revised every year, based on the previous year’s outcome.

Students consider the course to be extremely challenging, and of course recommend it only for advanced students.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

AL Advanced Data Structures, Algorithms,
and Analysis

Balanced trees, graphs, string-based data
structures, amortized analysis

5

PD Parallelism Fundamentals Parallel data structures, map-reduce 1

PL Object-Oriented Programming All 3

PL Functional Programming All 6

PL Event-Driven and Reactive
Programming

All 2

PL Basic Type Systems All 2

SDF All All 10

SE Software Design Design recipe 3

SE Software Verification Validation Test suites, testing oracles, test-first development 3

- 449 -

An Overview of the Two-Course Intro Sequence, Creighton University

The Computer Science & Informatics program at Creighton University serves students with a wide range of
interests. These include traditional computer science students who plan for careers in software development or
graduate studies, as well as students whose interests overlap with business analytics, graphics design, and even
journalism. All majors in the department take a foundational sequence in information, consisting of introductory
informatics, professional writing, Web design, and CS0. The computer science major begins with a two-course
introductory programming sequence, which covers almost all of the Software Development Fundamentals (SDF)
Knowledge Area, along with Knowledge Units from Programming Languages (PL), Algorithms and Complexity
(AL), Software Engineering (SE), and others. The two introductory programming courses are:

CSC 221: Introduction to Programming
• Language: Python
• Focus: Fundamental programming concepts/techniques, writing small scripts

CSC 222: Object-Oriented Programming

• Language: Java
• Focus: object-oriented design, designing and implementing medium-sized projects

It should be noted that in the course exemplars for these two courses, there is significant overlap in SDF Topics
Covered. Many of the software development topics are introduced in the first course (in Python, following a
procedural approach), then revisited in the second course (in Java, following an object-oriented approach).

- 450 -

CSC 221: Introduction to Programming, Creighton University

Omaha, Nebraska, USA
David Reed
davereed@creighton.edu
http://dave-reed.com/csc221.F12

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Software Development Fundamentals (SDF) 30

Programming Languages (PL) 5

Algorithms and Complexity (AL) 4

Social Issues and Professional Practice (SP) 1

Where does the course fit in your curriculum?
This is the first course in the introductory programming sequence. It is required for all computer science majors.
Many students will have already taken or will concurrently take CSC 121, Computers and Scientific Thinking,
which is a requirement of the computer science major (but not an explicit prerequisite for this course). CSC 121 is
a balanced CS0 course that provides some experience with programming (developing interactive Web pages using
JavaScript and HTML) while also exploring a breadth of computer science topics (e.g., computer organization,
history of computing, workings of Internet & Web, algorithms, digital representation, societal impact). This
course is offered every semester, with an enrollment of 20-25 students per course.

What is covered in the course?
This course provides an introduction to problem solving and programming using the Python scripting language.
The specific goals of this course are:

• To develop problem solving and programming skills to enable the student to design solutions to non-
trivial problems and implement those solutions in Python.

• To master the fundamental programming constructs of Python, including variables, expressions,
functions, control structures, and lists.

• To build a foundation for more advanced programming techniques, including object-oriented design and
the use of standard data structures (as taught in CSC 222).

What is the format of the course?
The course meets twice a week for two hours (although it only counts as three credit hours). The course is taught
in a computer lab and integrates lectures with lab time.

How are students assessed?
Students complete 6-8 assignments, which involve the design and implementation of a Python program and may
also include a written component in which the behavior of the program is analyzed. There are "random" daily
quizzes to provide student feedback (quizzes are handed out but administered with a 50% likelihood each day).
There are two 75-minute tests and a cumulative 100-minute final exam.

- 451 -

Course textbooks and materials
Free Online Texts:

Scratch for Budding Computer Scientists, David J. Malan.
Learning with Python: Interactive Edition, Brad Miller and David Ranum (based on material by Jeffrey
Elkner, Allen B. Downey, and Chris Meyers).

Optional Text:
Python Programming: An Introduction to Computer Science (2nd ed.), John Zelle.

Why do you teach the course this way?
This course was revised in 2011 to use Python. Previously, it was taught in Java using an object-oriented
approach. It was felt that the overhead of the language was too much for beginners, and the object-orientated
approach was not ideal for the range of students taking this course (which include business, graphic design, and
journalism majors). A scripting language, such as Python, allowed for a stronger problem-solving focus and
prepared non-majors to take high-demand courses such as Web Programming and Mobile Development.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

SDF Algorithms and
Design

concept & properties of algorithms; role of algorithms in problem
solving; problem solving strategies (iteration, divide & conquer);
implementation of algorithms; design concepts & principles (abstraction,
decomposition)

8

SDF Fundamental
Programming
Concepts

syntax & semantics; variables & primitives, expressions & assignments;
simple I/O; conditionals & iteration; functions & parameters

8

SDF Fundamental Data
Structures

arrays; records; strings; strategies for choosing the appropriate data
structure

8

SDF Development
Methods

program correctness (specification, defensive programming, testing
fundamentals, pre/postconditions); modern environments; debugging
strategies; documentation & program style

6

PL Object-Oriented
Programming

object-oriented design; classes & objects; fields & methods 3

PL Basic Type
Systems

primitive types; type safety & errors 1

PL Language
Translation

interpretation; translation pipeline 1

AL Fundamental Data
Structures and
Algorithms

simple numerical algorithms; sequential search; simple string processing 4

SP History history of computer hardware; pioneers of computing; history of Internet 1

- 452 -

CSC 222: Object-Oriented Programming, Creighton University

Omaha, Nebraska, USA
David Reed
davereed@creighton.edu
http://dave-reed.com/csc222.S13

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage

Software Development Fundamentals (SDF) 19

Programming Languages (PL) 11

Algorithms and Complexity (AL) 7

Software Engineering (SE) 3

Where does the course fit in your curriculum?
This is the second course in the introductory programming sequence, following CSC 221 (Introduction to
Programming). Students must have completed CSC 221 or otherwise demonstrate competence in some
programming language. It is offered every spring, with an enrollment of 20-25 students.

What is covered in the course?
Building upon basic programming skills in Python from CSC 221, this course focuses on the design and analysis
of larger, more complex programs using the industry-leading language, Java. The specific goals of this course are:

• To know and use basic Java programming constructs for object-oriented problem solving (e.g., classes,
polymorphism, inheritance, interfaces)

• To appreciate the role of algorithms and data structures in problem solving and software design (e.g.,
objected-oriented design, lists, files, searching and sorting)

• To be able to design and implement a Java program to model a real-world system, and subsequently
analyze its behavior.

• To develop programming skills that can serve as a foundation for further study in computer science.

What is the format of the course?
The course meets twice a week for two hours (although it only counts as three credit hours). The course is taught
in a computer lab and integrates lectures with lab time.

How are students assessed?
Students complete 5-7 assignments, which involve the design and implementation of a Python program and may
also include a written component in which the behavior of the program is analyzed. There are "random" daily
quizzes to provide student feedback (quizzes are handed out but administered with a 50% likelihood each day).
There are two 75-minute tests and a cumulative 100-minute final exam.

Course textbooks and materials
Objects First with Java, 5th edition, David Barnes and Michael Kolling.

Why do you teach the course this way?
This course was revised in 2011. Previously, it was part of a two-course intro sequence in Java that integrated
programming fundamentals, problem solving, and object-oriented design. The new division, in which basic

- 453 -

programming (scripting) is covered in the first course and object-oriented design is covered in this second, is
proving much more successful.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours

SDF Algorithms and Design all topics (including recursion, encapsulation, information hiding) 4

SDF Fundamental
Programming
Concepts

all topics (including recursion) 4

SDF Fundamental Data
Structures

all topics, with the possible exception of priority queues, sets and
maps (which are covered in the subsequent Data Structures course)

5

SDF Development Methods all topics 6

PL Object-Oriented
Programming

all topics 9

PL Basic Type Systems reference types; generic types 2

AL Basic Analysis best/average/worst case behavior; asymptotic analysis; Big O;
empirical measurement

3

AL Fundamental Data
Structures and
Algorithms

sequential and binary search; O(N2) sorts, O(N log N) sorts 4

SE Software Design design principles; structure & behavior 1

SE Software Construction defensive coding; exception handling 1

SE Software Verification
and Validation

verification & validation; testing fundamentals (unit testing, test
plan creation)

1

- 454 -

An Overview of the Mulit-paradigm Three-course CS Introduction at
Grinnell College

Consistent with both CS 2008 and CS 2013, the CS program at Grinnell College follows a multi-paradigm
approach in its introductory curriculum. Since each course emphasizes problem solving following a specified
paradigm, students gain practice by tackling a range of problems. Toward that end, the first two courses utilize
application themes to generate interesting problems and generate interest in interdisciplinary connections of
computer science. The following list outlines some main elements of this approach:

CSC 151: Functional Problem Solving (CS1)
• Primary Paradigm: Functional problem solving
• Supporting language: Scheme
• Application area: image processing, media scripting

CSC 161: Imperative Problem Solving and Data Structures (CS2)
• Primary Paradigm: Imperative problem solving
• Supporting language: C (no objects as in C++)
• Application area: robotics

CSC 207: Algorithms and Object-Oriented Design (CS3)
• Primary Paradigm: Object-oriented problem solving
• Supporting language: Java
• Application areas: several large-scale problems

Audience: As with many liberal arts colleges, incoming students at Grinnell have not declared a major. Rather
students devote their first and/or second year to exploring their possible interests, taking a range of introductory
courses, and developing a general background in multiple disciplines. Often students in introductory computer
science are taking courses because of some interest in the subject or because they think some contact with
computing might be important for their future activities within a technological society. An important role of the
introductory courses, therefore, is to generate interest in the discipline. Although some students enter Grinnell
having already decided to major in computer science, over half of the CS graduates each year had not initially
considered CS as a likely major. Rather, they became interested by the introductory courses and want to explore
the discipline further with more courses.

Pedagogy: Each class session of each course meets in a lab, and each course utilizes many collaborative lab
exercises throughout a semester. Generally, CSC 151 schedules a lab almost every day, with some introductory
comments at the start of class. CSC 161 is composed of about eight 1.5-2 week modules, in which each module
starts with a lecture/demonstration, followed by 3-5 labs, and concluded by a project. CSC 207 contains about the
same number of class days devoted to lecture as to lab work. Throughout, students work in pairs on labs, and the
pairs typically are changed each week. Students work individually on tests and on some additional homework
(usually programming assignments).

Spiral Approach for Topic Coverage: The multi-paradigm approach allows coverage of central topics to be
addressed incrementally from multiple perspectives. One course may provide some introductory background on a
subject, and a later course in the sequence may push the discussion further from the perspective of a different
problem-solving paradigm. For example, encapsulation of data and operations arises naturally as higher-order
procedures within functional problem solving and later as classes and objects within object-oriented problem
solving.

- 455 -

One way to document this spiral approach tracks time spent on various Knowledge Areas through the three-course
sequence:

Knowledge Area CSC 151
Functional
Problem-
solving

CSC 161
Imperative
Problem-
solving and
Data
Structures

CSC 207
Algorithms
and Object-
Oriented
Design

Total
Grinnell
Intro-CS
Hours

Algorithms and Complexity (AL) 6 1 14 21
Architecture and Organization (AR) 3 3
Computational Science (CN) 1 1 2
Graphics and Visualization (GV) 2 2
Human-Computer Interaction (HCI) 4 4
Information Assurance and Security (IAS) 1 1
Intelligent Systems (IS) 1 1
Programming Languages (PL) 13 9 12 34
Software Development Fundamentals (SDF) 20 27 16 63
Software Engineering (SE) 3 3 4 10
Social Issues and Professional Practice (SP) 2 1 3

- 456 -

CSC 151: Functional problem solving, Grinnell College

Grinnell, Iowa USA
Henry M. Walker
walker@cs.grinnell.edu
http://www.cs.grinnell.edu/~davisjan/csc/151/2012S/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage
Software Development Fundamentals (SDF) 20
Programming Languages (PL) 13
Algorithms and Complexity (AL) 6
Human-Computer Interaction (HCI) 4
Software Engineering (SE) 3
Graphics and Visualization (GV) 2

Brief description of the course’s format and place in the undergraduate curriculum
This course is the first in Grinnell's three-course, multi-paradigm introduction to computer science. As the first
regular course, it has no prerequisites. Many students are in their first or second year, exploring what the
discipline might involve. Other students (ranging from first-years to graduating seniors) take the course as part of
gaining a broad, liberal arts education; these students may be curious about computing, but they think their major
interests are elsewhere. (Note, however, that the course recruits a number of these students as majors or
concentrators.) Each class session meets in the lab. A class might begin with some remarks or class discussion,
but most classes involve students working collaboratively in pairs on problems and laboratory exercises.

Course description and goals
This course introduces the discipline of computer science by focusing on functional problem solving with media
computation as an integrating theme. In particular, the course explores
mechanisms for representing, making, and manipulating images. The course considers a variety of models of
images based on pixels, basic shapes, and objects that draw.
The major objectives for this course include:

• Understanding some fundamentals of computer science: algorithms, data structures, and abstraction.
• Experience with the practice of computer programming (design, documentation, development, testing,

and debugging) in a high-level language, Scheme.
• Learning problem solving from a functional programming perspective, including the use of recursion and

higher-order procedures.
• Sharpening general problem solving, teamwork, and study skills.

Course topics
1. Fundamentals of functional problem-solving using a high-level functional language

1. abstraction
2. modularity
3. recursion, including helper procedures
4. higher-order procedures
5. analyzing of algorithms

2. Language elements
1. symbols
2. data types
3. conditionals
4. procedures and parameters
5. local procedures
6. scope and binding

- 457 -

3. Data types and structures
1. primitive types
2. lists
3. pairs, pair structures, and association lists
4. trees
5. raster graphics and RGB colors
6. objects in Scheme

4. Algorithms
1. searching
2. sorting
3. transforming colors and images

5. Software development
1. design
2. documentation
3. development
4. testing, including unit testing
5. debugging

Course textbooks, materials, and assignments
This course relies upon an extensive collection of on-line materials (readings, labs); there is no published textbook.
As with most courses offered by Grinnell's CS Department, this course has a detailed, on-line, day-by-day
schedule of topics, readings, labs and assignments. This daily schedule contains a link to all relevant pages,
handouts, labs, references, and materials.

Body of Knowledge coverage

KA Knowledge Unit Topics Covered Hours
AL Fundamental Data Structures

and Algorithms
Max/min, search, two sorts 6

AL Algorithmic Strategies Some divide-and-conquer mentioned 0
GV Fundamental Concepts Elements of graphics introduced as part of image-

processing application theme
2

HCI Designing Interaction Overview covers much of Knowledge Unit 4
PL Object-oriented Programming Objects as higher-order procedures; much additional

material in later courses
2

PL Functional Problem-solving Knowledge Unit covered in full 7
PL Type Systems Types, primitive types, compound list type, dynamic

types, binding
1

PL Language Translation and
Execution

Program interpretation, encapsulation, basic algorithms
to avoid mutable state in context of functional language

3

SDF Algorithms and Design Coverage of recursion-based topics 8
SDF Fundamental Programming

Concepts
Topics related to recursion and functional problem-
solving covered thoroughly

9

SDF Fundamental Structures Lists and arrays (vectors) covered, some elements of
string processing

3

SE Software Verification and
Validation

Specifications, pre- and post-conditions, unit testing 3

- 458 -

CSC 161: Imperative Problem Solving and Data Structures, Grinnell
College

Grinnell, Iowa USA
Henry M. Walker
walker@cs.grinnell.edu
http://www.cs.grinnell.edu/~walker/courses/161.sp12/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage
Software Development Fundamentals (SDF) 27
Programming Languages (PL) 9
Architecture and Organization (AR) 3
Software Engineering (SE) 3
Social Issues and Professional Practice (SP) 2
Algorithms and Complexity (AL) 1
Computational Science (CN) 1
Information Assurance and Security (IAS) 1
Intelligent Systems (IS) 1

Brief description of the course’s format and place in the undergraduate curriculum
This course is the second in Grinnell's three-course, multi-paradigm introductory CS sequence. Many students are
first- or second-year students who are exploring computer science as a possible major (after becoming interested in
the subject from the first course). Other students may enroll in the course to broaden their liberal arts background
or to learn elements of imperative problems solving and C to support other work in the sciences or engineering.
As with Grinnell's other introductory courses, each class session meets in a lab, and work flows seamlessly
between lecture and lab-based activities. Work generally is divided into eight 1.5-2 week modules. Each module
begins with a lecture giving an overview of topics and demonstrating examples. Students then work collaborative
in pairs on 3-5 labs, and the pairs change for each module. Each module concludes with a project that integrates
topics and applies the ideas to an interesting problem.

Course description and goals
This course utilizes robotics as an application domain in studying imperative problem solving, data representation,
and memory management. Additional topics include assertions and invariants, data abstraction, linked data
structures, an introduction to the GNU/Linux operating system, and programming the low-level, imperative
language C.

Course topics
This course explores elements of computing that have reasonably close ties to the architecture of computers,
compilers, and operating systems. The course takes an imperative view of problem solving, supported by
programming in the C programming language. Some topics include:

• imperative problem solving: top-down design, common algorithms, assertions, invariants
• C programming: syntax and semantics, control structures, functions, parameters, macro processing,

compiling, linking, program organization
• concepts with data: data abstraction, integer and floating-point representation, string representation,

arrays, unions, structures, linked list data structures, stacks, and queues
• machine-level issues: data representation, pointers, memory management
• GNU/Linux operating system: commands, bash scripts, software development tools

- 459 -

Body of Knowledge coverage
KA Knowledge Unit Topics Covered Hour

s
AL Fundamental Data Structures

and Algorithms
Simple numerical algorithms, searching and sorting
within an imperative context

1

AR Machine level representation
of data

Knowledge Unit covered in full 3

CN Fundamentals Several examples, problems, and assignments introduce
modeling and simulation; Math/Stat Dept. offers a full
course in Modeling

1

IAS Fundamental Concepts Issues of bounds checking, buffer overflow, impact
introduced; other topics mentioned in later courses

1

IS Robotics Introduction to problems, progress, control, sensors,
inherent uncertainty

1

PL Type Systems Static types, primitive and compound times, references,
error detection of type errors

2

PL Program Representation Use of interpreters, compilers, type-checkers, division
of programs over multiple files; higher-level materials
in later Programming Language Concepts course

2

PL Language Translation and
Execution

Compilation, interpretation vs. compilation, language
translation basics, run-time representation, run-time
memory layout, manual memory management

5

SDF Algorithms and Design Coverage of iteration-based topics 0
SDF Fundamental Programming

Concepts
Topics related to iteration and imperative problem-
solving covered thoroughly

10

SDF Fundamental Structures Low-level discussion of arrays, records, structs, strings,
stacks, queues, linked structures

14

SDF Development Methods Program correctness, pre- and post-conditions, testing,
debugging, libraries

3

SE Tools and Environments Testing tools, automated builds; additional material in
later Software Design course

1

SE Software Design System design principles, component structure and
behavior

1

SE Software Verification and
Validation

Test plans, black-box, white-box testing 1

SP Social Context Some discussion of social implications (e.g., of robots) 1
SP Professional Communication Group communications, introduction to writing of

technical documents
1

- 460 -

CSC 207: Algorithms and Object-Oriented Design, Grinnell College

Grinnell, Iowa USA
Henry M. Walker
walker@cs.grinnell.edu
http://www.cs.grinnell.edu/~walker/courses/207.sp12/

Knowledge Areas that contain topics and learning outcomes covered in the course

Knowledge Area Total Hours of Coverage
Software Development Fundamentals (SDF) 16
Algorithms and Complexity (AL) 14
Programming Languages (PL) 12
Software Engineering (SE) 3
Computational Science (CN) 1
Systems Fundamentals (SF) 1
Social Issues and Professional Practice (SP) 1

Brief description of the course’s format and place in the undergraduate curriculum
This course is the third in Grinnell's three-course, multi-paradigm introductory CS sequence. Many students are
second-year students, but the course also attracts third-year and fourth-year students who are majoring in other
fields but also want to expand their background on topics they found interesting in the first two courses. As with
Grinnell's other introductory courses, each class session meets in a lab, and work flows seamlessly between lecture
and lab-based activities. The course includes a significant emphasis on collaboration in pairs during 23 in-class
labs. Additional programming assignments and tests are done individually. All course materials, including
readings and all labs, are available freely over the World Wide Web.

Course description and goals
CSC 207, Algorithms and Object-Oriented Design, explores object-oriented problem solving using the Java
programming language. Topics covered include principles of object-oriented design and problem solving, abstract
data types and encapsulation, data structures, algorithms, algorithmic analysis, elements of Java programming, and
an integrated development environment (IDE) (e.g., Eclipse).

Course topics
Topics and themes covered include:

• Principles of object-oriented design and problem solving
◦ Objects and classes
◦ Encapsulation, abstraction, and information hiding
◦ Inheritance
◦ Polymorphism
◦ Unit testing
◦ Integration testing

• Abstract data types, data structures, and algorithms
◦ Dictionaries
◦ Hash tables
◦ Binary search trees
◦ Priority queues
◦ Heaps

• Algorithmic analysis
◦ Upper-bound efficiency analysis; Big-O Notation

- 461 -

◦ Comparison of results for small and large data sets
◦ Introduction of tight-bound analysis (Big-θ)

• Elements of Java programming
◦ Basic syntax and semantics
◦ Interfaces and classes
◦ Exceptions
◦ Strings
◦ Arrays, ArrayLists, vectors
◦ Comparators; sorting
◦ Generics
◦ Java type system
◦ Iterators
◦ Introduction to the Java class library

• An integrated development environment (IDE) (e.g., Eclipse)

Course textbooks, materials, and assignments
The main textbook is Mark Allen Weiss, Data Structures and Problem Solving Using Java, Fourth Edition,
Addison-Wesley, 2009. ISBN: 0-321-54040-5. This is supplemented by numerous on-line readings. In-class
work involves an equal mix of lecture and lab-based activities. Students work collaboratively in pairs on the 23
required labs. Students also work individually on several programming assignments and on tests.

Body of Knowledge coverage
KA Knowledge Unit Topics Covered Hours
AL Basic Analysis Knowledge Unit covered in full; additional material in

later Analysis of Algorithms course
5

AL Algorithmic Strategies Divide and conquer ; much more in later Analysis of
Algorithms course

1

AL Fundamental Data
Structures and Algorithms

Additional sorting, trees, analysis of algorithms;
searching and sorting done in earlier course; graphs in
later Analysis of Algorithms course

8

CN Fundamentals Several examples, problems, and assignments utilize
modeling and simulation; Math/Stat Dept. offers a full
course in Modeling

1

PL Object-Oriented
Programming

Knowledge Unit covered in full 10

PL Type Systems Supplement to discussion in earlier courses to cover
Knowledge Unit in full; additional material in later
Programming Language Concepts course

2

PL Language Translation and
Execution

Automatic vs. manual memory management, garbage
collection

0

SDF Algorithms and Design Comparison of iterative and recursive strategies 3
SDF Fundamental Programming

Concepts
Simple I/O, iteration over structures (e.g., arrays) 2

SDF Fundamental Structures Stacks, queues, priority queues, sets, references and
aliasing, choosing data structures covered in object-
oriented context

5

SDF Development Methods Program correctness, defensive programming,
exceptions, code reviews, test-case generation, pre- and
post-conditions, modern programming environments,
library APIs, debugging, documentation, program style

6

- 462 -

SE Software Design Design principles, refactoring 1
SE Software Construction Exception handling, coding standards 1
SE Software Verification and

Validation
Test case generation, approaches to testing 1

SF Resource Allocation and
Scheduling

Example/assignment introduce kinds of scheduling:
FIFO, priority; much additional material in Operating
Systems course

1

SP Professional Ethics Codes of ethics, accountability, responsibility 1

- 463 -

Appendix D: Curricular Exemplars
There are many ways in which the Body of Knowledge can be instantiated in a complete

curriculum. This appendix provides several curriculum exemplars from a variety of institutions.

Each exemplar shows how an institution’s existing curriculum covers Core-Tier1 and Core-Tier2

topics; in some cases, they also include migration plans to include a greater percentage of

CS2013 Core topics. These exemplars are not meant to be taken as models. Rather, they are

provided to show ways that the Body of Knowledge may be organized into a complete

curriculum.

We recognize that different institutions have different student populations, use different delivery

methods for instruction (e.g., lecture, laboratory, blended, online), and have other constraints or

opportunities that impact the number of hours spent on various topics. We also note that many of

the curricular exemplars will not match the CS2013 Body of Knowledge specification

completely. Indeed, this is to be expected, as the Body of Knowledge is forward-looking.

How to read the Knowledge Units Table

Each curricular exemplar contains a large table that maps courses to Knowledge Unit coverage.

Within that table, columns represent courses and rows represent Knowledge Units. An entry in

the table specifies the number of hours of topic coverage for a Knowledge Unit in a given course.

For example, an entry of 3 in row “SDF/Algorithms and Design” and column “CS101” would

specify that 3 hours of CS2013 topic coverage occur in this course.

It is important to note that in most cases the basic unit of coverage is a CS2013 hour, which may

not be the same as the actual number of hours devoted to the CS2013 core at that institution. For

example, if a course covers only two-thirds of the topics in a 3 hour KU, then the mapping would

list the corresponding proportion of hours (e.g., two-thirds of 3 hours = 2 hours of coverage). If a

course covers all of the topics in a 3 hour KU, the mapping would list 3 hours regardless of the

time spent in actual instruction. We note that Grinnell's mapping follows a slightly different

- 464 -

scheme for computing hours. (Please see the explanation in the Grinnell exemplar for more

details.)

Each course in the Knowledge Units Table will independently list the number of CS2013 hours it

devotes to a particular Knowledge Unit. If there is overlap across courses due to the repeated

coverage of topics, then the sum of the course hours across a row will exceed the actual coverage

of topics. The summary coverage percentages in the last two columns will take overlap into

account.

- 465 -

Bluegrass Community and Technical College (A.S. Degree)
in Lexington, Kentucky

Computer and Information Technologies Department

http://bluegrass.kctcs.edu/en/CSIS.aspx
Contact: Prof. Melanie Williamson (melanie.williamson@kctcs.edu)

Curricular Overview
In the United States, the associate degree is recognized by baccalaureate degree-granting
institutions as a critical indicator of academic proficiency at a level deemed appropriate to enter
upper-division college programs. Bluegrass Community and Technical College (BCTC) located
in Lexington, Kentucky is a comprehensive community college offering both career and transfer
associate-degree programs. The enrollment at BCTC is approximately 6,000 full-time students
and 7,200 part-time students.

The department of Computer and Information Technologies (CIT) at BCTC offers an Associate
in Science (A.S.) degree in computer science designed specially to transfer into baccalaureate
degree programs. The transferable computer science core is limited to four courses since the
program also consists of all the general education requirements for a baccalaureate degree –
deemed as fully “general education” certified. The CIT department offers a variety of computer-
related associate-degree programs and has eleven full-time faculty members with varying
expertise in software development and engineering, database management, information
assurance, and networking.

Computer Science Major
The BCTC computer science A.S. degree program couples the study of computer programming
with computational complexity, data structures, software engineering, and proof techniques. The
four introductory core courses that all CS majors must take are:

1. CS 115 Introduction to Computer Programming 3 credits
2. CS 215 Introduction to Program Design, Abstraction and Problem Solving 4 credits
3. CS 216 Introduction to Software Engineering 3 credits
4. CS 275 Discrete Mathematics 4 credits

Course descriptions are located in the Appendix A of this curricular exemplar.

Curricular Analysis
The Knowledge Units table below provides an overview of the coverage of CS2013 Core Tier-1
and Core Tier-2 topics in the associate degree CS transfer program at BCTC. The recommended
CS course sequencing for this canonical major is as follows:

Year 1 - Fall Year 1 - Spring Year 2 - Fall Year 2 - Spring
CS 115 CS 215 CS 216 CS 275

- 466 -

The canonical computer science major is required to complete a common CS core that includes
the four lower-division computer science courses listed above. Mapping this transferable core
reveals that 70% of Tier-1 and 35% of Tier-2 topics in the CS2013 core are covered by BCTC’s
associate in science degree. In comparison of the core topics, 77% and 52%, respectively, are
covered by BCTC’s associate in applied science degree. Please note that the mapping of the
A.A.S. degree is included as a separate CS2013 curricular exemplar.

 Tier 1 Tier 2

Canonical major – CS115, CS215, CS216, CS275 – common core 70% 35%

- 467 -

Knowledge Units in a Typical Major (Common Core)
This mapping includes the four core courses in the BCTC A.S. computer science transfer degree. The
computer science credits together with the required general education (not shown) credits earned at BCTC
are accepted for transfer at all public four-year colleges/universities in Kentucky, including the University
of Kentucky, a land-grant research institution. Most private Kentucky colleges/universities also fully
accept the transfer of this associate-degree program.

Notation:
 < 25% of KU covered #
25-75% of KU covered #
 > 75% of KU covered #

C
S

11
5:

 I
nt

ro
. t

o

C
o
m

p
ut

er
 P

ro
g
ra

m
m

in
g

C
S

21
5:

 I
nt

ro
. t

o
 P

ro
g
ra

m

D
es

ig
n,

 P
ro

b
le

m
 S

o
lv

in
g

C
S

21
6:

 I
nt

ro
. t

o

So
ft
w

ar
e

En
g
in

ee
ri
ng

C
S

27
5:

 D
is
cr

et
e

M
at

he
m

at
ic

s

%
 T

ie
r

1

%
 T

ie
r

2

AL

Basic Analysis 1 2 1

84 33
Algorithmic Strategies 2 2 2

Fund. DS & Alg. 9

Basic Autom. & Comp.

AR

Digital Logic 1

n/a 44

Machine-level rep. of data 3

Assembly level mach. org.

Memory org. and arch. 3

Interfacing and comm.

CN Fundamentals 0 n/a

DS

Sets, Relations, & Functions 4

100 50

Basic Logic 9

Proof Techniques 11

Basics of Counting 5

Graphs & Trees 1 3

Discrete Probability 6

GV Fundamental Concepts 0 0

HCI
Foundations 2 2

100 50
Designing Interaction 2

- 468 -

Notation:
 < 25% of KU covered #
25-75% of KU covered #
 > 75% of KU covered #

C
S

11
5:

 I
nt

ro
. t

o

C
o
m

p
ut

er
 P

ro
g
ra

m
m

in
g

C
S

21
5:

 I
nt

ro
. t

o
 P

ro
g
ra

m

D
es

ig
n,

 P
ro

b
le

m
 S

o
lv

in
g

C
S

21
6:

 I
nt

ro
. t

o

So
ft
w

ar
e

En
g
in

ee
ri
ng

C
S

27
5:

 D
is
cr

et
e

M
at

he
m

at
ic

s

%
 T

ie
r

1

%
 T

ie
r

2

IAS

Fund. Concepts in Security

33 17

Principles of Secure Design

Defensive Programming 1 1

Threats and Attacks

Network Security

Cryptography

IM

Info. Management Concepts

0 33 Database Systems

Data Modeling 3

IS

Fundamental Issues

n/a 0
Basic Search Strategies

Basic Knowledge Rep.

Basic Machine Learning

NC

Introduction

0 0

Networked Applications

Reliable Data Delivery

Routing and Forwarding

Local Area Networks

Resource Allocation

Mobility

- 469 -

Notation:
 < 25% of KU covered #
25-75% of KU covered #
 > 75% of KU covered #

C
S

11
5:

 I
nt

ro
. t

o

C
o
m

p
ut

er
 P

ro
g
ra

m
m

in
g

C
S

21
5:

 I
nt

ro
. t

o
 P

ro
g
ra

m

D
es

ig
n,

 P
ro

b
le

m
 S

o
lv

in
g

C
S

21
6:

 I
nt

ro
. t

o

So
ft
w

ar
e

En
g
in

ee
ri
ng

C
S

27
5:

 D
is
cr

et
e

M
at

he
m

at
ic

s

%
 T

ie
r

1

%
 T

ie
r

2

OS

Overview of OS 2

75 55

Operating Systems Principles 1

Concurrency 3

Scheduling and Dispatch

Memory Management 3

Security and Protection

PD

Parallelism Fundamentals 1

20 0

Parallel Decomposition

Comm. & Coord.

Parallel Algorithms

Parallel Architecture

PL

Object-Oriented Programming 3 5

38 25

Functional Programming

Event-Driven & React. Prog.

Basic Type Systems

Program Representation

Language Translation

SDF

Algorithms and Design 9 1 1

100 n/a
Fund. Prog. Concepts 7 3

Fund. DS 2 10

Development Methods 10

- 470 -

Notation:
 < 25% of KU covered #
25-75% of KU covered #
 > 75% of KU covered #

C
S

11
5:

 I
nt

ro
. t

o

C
o
m

p
ut

er
 P

ro
g
ra

m
m

in
g

C
S

21
5:

 I
nt

ro
. t

o
 P

ro
g
ra

m

D
es

ig
n,

 P
ro

b
le

m
 S

o
lv

in
g

C
S

21
6:

 I
nt

ro
. t

o

So
ft
w

ar
e

En
g
in

ee
ri
ng

C
S

27
5:

 D
is
cr

et
e

M
at

he
m

at
ic

s

%
 T

ie
r

1

%
 T

ie
r

2

SE

Software Processes 3

83 90

Software Project Manage. 0.5 1.5

Tools and Environments 2

Requirements Engineering 3

Software Design 1.5 1.5 5

Software Construction 2

Software Verif. & Valid. 3

Software Evolution

Software Reliability 1

SF

Computational Paradigms

0 22

Cross-Layer Communications

State-State Trans-State Mach.

Parallelism

Evaluation

Resource Alloc. & Sched. 2

Proximity

Virtualization & Isolation

Reliab. through Redundancy

SP

Social Context

9 0

Analytical Tools

Professional Ethics

Intellectual Property

Privacy & Civil Liberties

Prof. Communication 1

Sustainability

- 471 -

Appendix: Information on Individual Courses for the A.S. degree

CS 115 Introduction to Computer Programming 3 credits (45 contact hours)
 http://cs.uky.edu/courses/cs115/

This course teaches introductory skills in computer programming using an object-oriented
computer programming language. There is an emphasis on both the principles and practice of
computer programming. Covers principles of problem solving by computer and requires
completion of a number of programming assignments. Expected preparation: Students should
already have basic computing skills, like being able to copy files from one place to another,
renaming files, printing files, browsing the Web.

CS 215 Introduction to Program Design, 4 credits (60 contact hours)
 Abstraction and Problem Solving http://cs.uky.edu/courses/cs215/

The course covers introductory object-oriented problem solving, design, and programming
engineering. Fundamental elements of data structures and algorithm design will be addressed. An
equally balanced effort will be devoted to the three main threads in the course: concepts,
programming language skills, and rudiments of object-oriented programming and software
engineering. Prerequisites: CS 115 or equivalent.

CS 216 Introduction to Software Engineering 3 credits (45 contact hours)
 http://cs.uky.edu/courses/cs216/

Software engineering topics to include: life cycles, metrics, requirements specifications, design
methodologies, validation and verification, testing, reliability and project planning.
Implementation of large programming projects using object-oriented design techniques and
software tools in a modern development environment will be stressed. . Prerequisites: CS 215

CS 275 Discrete Mathematics 4 credits (45 contact hours)
 http://cs.uky.edu/courses/cs275/

Topics in discrete mathematics aimed at applications in Computer Science. Fundamental
principles: set theory, induction, relations, functions, Boolean algebra. Techniques of counting:
permutations, combinations, recurrences, algorithms to generate them. Introduction to graphs and
trees. Prerequisites: MA 113 (Calculus 1), CS 115

- 472 -

Bluegrass Community and Technical College (A.A.S. Degree)
in Lexington, Kentucky

Computer and Information Technologies Department

http://bluegrass.kctcs.edu/en/CSIS.aspx
Contact: Prof. Melanie Williamson (melanie.williamson@kctcs.edu)

Curricular Overview
In the United States, the associate degree is recognized by baccalaureate degree-granting
institutions as a critical indicator of academic proficiency at a level deemed appropriate to enter
upper-division college programs. Bluegrass Community and Technical College (BCTC) located
in Lexington, Kentucky is a comprehensive community college offering both career and transfer
associate-degree programs. The enrollment at BCTC is approximately 6,000 full-time students
and 7,200 part-time students.

The department of Computer and Information Technologies (CIT) at BCTC offers an Associate
in Applied Science (A.A.S.) computing degree with a concentration in computer science. After
earning this associate degree, students have the option of either entering the workforce directly
or transferring to a baccalaureate computer science program at one of Kentucky’s four-year
colleges. The CIT department also offers different A.A.S. degree programs with a variety of
concentrations, such as computer science, applications, Internet technologies and network
technologies. The department has eleven full-time faculty members with varying expertise in
software development and engineering, database management, information assurance, and
networking.

Computer Science Major
The A.A.S. degree with a concentration in computer science combines fundamental studies in
computer hardware, networks, database design, and security with concentrated studies in
computer programming, computational complexity, data structures, software engineering, and
proof techniques. The computing courses taken by a typical major in this A.A.S. degree program
are:

1. CS 115 Introduction to Computer Programming 3 credits
2. CS 215 Introduction to Program Design, Abstraction and Problem Solving 4 credits
3. CS 216 Introduction to Software Engineering 3 credits
4. CS 275 Discrete Mathematics 4 credits
5. CIT 105 Introduction to Computers 3 credits
6. CIT 111 Computer Hardware and Software 4 credits
7. CIT 150 Internet Technologies 3 credits
8. CIT 160 Introduction to Networking Concepts 4 credits
9. CIT 170 Database Design Fundamentals 3 credits
10. CIT 180 Security Fundamentals 3 credits

Students will also take other computing courses, such as systems analysis and design, not
included in this mapping. Course descriptions included in the mapping are located in the
Appendix A of this curricular exemplar.

- 473 -

Curricular Analysis
The Knowledge Units table below provides an overview of the coverage of CS2013 Core Tier-1
and Core Tier-2 topics in the A.A.S. degree with a computer science concentration at BCTC. The
recommended CS and CIT course sequencing for this typical A.A.S. major is as follows:

Year 1 - Summer Year 1 - Fall Year 1 - Spring Year 2 - Fall Year 2 - Spring
CIT 105 CS 115 CS 215 CS 216 CS 275
 CIT 111 CIT 150 CIT 170 CIT 291 Capstone *
 CIT 120 * CIT 160 CIT 180

* not included in the mapping

Mapping the required four CS courses and six CIT courses reveals that 77% of Tier-1 and 52%
of Tier-2 topics in the CS2013 core are covered by the A.A.S. degree. In comparison, the A.S.
CS degree, which includes only the four CS courses, covers 70% and 35%, respectively. Please
note that the mapping of the A.S. degree is included as a separate CS2013 curricular exemplar.

In general, A.A.S. degree programs require fewer general education credits than A.S. degrees. In
the case of BCTC, fewer general education courses provided the room for more computing
courses in their A.A.S. degree, and thereby covering more of the CS2013 core. In particular, the
CIT courses provide more core coverage in the following knowledge areas: architecture (AR),
graphics (GV), information assurance and security (IAS), information management (IM),
networking (NC), operating systems (OS) and social issues and professional practice (SP).
However, unlike the A.S. degree in Kentucky, the A.A.S. degree is not considered “general
education certified,” which means that students will need to complete the requisite number of
general education requirements at the transferring institution in order to obtain a computer
science baccalaureate degree. According to the American Association of Community Colleges,
there is a national trend emerging in higher education where an increasing number of four-year
colleges are accepting more of the credits earned from associate in applied science degrees.

 Tier 1 Tier 2

The typical A.A.S. major 77% 52%

- 474 -

Knowledge Units in a Typical Major
This mapping includes the four core CS courses along with the six CIT courses of a typical major
pursuing the A.A.S. degree with the computer science concentration at BCTC.

Notation:
 < 25% of KU covered #
25-75% of KU covered #
 > 75% of KU covered #

C
S

11
5:

 C
o
m

p
. P

ro
g
ra

m
m

in
g

C
S

21
5:

 P
ro

b
le

m
 S

o
lv

in
g
, e

tc
.

C
S

21
6:

 S
o
ft
w

ar
e

En
g
in

ee
ri
ng

C
S

27
5:

 D
is
cr

et
e

M
at

he
m

at
ic

s

C
IT

 1
05

: I
nt

ro
. t

o
 C

o
m

p
ut

er
s

C
IT

 1
11

: H
ar

d
w

ar
e

&
 S

o
ft
w

ar
e

C
IT

 1
50

: I
nt

er
ne

t
Te

ch
no

lo
g
ie

s

C
IT

 1
60

: N
et

w
o
rk

in
g

C
IT

 1
70

: D
at

ab
as

e
Fu

nd
am

en
ta

ls

C
IT

 1
80

: S
ec

ur
ity

 F
un

d
am

en
ta

ls

%
 T

ie
r

1

%
 T

ie
r

2

AL

Basic Analysis 1 2 1

84 55
Algorithmic Strategies 2 2 2

Fund. DS & Alg. 9 9

Basic Autom. & Comp.

AR

Digital Logic 1 3

n/a 63

Machine-level rep. of data 3 3 1

Assembly level mach. org.

Memory org. and arch. 3 3

Interfacing and comm. 1

CN Fundamentals 0 0

DS

Sets, Relations, & Functions 4

100 50

Basic Logic 9

Proof Techniques 11

Basics of Counting 5

Graphs & Trees 1 3

Discrete Probability 6

GV Fundamental Concepts 1 1 100 0

HCI
Foundations 2 2

100 50
Designing Interaction 2

- 475 -

Notation:
 < 25% of KU covered #
25-75% of KU covered #
 > 75% of KU covered #

C
S

11
5:

 C
o
m

p
. P

ro
g
ra

m
m

in
g

C
S

21
5:

 P
ro

b
le

m
 S

o
lv

in
g
, e

tc
.

C
S

21
6:

 S
o
ft
w

ar
e

En
g
in

ee
ri
ng

C
S

27
5:

 D
is
cr

et
e

M
at

he
m

at
ic

s

C
IT

 1
05

: I
nt

ro
. t

o
 C

o
m

p
ut

er
s

C
IT

 1
11

: H
ar

d
w

ar
e

&
 S

o
ft
w

ar
e

C
IT

 1
50

: I
nt

er
ne

t
Te

ch
no

lo
g
ie

s

C
IT

 1
60

: N
et

w
o
rk

in
g

C
IT

 1
70

: D
at

ab
as

e
Fu

nd
am

en
ta

ls

C
IT

 1
80

: S
ec

ur
ity

 F
un

d
am

en
ta

ls

%
 T

ie
r

1

%
 T

ie
r

2

IAS

Fund. Concepts in Security

33 83

Principles of Secure Design

Defensive Programming 1 1

Threats and Attacks 1

Network Security 2

Cryptography 1

IM

Info. Management Concepts 3

100 100 Database Systems 3

Data Modeling 3 4

IS

Fundamental Issues

n/a 0
Basic Search Strategies

Basic Knowledge Rep.

Basic Machine Learning

NC

Introduction 1.5

100 100

Networked Applications 1.5

Reliable Data Delivery 2

Routing and Forwarding 1.5

Local Area Networks 1.5

Resource Allocation 1

Mobility 1

- 476 -

Notation:
 < 25% of KU covered #
25-75% of KU covered #
 > 75% of KU covered #

C
S

11
5:

 C
o
m

p
. P

ro
g
ra

m
m

in
g

C
S

21
5:

 P
ro

b
le

m
 S

o
lv

in
g
, e

tc
.

C
S

21
6:

 S
o
ft
w

ar
e

En
g
in

ee
ri
ng

C
S

27
5:

 D
is
cr

et
e

M
at

he
m

at
ic

s

C
IT

 1
05

: I
nt

ro
. t

o
 C

o
m

p
ut

er
s

C
IT

 1
11

: H
ar

d
w

ar
e

&
 S

o
ft
w

ar
e

C
IT

 1
50

: I
nt

er
ne

t
Te

ch
no

lo
g
ie

s

C
IT

 1
60

: N
et

w
o
rk

in
g

C
IT

 1
70

: D
at

ab
as

e
Fu

nd
am

en
ta

ls

C
IT

 1
80

: S
ec

ur
ity

 F
un

d
am

en
ta

ls

%
 T

ie
r

1

%
 T

ie
r

2

OS

Overview of OS 2 1 1

100 55

Operating Systems Principles 1 1

Concurrency 3

Scheduling and Dispatch

Memory Management 3

Security and Protection

PD

Parallelism Fundamentals 1

20 0

Parallel Decomposition

Comm. & Coord.

Parallel Algorithms

Parallel Architecture

PL

Object-Oriented Programming 3 5

38 25

Functional Programming

Event-Driven & React. Prog.

Basic Type Systems

Program Representation

Language Translation

SDF

Algorithms and Design 9 1 1

100 n/a
Fund. Prog. Concepts 7 3

Fund. DS 2 10

Development Methods 10

- 477 -

Notation:
 < 25% of KU covered #
25-75% of KU covered #
 > 75% of KU covered #

C
S

11
5:

 C
o
m

p
. P

ro
g
ra

m
m

in
g

C
S

21
5:

 P
ro

b
le

m
 S

o
lv

in
g
, e

tc
.

C
S

21
6:

 S
o
ft
w

ar
e

En
g
in

ee
ri
ng

C
S

27
5:

 D
is
cr

et
e

M
at

he
m

at
ic

s

C
IT

 1
05

: I
nt

ro
. t

o
 C

o
m

p
ut

er
s

C
IT

 1
11

: H
ar

d
w

ar
e

&
 S

o
ft
w

ar
e

C
IT

 1
50

: I
nt

er
ne

t
Te

ch
no

lo
g
ie

s

C
IT

 1
60

: N
et

w
o
rk

in
g

C
IT

 1
70

: D
at

ab
as

e
Fu

nd
am

en
ta

l

C
IT

 1
80

: S
ec

ur
ity

 F
un

d
am

en
ta

ls

%
 T

ie
r

1

%
 T

ie
r

2

SE

Software Processes 3

83 90

Software Project Manage. 0.5 1.5

Tools and Environments 2

Requirements Engineering 3

Software Design 1.5 1.5 5

Software Construction 2

Software Verif. & Valid. 3

Software Evolution

Software Reliability 1

SF

Computational Paradigms

0 22

Cross-Layer Communications

State-State Trans-State Mach.

Parallelism

Evaluation

Resource Alloc. & Sched. 2

Proximity

Virtualization & Isolation

Reliab. through Redundancy

SP

Social Context 2 1

64 20

Analytical Tools

Professional Ethics 1

Intellectual Property 2

Privacy & Civil Liberties 2

Prof. Communication 1

Sustainability

- 478 -

Appendix: Information on Individual Courses for the A.A.S. degree

CS 115 Introduction to Computer Programming 3 credits (45 contact hours)
 http://cs.uky.edu/courses/cs115/

This course teaches introductory skills in computer programming using an object-oriented
computer programming language. There is an emphasis on both the principles and practice of
computer programming. Covers principles of problem solving by computer and requires
completion of a number of programming assignments. Expected preparation: Students should
already have basic computing skills, like being able to copy files from one place to another,
renaming files, printing files, browsing the Web.

CS 215 Introduction to Program Design, 4 credits (60 contact hours)
 Abstraction and Problem Solving http://cs.uky.edu/courses/cs215/

The course covers introductory object-oriented problem solving, design, and programming
engineering. Fundamental elements of data structures and algorithm design will be addressed. An
equally balanced effort will be devoted to the three main threads in the course: concepts,
programming language skills, and rudiments of object-oriented programming and software
engineering. Prerequisites: CS 115 or equivalent.

CS 216 Introduction to Software Engineering 3 credits (45 contact hours)
 http://cs.uky.edu/courses/cs216/

Software engineering topics to include: life cycles, metrics, requirements specifications, design
methodologies, validation and verification, testing, reliability and project planning.
Implementation of large programming projects using object-oriented design techniques and
software tools in a modern development environment will be stressed. . Prerequisites: CS 215

CS 275 Discrete Mathematics 4 credits (45 contact hours)
 http://cs.uky.edu/courses/cs275/

Topics in discrete mathematics aimed at applications in Computer Science. Fundamental
principles: set theory, induction, relations, functions, Boolean algebra. Techniques of counting:
permutations, combinations, recurrences, algorithms to generate them. Introduction to graphs and
trees. Prerequisites: MA 113 (Calculus 1), CS 115

The descriptions for the following CIT courses are located at http://kctcs.edu/students/Programs and
Catalog/ in the current catalog.

CIT 105 Introduction to Computers 3 credits (45 contact hours)

Provides an introduction to the computer and the convergence of technology as used in today’s
global environment. Introduces topics including computer hardware and software, file

- 479 -

management, the Internet, e-mail, the social web, green computing, security and computer ethics.
Presents basic use of application, programming, systems, and utility software.

CIT 111 Computer Hardware and Software 4 credits (60 contact hours)

Presents a practical view of computer hardware and client operating systems. Covers computer
hardware components; troubleshooting, repair, and maintenance; operating system interfaces and
management tools; networking components; computer security; and operational procedures.
Prerequisite: CIT 105 or consent of instructor.

CIT 150 Internet Technologies 3 credits (45 contact hours)

Provides students with a study of traditional and emerging Internet technologies. Covers topics
including Internet fundamentals, Internet applications, Internet delivery systems, and Internet
client/server computing. Provides a hands-on experience and some rudimentary programming in
an Internet environment. Prerequisites: CIT 105 AND CIT
120.

CIT 160 Introduction to Networking Concepts 4 credits (60 contact hours)

Introduces technical level concepts of non-vendor specific networking including technologies,
media, topologies, devices, management tools, and security. Provides the basics of how to
manage, maintain, troubleshoot, install, operate, and configure basic network infrastructure.
Prerequisites or Co-requisites: CIT 111

CIT 170 Database Design Fundamentals 3 credits (45 contact hours)

Provides an overview of database and database management system concepts, internal design
models, normalization, network data models, development tools, and applications.

CIT180 Security Fundamentals 3 credit (45 contact hours)

Introduces basic computer and network security concepts and methodologies. Covers principles
of security; compliance and operational security; threats and vulnerabilities; network security;
application, data, and host security; access control and identity management; and cryptography.
Prerequisites: CIT 105 AND CIT 160.

- 480 -

Grinnell College

Department of Computer Science
http://www.cs.grinnell.edu

Contacts: Samuel Rebelsky (rebelsky@grinnell.edu) and
Henry Walker (walker@cs.grinnell.edu)

Curricular Overview
Grinnell College is a small, highly selective, liberal arts college with 1600 students. Class sizes
are small, faculty members employ modern pedagogy (e.g., active learning, individual and
collaborative engagement), most students are well motivated, and the College strongly supports
faculty-student scholarship. In the liberal arts tradition, the College encourages breadth of
study, formal requirements for graduation are small, and the shape of undergraduate course
selections often depends upon advising of students by faculty. The CS faculty encourages
students to select courses beyond a minimal major (e.g., more courses to meet some CS 2013
recommendations), but College policy limits any major to 32 credits (typically eight 4-credit
courses) in the discipline, along with a few supporting courses outside the department.
Although staffing dictates that many courses are offered in alternate years, all required courses
are offered annually, and courses in the introductory sequence are offered each semester.

Computer Science Major (2012-2013 Curriculum)
Grinnell's 2012-2013 major was strongly influenced by ACM/IEEE-CS CC 2001 and CS 2008
and by the 2007 Model Curriculum for a Liberal Arts Degree in Computer Science from the
Liberal Arts Computer Science Consortium. CS Major requirements cover many elements from
the curricular recommendations, and additional courses (encouraged through advising) provide
extensive coverage of most recommended topics.

Multi-paradigm, Introductory Sequence (all three 4-credit courses required)

CSC 151 – Functional Problem Solving
CSC 161 – Imperative Problem Solving and Data Structures
CSC 207 – Algorithms and Object-Oriented Problem Solving

Required Upper-Level Courses (both 4-credit courses required)
CSC 301 – Analysis of Algorithms
CSC 341 – Automata, Formal Languages, & Computational Complexity (Theory)

Systems (one of two 4-credit courses required; both strongly recommended)
CSC 211 – Computer Organization and Architecture
CSC 213 – Operating Systems and Parallel Algorithms

Languages (one of two 4-credit courses required)
CSC 302 – Programming Language Concepts
CSC 362 – Compilers

Software Development (one of two 4-credit courses required)
CSC 323 – Software Design
CSC 325 – Databases and Web Application Design

- 481 -

Mathematical Foundations (two designated 4-credit courses, plus a 4-credit elective)
MAT 124 or MAT 131 – Calculus I
MAT/CSC 208 – Discrete Mathematics or MAT 218 – Combinatorics
MAT ### – Mathematics elective with calculus I or later course as prerequisite

Regularly offered 4-credit electives include Artificial Intelligence, Computational Linguistics,
Computer Networks, Computer Vision, and Human-Computer Interaction. Various 1-credit
options and 4-credit special-topics courses may be offered on a regular basis or under special
circumstances. The department also provides students with the opportunity to broaden their
learning through a weekly seminar series and a weekly reading group. Independent projects and
student-faculty research projects are common, particularly during the summer.

Curricular Analysis
With choices in systems, languages, and software engineering, students could follow any of eight
paths through a “minimal” major (counting Discrete Mathematics as the lesser of the supporting
mathematics options). Through advising, students often took both CSC 211 and CSC 213, as
well as additional electives to meet specific educational or career objectives. The following table
compares several possible routes through the 2012-2013 major, which aligned well to earlier
curricular recommendations.

Grinnell's 2012-2013 Curriculum Tier 1 Tier 2
Minimal major: only the basic requirements 59-73% 34-53%
Expanded minimal major: 9 courses including 211 & 213 74-75% 50-57%
Typical major: 10 courses including 211, 213 & either AI or Networks 76-78% 62%

Careful analysis indicated considerable strength in some areas (e.g., algorithms, theory) that fit
particularly well within a liberal arts context. However, reduction in some strong areas (e.g.,
programming languages) could allow expansion in other areas to reflect the evolution of the
discipline, particularly in the areas of distributed processing, networking, and security. Also,
although the existing curriculum informally highlighted SP content, a 2013 departmental review
identified some topics for a more systematic treatment.

In addition, Grinnell’s computer science curriculum employs a spiral approach to learning.
Students may be introduced to a topic in one course (perhaps at the Familiarity level in CS
2013's terminology), then utilize that material in a second course (perhaps attaining a Usage level
of mastery), and still later engage the topic at a deep, Assessment, level in a third course. Our
spiral approach may also lead us to repeat the same concept at the same level, but with
variations. For example, students build lists and tree using pair structures in CSC 151, build
linked lists and worry about memory management in CSC 152, and build doubly and circularly
linked lists in CSC 153. Any of these approaches would likely suffice to meet CS 2013 goals,
but we find that students have much deeper understanding with this repeated and increasingly
nuanced approach. As a result of the spiral approach, many topics that are covered once in CS
2013 are covered multiple times in Grinnell’s curriculum, which complicates both hour counts
and bookkeeping. The spiral approach is most clearly represented in the AL and SDF sections in
the mapping below.

- 482 -

Proposed Curricular Revisions
Although the 2012-2013 CS major and curriculum had many strengths, on-going review
identified possibilities for improvement in two substantial ways: the division of some 4-credit
courses into 2-credit courses could provide students with opportunities for more breadth in the
major, and the design of some of those courses could reflect the evolution of the discipline as
represented by CS 2013. The 2-credit courses are likely to meet 1.5 hours per week for the full
semester, although we are also considering half-semester courses.

Full implementation of a substantive major and curricular revision requires substantial
brainstorming, analysis, attention to detail, review, and consultation. The following comments
suggest directions for revised courses and major; adjustments and refinements are likely as
planning and development continue.

Rather than fitting a full range of software engineering topics into a single, required, 4-credit
course, one 2-credit course could highlight concepts, principles, and methodology, and a
second 2-credit course could allow teams to address community needs. The second
course would permit students to join on-going projects for one or more semesters, taking
on more advanced roles in subsequent semesters. Core HCI topics could be incorporated
in one or both of these courses.

A 4-credit elective on computer networks could be split into a more focused, 2-credit
networks course, and a new 2-credit course on computer security

Many SP topics could be covered through the department's weekly seminar presentations or
through an on-going CS table series of discussions. In particular, an annual presentation
and discussion will focus on issues of intellectual property.

Because the multi-paradigm introductory sequence exposes students to many basic
conceptual issues in programming languages, the upper-level course on programming
language can be relatively flexible. Elements of the existing programming languages and
compilers course could be combined into a single 2-credit, interpreter-based
“programming language implementation" course.

Students who take CSC 211 encounter fewer Core-Tier1 topics than those who take CSC 213
because the AR knowledge unit contains primarily Core-Tier2 topics. The CS faculty
considered combining CSC 211 and 213, which some schools have done. However, the
current courses provide good depth, and thus seemed appropriate in the revised
curriculum.

Since Grinnell's liberal arts context limits major requirements to 32 credits, a minimal major can
cover numerous, but not all, learning outcomes recommended by CS 2013. As noted above,
many SP topics can be covered in the weekly department seminar and/or in a reading group
associated with a weekly CS Table. Also, while many IM learning outcomes fit well within a
liberal arts context, a few seem less appropriate.

Advising can encourage students to cover a wide range of topics. The following listing illustrates
possible major requirements and also advising recommendations that could extend a program to
about 38 credits, plus supporting mathematics. The CS faculty will continue to offer a variety of
electives.

- 483 -

Multi-paradigm, Introductory Sequence (12 credits required)
CSC 151 – Functional Problem Solving
CSC 161 – Imperative Problem Solving and Data Structures
CSC 207 – Algorithms and Object-Oriented Problem Solving (updated theme)

Required Upper-Level Courses (10 credits required)
CSC 301 – Analysis of Algorithms
CSC 341 – Automata, Formal Languages, & Computational Complexity (Theory)
CSC 312 – Implementation of Programming Languages (new/revised, 2 credits)

Systems I (4 credits required; 8 credits strongly recommended)
CSC 211 – Computer Organization and Architecture (4 credits)
CSC 213 – Operating Systems and Parallel Algorithms (4 credits)

Systems II (2 credits required, 4 credits strongly recommended)
CSC 264 – Computer Security (new, 2 credits)
CSC 364 – Computer Networks (revised from 4 credits to 2 credits)

Software Development (4 credits required; 6 credits recommended)
CSC 321 – Software development principles and methodology (new, 2 credits)
CSC 322 –Team-based community project (new, 2 credits, may be repeated for credit)

Mathematical Foundations (two designated 4-credit courses, plus a 4-credit elective)
MAT 124 or MAT 131 – Calculus I
MAT/CSC 208 – Discrete Mathematics or MAT 218 – Combinatorics
MAT ### – Mathematics elective with calculus I or later course as prerequisite

Proposed CS Major and Program Tier 1 Tier 2

Minimal major – only the basic requirements 70-85% 51-61%
Minimal major plus attendance at IP talk/discussion 73-89% 51-61%
Expanded (38-credit) major – both 211/213, both networks/security 92% 73%
38-credit major plus attendance at IP talk/discussion 96% 73%
38-credit major plus AI course plus attendance at IP talk/discussion 96% 78%

- 484 -

Knowledge Units in a Typical Major – Revised Curriculum
For this analysis, we considered a “typical” student in the revised curriculum, one who takes
both Systems I courses (CSC 211 Architecture and CSC 213 Operating Systems) and both of the
Systems II courses (CSC 264 Computer Security and CSC 364 Computer Networks).

In these tables, the shading represents the percentage of a knowledge unit covered and the
number represents the approximate number of hours spent on the topic. Because deeper
understanding requires more time, in computing percentages, we used a value of 1 for
“familiarity”, a value of 1.5 for “usage”, and a value of 2 for “assessment”. For example, in a
knowledge unit with two “familiarity” outcomes and one “assessment” outcome, a course that
covers the one “assessment” outcome is credited with 50% of the unit. For most courses, we
computed hours by multiplying this percentage by the expected CS2013 hours for the knowledge
unit, and the resulting time estimate generally reflected actual time spent in class. Both
computations follow the model used in the Williams curricular mapping.

In using these computations, we found that the computed hours in four courses (CSC 207
Algorithms and Object-Oriented Design, CSC 208 Discrete Structures, CSC 301 Algorithm
Analysis, and CSC 341 Theory) misrepresented the time these courses actually spent on
knowledge units. Because of the significant discrepancy, an honest presentation of the courses
required us to adjust the hours listed.

Grinnell's curriculum often employs a spiral approach in which prerequisite courses provide a
foundation for full coverage of an outcome in later courses. Often, a later course (e.g., CSC 207
or CSC 301) achieves the CS2013-recommended "assessment" level outcome, but prior courses
provided a foundation by covering material at "familiarity" or "usage" levels. As a result, later
courses might actually spend relatively few hours to achieve an outcome, but would be credited
with substantially more hours, while earlier courses received no credit at all. In addition, we
sometimes revisit an outcome in a second course to reinforce learning. Again, the course is
credited for more time than is required. Hence, for the four courses most affected (CSC 207,
CSC 208, CSC 301, and CSC 341), we made adjustments to better represent actual time on the
topics and reflect the main emphases of these courses. For two courses (CSC 151 and CSC 161),
we left the computed hours in place even though they may not precisely reflect actual topic
coverage. A more accurate tally may be found in the course exemplars for these courses in
Appendix C.

- 485 -

Notation:
 < 25% of KU covered #
25-75% of KU covered #
 > 75% of KU covered #

15
1:

 F
un

c.
 P

ro
b
.

16
1:

 I
m

p
. +

 D
S

20
7:

 O
O

 +
 A

lg
.

20
8:

 D
is
cr

et
e

21
1:

 A
rc

hi
te

ct
ur

e

21
3:

 O
S

30
1:

 A
lg

o
ri
th

m
s

34
1:

 T
he

o
ry

31
2:

 P
ro

g
. L

an
g
.

32
1:

 P
ri
n.

 S
o
ft
. D

ev
.

32
2:

 C
o
m

m
. P

ro
j.

26
4:

 S
ec

ur
ity

36
4:

 N
et

w
o
rk

s

%
 T

ie
r

1

%
 T

ie
r

2

AL

Basic Analysis 3 ½ 3 2

100 100
Algorithmic Strategies 1½ ½ 2 ½ 5

Fund. DS & Alg. 3½ 5 3 6

Basic Autom. & Comp. 6

AR

Digital Logic 2½ ½

n/a 94
Machine-level rep. of data 3 1

Assembly level mach. org. 6 1½

Memory org. and arch. 2 3

Interfacing and comm. ½ ½ ½

CN Fundamentals ½ ½ ½ 80 n/a

DS

Sets, Relations, & Functions 4

100 50

Basic Logic 8 2

Proof Techniques 5½ 11

Basics of Counting ½ ½ 3 4 1

Graphs & Trees 2 4

Discrete Probability 2 2

GV Fundamental Concepts 1½ 1 78 50

HCI
Foundations 3 1

100 70
Designing Interaction 1½ 1

- 486 -

Notation:
 < 25% of KU covered #
25-75% of KU covered #
 > 75% of KU covered #

15
1:

 F
un

c.
 P

ro
b
.

16
1:

 I
m

p
. +

 D
S

20
7:

 O
O

 +
 A

lg
.

20
8:

 D
is
cr

et
e

21
1:

 A
rc

hi
te

ct
ur

e

21
3:

 O
S

30
1:

 A
lg

o
ri
th

m
s

34
1:

 T
he

o
ry

31
2:

 P
ro

g
. L

an
g
.

32
1:

 P
ri
n.

 S
o
ft
. D

ev
.

32
2:

 C
o
m

m
. P

ro
j.

26
4:

 S
ec

ur
ity

36
4:

 N
et

w
o
rk

s

%
 T

ie
r

1

%
 T

ie
r

2

IAS

Fund. Conc. in Security ½ ½ 1

100 70

Princ. of Secure Design 2½

Defensive Programming ½ 1 ½ 1½

Threats and Attacks ½ 1

Network Security ½ ½ ½

Cryptography ½ 1

IM
Info. Manag. Concepts 1 ½ ½ ½

88 62 Database Systems 2½

Data Modeling ½ 1½ ½

IS

Fundamental Issues

n/a 25
Basic Search Strategies 1½ ½

Basic Knowledge Rep. 1

Basic Machine Learning

NC

Introduction 1½

100 100

Networked Applications 1½

Reliable Data Delivery 2

Routing and Forwarding 1½

Local Area Networks 1½

Resource Allocation 1

Mobility 1

- 487 -

Notation:
 < 25% of KU covered #
25-75% of KU covered #
 > 75% of KU covered #

15
1:

 F
un

c.
 P

ro
b
.

16
1:

 I
m

p
. +

 D
S

20
7:

 O
O

 +
 A

lg
.

20
8:

 D
is
cr

et
e

21
1:

 A
rc

hi
te

ct
ur

e

21
3:

 O
S

30
1:

 A
lg

o
ri
th

m
s

34
1:

 T
he

o
ry

31
2:

 P
ro

g
. L

an
g
.

32
1:

 P
ri
n.

 S
o
ft
. D

ev
.

32
2:

 C
o
m

m
. P

ro
j.

26
4:

 S
ec

ur
ity

36
4:

 N
et

w
o
rk

s

%
 T

ie
r

1

%
 T

ie
r

2

OS

Overview of OS 1½

79 80

OS Principles 1½

Concurrency 3

Scheduling and Dispatch 1½

Memory Management 3

Security and Protection 1½

PD

Parallelism Fundamentals 2

100 73
Parallel Decomposition 3

Comm. & Coord. 2½

Parallel Algorithms 2

Parallel Architecture 3

PL

Object-Oriented Prog. 7 4

100 100

Functional Programming 5 1 2 1½

Event-Driven & React. Pr. 2

Basic Type Systems 1½ 2 5

Program Representation 1½ 1

Language Translation 3

SDF

Algorithms and Design 5 2 6 3 5 ½

100 n/a
Fund. Prog. Concepts 6 9 3 1 2 1

Fund. DS 7½ 12 4 3 4½

Development Methods 4 3 5 1

- 488 -

Notation:
 < 25% of KU covered #
25-75% of KU covered #
 > 75% of KU covered #

15
1:

 F
un

c.
 P

ro
b
.

16
1:

 I
m

p
. +

 D
S

20
7:

 O
O

 +
 A

lg
.

20
8:

 D
is
cr

et
e

21
1:

 A
rc

hi
te

ct
ur

e

21
3:

 O
S

30
1:

 A
lg

o
ri
th

m
s

34
1:

 T
he

o
ry

31
2:

 P
ro

g
. L

an
g
.

32
1:

 P
ri
n.

 S
o
ft
. D

ev
.

32
2:

 C
o
m

m
. P

ro
j.

26
4:

 S
ec

ur
ity

36
4:

 N
et

w
o
rk

s

%
 T

ie
r

1

%
 T

ie
r

2

SE

Software Processes 1 1

100 76

Software Project Manage. 2 ½

Tools and Environments ½ 1½

Requirements Engineering ½ 2½ 1½

Software Design 2 5 4½

Software Construction ½ ½ 1½

Software Verif. & Valid. ½ 1½ ½

Software Evolution 2

Software Reliability

SF

Computational Paradigms ½ 1 1½ ½

90 72

Cross-Layer Comm. 1 2

State and State Machines 2½ 1 2

Parallelism 1

Evaluation ½ 3

Resource Alloc. & Sched. 2

Proximity 3

Virtualization & Isolation 1 ½

Reliab. thru Redundancy

SP

Social Context ½ ½ 1 1

65 18

Analytical Tools 1 1 ½

Professional Ethics ½ ½ ½ ½

Intellectual Property ½

Privacy & Civil Liberties ½

Prof. Communication ½ ½ ½

Sustainability 1

- 489 -

Additional Comments
Although the existing curriculum aligned well with previous national curricular
recommendations, it had surprisingly low coverage of Core-Tier1 and Core-Tier2 topics in
Curricula 2013, due to several primary factors:

• CS 2013 includes some new areas, such as security and professional issues.
• CS 2013 specifies particular learning outcomes, many of which are different than the

learning outcomes that might have been specified for some earlier knowledge units.
• CS 2013 has placed lower precedence on some areas, such as architecture.
• The Grinnell curriculum covers many tier 3 topics, particularly in algorithms, theory,

and programming languages.

Revision of the curriculum to give students fewer options, to separate 4-credit courses into 2-
credit courses, and to align some of those 2-credit courses closely with CS 2013 shows strong
potential to achieve reasonably good alignment with CS 2013. The few missing Core-Tier1
topics are not topics Grinnell's faculty consider essential, and the coverage of Core-Tier2 at
about 78% is offset by the deep coverage of algorithms, theory, and programming languages at
Tier 3.

Appendix: Information on Individual Courses

CSC 151 – Functional Problem Solving
http://www.cs.grinnell.edu/courses/csc151

CSC 151 introduces the discipline of computer science by focusing on functional problem
solving with media computation as an integrating theme. Since the course explores mechanisms
for representing, making, and manipulating images, some modest revisions may highlight themes
in the area of GV. However, this course is expected to continue in largely its present form,
taking advantage of a workshop format or “flipped classroom” pedagogy, with substantial
utilization of lab-based exercises and collaborative learning. Appendix C of CS 2013, Course
Exemplars, provides more detail on CSC 151.

CSC 161 – Imperative Problem Solving and Data Structures
http://www.cs.grinnell.edu/courses/csc161

CSC 161 utilizes robotics as an application domain in studying imperative problem solving, data
representation, and memory management. Additional topics include assertions and invariants,
data abstraction, linked data structures, an introduction to the GNU/Linux operating system, and
programming the low-level, imperative language C. The review of CS 2013 identified some
refinements of coverage for CSC 161, but substantial changes are not anticipated. The course
follows a workshop format that emphasizes both collaborative learning and individual problem
solving. More information on CSC 161 can be found in CS 2013, in Appendix C, on Course
Exemplars.

- 490 -

CSC 207 – Object-Oriented Problem Solving and Algorithms
http://www.cs.grinnell.edu/courses/csc207

CSC 207 explores object-oriented problem solving with Java programming. Topics covered
include principles of object-oriented design, abstract data types and encapsulation, data
structures, algorithms, algorithmic analysis, elements of Java programming, and an integrated
development environment (IDE). Recent work on this course has included introducing a general
theme of “Computing for Social Good”, as well as a modest updating of topics to more clearly
reflect the evolution of the discipline as described in CS 2013, including coverage of GUIs. The
course involves a workshop environment that encourages collaborative learning. CSC 207 is
described in further detail in CSC 2013, Appendix C, on Course Exemplars.

MAT/CSC 208 – Discrete Structures
http://www.cs.grinnell.edu/courses/csc208

CSC 208 is a recent addition to Grinnell's curriculum. It provides the mathematical foundations
for upper-division courses, particularly courses in algorithms and data structures. The course has
both calculus and CSC 151 as prerequisites, allowing the instructor to mix mathematical and
computational concepts. The next offering of MAT/CSC 208 will add more coverage of
Discrete Probability in response to CS 2013.

CSC 211 – Computer Organization and Architecture
http://www.cs.grinnell.edu/courses/csc211

CSC 211 is a fairly traditional organization and architecture course. In its last offering, it relied
upon the Patterson and Hennessy text. The regular course sessions are accompanied by a weekly
one-hour laboratory in which students get experience with a wide variety of topics, including
some breadboarding. A few adjustments are anticipated in response to CS 2013, but no major
changes are required.

CSC 213 – Operating Systems and Parallel Algorithms
http://www.cs.grinnell.edu/courses/csc213

CSC 213 combines a traditional course in operating systems with a third of a semester coverage
of parallel algorithms. As in the case of CSC 211, CSC 213 required a few minor changes, but
no significant changes were required by CS 2013.

CSC 264 – Computer Security (2 credits, new course)
http://www.cs.grinnell.edu/courses/csc264

CSC 264 is a newly proposed course, created initially in response to student interest in additional
coverage of security topics in the curriculum. It introduces students to an adversarial experience
with computer security – students serve as both attackers and security personnel.

CSC 301 – Analysis of Algorithms
http://www.cs.grinnell.edu/courses/csc301

CSC 301 is a CLRS-style algorithms course (although not all faculty use the book). Students
delve deeply into algorithm design and analysis. Students prove algorithm correctness and
implement many common algorithms. CSC 301 did not require changes under CS 2013.

- 491 -

CSC 312 – Implementation of Programming Languages (2 credits, new course)
http://www.cs.grinnell.edu/courses/csc312

Because Grinnell’s introductory sequence follows a multi-paradigm approach, students are
exposed to many of the core concepts of a typical programming languages course early in their
careers. Hence, in the past, faculty members chose their own approach to the programming
languages course. Comparison with CS 2013 recommendations motivated a focus on a smaller
core of topics, particularly on parsing and semantics, grounded in implementation. The course
will likely draw upon the first half of Friedman and Wand’s Essentials of Programming
Languages.

CSC 321 – Tools and Principles of Software Development (2 credits, new course) and
CSC 322 – Community-Based Software Development (2 credits, new course)

http://www.cs.grinnell.edu/courses/csc321
http://www.cs.grinnell.edu/courses/csc322

Over the past few years, the department has been considering revisions to its software
development curriculum. At the core of this revision is the idea of having students work on a
large, multi-semester project that will serve a community organization. Following the Purdue
model, students will have the opportunity to work on the project in multiple semesters, thereby
having the chance to work on different stages of a project and to explore different roles in the
project. To achieve this approach, earlier 4-credit, project-based courses will be split into two
courses. CSC 322 is the “hands on” portion of the course which students will be able to repeat
for credit. CSC 321 provides the foundations – training in methodologies of software
development, some underlying theory, and a bit of practice in core issues. Exploration of CS
2013 gave further encouragement to try this approach and guided selection of topics essential for
CSC 321.

CSC 341 – Automata, Formal Languages, and computational Complexity
http://www.cs.grinnell.edu/courses/csc341

CSC 341 explores the logical and mathematical foundations of computer science. Topics
covered in some depth include models of computation, the Chomsky language hierarchy,
solvable and unsolvable problems, and P and NP complexity classes. The course follows a
formal and rigorous style, and students write many formal proofs to explain logical arguments.
Although many of the core topics in CSC 341 are designated as Tier 3 in CS 2013, we consider
them essential knowledge for our liberal arts students.

CSC 364 – Computer Networks (2 credits, new version of earlier 4-credit course)
http://www.cs.grinnell.edu/courses/csc364

The previous, 4-credit course focused on the communications protocols used in computer
networks — their functionality, specification, verification, implementation, and performance.
The course also considered the use of network architectures and protocol hierarchies to provide
more complex services. Existing protocols and architectures provided the basis of discussion and
study. The revised, 2-credit course is envisioned to discuss network layers and congestion
management, but various topics in the 4-credit version will either be reduced or omitted in this
smaller version. In addition to collaborative exercises and laboratory assignments, the new
course is likely to include a final project.

- 492 -

Stanford University

Computer Science Department
http://cs.stanford.edu

Contact: Mehran Sahami (sahami@cs.stanford.edu)

Curricular Overview
Stanford University is a research university with approximately 18,000 students, of which 7,000
are undergraduates. The university uses the quarter system, with three terms during the regular
academic year. Undergraduates are not admitted directly to departments, but to the university as
a whole, and are free to choose any major, which must be declared by the start of their junior
year.

The Computer Science undergraduate program at Stanford is housed within the School of
Engineering and, as a result, requires a year of calculus and a year of science (generally, physics)
courses in addition to CS coursework. As a research university, there is large a large faculty in
the department and the full set of course offerings is quite large (over 50 distinct courses are
offered per year, with many undergraduate courses offered in multiple terms of the year).

Computer Science Major
Stanford has a track-based CS curriculum that requires all students to complete all of:

(i) six CS "core" classes,
(ii) four to five classes in one of nine depth areas (tracks) of a student's choosing,
(iii) two to three additional CS elective courses.

There must be a total of at least seven courses between areas (ii) and (iii).

The six required CS “core” classes are:

• CS103 – Mathematical Foundations of Computing
• CS106B – Programming Abstractions
• CS107 – Computer Organization and Systems
• CS109 – Introduction to Probability for Computer Scientists
• CS110 – Principles of Computer Systems
• CS161 – Design and Analysis of Algorithms

Note that CS “core” does not include our CS1 course (numbered CS106A), so most students with
no prior computing background will take this course prior to starting the actual “core” classes.

The nine tracks that students may choose from are:

• Artificial Intelligence
• Theory
• Systems
• Computer Engineering
• Human-Computer Interaction
• Graphics
• Information

- 493 -

• Biocomputation
• Unspecialized (this track provides extensive breadth rather than depth)

The additional CS elective courses that students may choose come from a list of over 50 upper
division courses offered in the CS department. Also, each track area provides a list of “track
electives” which are additional choices for elective courses specific to that track area, and may
include relevant courses from outside CS. For example, the Artificial Intelligence track-specific
elective course list includes classes from both the Psychology and Statistics departments.

Additionally, all CS undergraduates are required to take a capstone course (Senior Project) as
well as a course in the area of “Science, Technology, and Society”. While students have several
options for the latter requirement, the vast majority of students complete this requirement by
taking a course taught in the CS department entitled “Computers, Ethics, and Public Policy”.

Curricular Analysis
While the multitude of options through our CS major makes it impossible to map all the paths
through our curriculum, we consider below a very typical (and minimal) program though our
undergraduate program. In this program, a student begins in CS106A (our CS1 class), completes
the CS “core” and chooses the “Systems” track—one of the most popular undergraduate tracks
at Stanford—for the depth area. The additional CS electives in this exemplar program represent
a minimal set of courses used to satisfy the elective requirement, sampled from among the most
popular elective courses that were not already part of the student’s program. Finally, the
program includes the required senior capstone course and a course satisfying the “Science,
Technology, and Society” requirement. The program is composed of the specific courses listed
below. Note that we do not include the additional mathematics and science courses required as a
result of our major being housed in the School of Engineering since these courses do not include
CS-specific content.

Background (CS1)

• CS 106A – Programming Methodology

CS Core
• CS103 – Mathematical Foundations of Computing
• CS106B – Programming Abstractions
• CS107 – Computer Organization and Systems
• CS109 – Introduction to Probability for Computer Scientists
• CS110 – Principles of Computer Systems
• CS161 – Design and Analysis of Algorithms

Systems Track
• CS140 – Operating Systems and Systems Programming
• CS144 – Introduction to Computer Networking
• CS145 – Introduction to Databases
• EE108B – Digital Systems II

- 494 -

CS Electives
• CS108 – Object-Oriented Systems Design
• CS147 – Introduction to Human-Computer Interaction Design
• CS155 – Computer and Network Security

Senior Project Capstone
• CS194 – Software Project

Science, Technology, and Society (STS)
• CS181 – Computers, Ethics, and Public Policy

In our analysis, we show the Core-Tier1 and Core-Tier2 coverage provided by the typical major
listed above. As noted in the table below, this typical program provides fairly comprehensive
coverage of the CS2013 Body of Knowledge with nearly complete coverage of Core-Tier1 topics
(98%) and the suggested minimum coverage of Core-Tier2 topics (79%). Additionally, if we
just consider the courses that are required of all students in our program, not including the
particular choice of track or CS elective courses (i.e., including just CS106A, the six CS “core”
classes, the Senior Project and the Science, Technology, and Society requirement) then we still
achieve 80% coverage of Core-Tier1 topics and 50% coverage of Core-Tier2 topics. While the
choice of track and CS electives clearly impacts the amount of core material from CS2013 seen
by a student, we believe that the core requirements provide a substantial base so that no matter
what the choice of track/electives, students will still get solid coverage of most of the CS2013
core topics in our program, although there may be more substantial difference in which Core-
Tier2 topics are covered depending on the choice of track and electives.

 Tier 1 Tier 2

Typical major – the sample (minimal) program described above 98% 79%

Core reqs – not complete major (just CS106A + CS core + Capstone + STS) 80% 50%

In the tables below, we consider the learning outcomes from each Knowledge Unit that are
covered in each course. If a learning outcome is covered in multiple courses, we report the
coverage only once, in the lowest level course where that outcome appears. The number of
hours of coverage we report represents the hours of coverage as specified in the CS2013 Body of
Knowledge necessary for covering the learning outcomes that are covered in the course. The
actual number of class hours spent covering the topics in each Knowledge Unit may be greater
than or less than the number of hours reported in the table below. We note that in most cases the
number of actual class lecture hours spent on a Knowledge Unit in a course corresponds fairly
well to the hours of coverage specified in the CS2013 for that Knowledge Unit.

- 495 -

Knowledge Units in a Typical Major

Notation:
 < 25% of KU covered #
25-75% of KU covered #
 > 75% of KU covered #

10
3:

 M
at

h.
 F

o
un

d
.

10
6A

: P
ro

g
. M

et
h.

10
6B

: P
ro

g
. A

b
st

.

10
7:

 C
o
m

p
. O

rg
.

10
9:

 P
ro

b
ab

ili
ty

11
0:

 C
o
m

p
. S

ys
.

16
1:

 A
lg

o
ri
th

m
s

14
0:

 O
p
er

. S
ys

.

14
4:

 N
et

w
o
rk

in
g

14
5:

 D
at

ab
as

es

EE
10

8B
: D

ig
. D

es
.

10
8:

 O
b
j.

O
ri
en

t.

14
7:

In

tr
o
. H

C
I

15
5:

 S
ec

ur
ity

19
4:

 S
W

 P
ro

je
ct

18
1:

 C
o
m

p
. E

th
ic

s

%
 T

ie
r

1

%
 T

ie
r

2

AL

Basic Analysis 1 3

100 100
Algorithmic Strategies 1 5

Fund. DS & Alg. 2 5 5

Basic Autom. & Comp. 6

AR

Digital Logic 3

n/a 100

Machine-level rep. of data 3

Assembly level mach. org. 3 3

Memory org. and arch. 1 1 1

Interfacing and comm. 0.2 0.8

CN Fundamentals 0.8 83 n/a

DS

Sets, Relations, & Functions 4

100 75

Basic Logic 9

Proof Techniques 10

Basics of Counting 1 3 1

Graphs & Trees 1.5 0.5 2

Discrete Probability 8

GV Fundamental Concepts 1.2 1.3 100 50

HCI
Foundations 4

100 100
Designing Interaction 4

- 496 -

Notation:
 < 25% of KU covered #
25-75% of KU covered #
 > 75% of KU covered #

10
3:

 M
at

h.
 F

o
un

d
.

10
6A

: P
ro

g
. M

et
h.

10
6B

: P
ro

g
. A

b
st

.

10
7:

 C
o
m

p
. O

rg
.

10
9:

 P
ro

b
ab

ili
ty

11
0:

 C
o
m

p
. S

ys
.

16
1:

 A
lg

o
ri
th

m
s

14
0:

 O
p
er

. S
ys

.

14
4:

 N
et

w
o
rk

in
g

14
5:

 D
at

ab
as

es

EE
10

8B
: D

ig
. D

es
.

10
8:

 O
b
j.

O
ri
en

t.

14
7:

In

tr
o
. H

C
I

15
5:

 S
ec

ur
ity

19
4:

 S
W

 P
ro

je
ct

18
1:

 C
o
m

p
. E

th
ic

s

%
 T

ie
r

1

%
 T

ie
r

2

IAS

Fund. Concepts in Security 1

100 100

Principles of Secure Design 2

Defensive Programming 2

Threats and Attacks 1

Network Security 2

Cryptography 1

IM

Info. Management Concepts 2.4

100 94 Database Systems 3

Data Modeling 4

IS

Fundamental Issues 0.7

n/a 53
Basic Search Strategies 0.5 1

Basic Knowledge Rep. 0.8 0.8

Basic Machine Learning 1.6

NC

Introduction 1.5

100 100

Networked Applications 1.5

Reliable Data Delivery 2

Routing and Forwarding 1.5

Local Area Networks 1.5

Resource Allocation 1

Mobility 1

- 497 -

Notation:
 < 25% of KU covered #
25-75% of KU covered #
 > 75% of KU covered #

10
3:

 M
at

h.
 F

o
un

d
.

10
6A

: P
ro

g
. M

et
h.

10
6B

: P
ro

g
. A

b
st

.

10
7:

 C
o
m

p
. O

rg
.

10
9:

 P
ro

b
ab

ili
ty

11
0:

 C
o
m

p
. S

ys
.

16
1:

 A
lg

o
ri
th

m
s

14
0:

 O
p
er

. S
ys

.

14
4:

 N
et

w
o
rk

in
g

14
5:

 D
at

ab
as

es

EE
10

8B
: D

ig
. D

es
.

10
8:

 O
b
j.

O
ri
en

t.

14
7:

In

tr
o
. H

C
I

15
5:

 S
ec

ur
ity

19
4:

 S
W

 P
ro

je
ct

18
1:

 C
o
m

p
. E

th
ic

s

%
 T

ie
r

1

%
 T

ie
r

2

OS

Overview of OS 1 1

100 95

Operating Systems Principles 0.8 1.2

Concurrency 1.5 1.5

Scheduling and Dispatch 0.4 2.6

Memory Management 3

Security and Protection 1.5

PD

Parallelism Fundamentals 1 1

100 44

Parallel Decomposition 1.5 1 0.5

Comm. & Coord. 3.1 0.3

Parallel Algorithms

Parallel Architecture 1

PL

Object-Oriented Programming 4 6

100 79

Functional Programming 3.3 2.3

Event-Driven & React. Prog. 1.3 0.7

Basic Type Systems 3.3 1

Program Representation 0.3

Language Translation 1.5

SDF

Algorithms and Design 5 6

100 n/a
Fund. Prog. Concepts 8 2

Fund. DS 2 10

Development Methods 7 1 2

- 498 -

Notation:
 < 25% of KU covered #
25-75% of KU covered #
 > 75% of KU covered #

10
3:

 M
at

h.
 F

o
un

d
.

10
6A

: P
ro

g
. M

et
h.

10
6B

: P
ro

g
. A

b
st

.

10
7:

 C
o
m

p
. O

rg
.

10
9:

 P
ro

b
ab

ili
ty

11
0:

 C
o
m

p
. S

ys
.

16
1:

 A
lg

o
ri
th

m
s

14
0:

 O
p
er

. S
ys

.

14
4:

 N
et

w
o
rk

in
g

14
5:

 D
at

ab
as

es

EE
10

8B
: D

ig
. D

es
.

10
8:

 O
b
j.

O
ri
en

t.

14
7:

In

tr
o
. H

C
I

15
5:

 S
ec

ur
ity

19
4:

 S
W

 P
ro

je
ct

18
1:

 C
o
m

p
. E

th
ic

s

%
 T

ie
r

1

%
 T

ie
r

2

SE

Software Processes 2.5

100 47

Software Project Manage. 2

Tools and Environments 1.3

Requirements Engineering 1

Software Design 5.3 2.3

Software Construction 0.6 0.3 0.3

Software Verif. & Valid. 0.3

Software Evolution

Software Reliability

SF

Computational Paradigms 0.8 0.8 1.5

92 100

Cross-Layer Communications 0.6 1.2 1.2

State and State Machines 2 3

Parallelism 1.5 0.5 0.5

Evaluation 0.8 2.3

Resource Alloc. & Sched. 2

Proximity 3

Virtualization & Isolation 2

Reliab. through Redundancy 1.6 0.4

SP

Social Context 3

81 77

Analytical Tools 2

Professional Ethics 2.7

Intellectual Property 1.8

Privacy & Civil Liberties 1.6

Prof. Communication 0.7

Sustainability 1

- 499 -

Additional Comments
We instituted a major revision of the undergraduate CS curriculum at Stanford in 2008. Since
then we have continued to make minor revisions in the curriculum, but do not anticipate making
another significant change in the foreseeable future. In performing the mapping of our
curriculum against the CS2013 guidelines, we realized that there are a few Core-Tier1 learning
outcomes that we currently do not cover in our typical program (hence the 98% coverage of
Core-Tier1, as opposed to 100%). We believe that we can cover the additional 2% of Core-Tier1
learning outcomes through minor, localized changes in existing courses, so no significant
curricular changes are currently planned.

Appendix: Information on Individual Courses
Below is the detailed course information for the courses in the sample program described above.
The full set of CS courses offered at Stanford is too large to include here, but is available in the
university online course catalog. Courses are listed below in numeric order. Note that numeric
order does necessarily reflect the order in which students would likely take these courses. For
example, CS103 has CS106A—a higher numbered course—as a prerequisite.

CS 103: Mathematical Foundations of Computing
Mathematical foundations required for computer science, including propositional predicate logic,
induction, sets, functions, and relations. Formal language theory, including regular expressions,
grammars, finite automata, Turing machines, and NP-completeness. Mathematical rigor, proof
techniques, and applications. Prerequisite: 106A or equivalent.
URL: http://www.stanford.edu/class/cs103/
(Also listed as a course exemplar in CS2013)

CS 106A: Programming Methodology
Introduction to the engineering of computer applications emphasizing modern software
engineering principles: object-oriented design, decomposition, encapsulation, abstraction, and
testing. Uses the Java programming language. Emphasis is on good programming style and the
built-in facilities of the Java language. No prior programming experience required.
URL: http://www.stanford.edu/class/cs106a/

CS 106B: Programming Abstractions
Abstraction and its relation to programming. Software engineering principles of data abstraction
and modularity. Object-oriented programming, fundamental data structures (such as stacks,
queues, sets) and data-directed design. Recursion and recursive data structures (linked lists, trees,
graphs). Introduction to time and space complexity analysis. Uses the programming language
C++ covering its basic facilities. Prerequisite: 106A or equivalent.
URL: http://www.stanford.edu/class/cs106b/

- 500 -

CS 107: Computer Organization and Systems
Introduction to the fundamental concepts of computer systems. Explores how computer systems
execute programs and manipulate data, working from the C programming language down to the
microprocessor. Topics covered include: the C programming language, data representation,
machine-level code, computer arithmetic, elements of code compilation, memory organization
and management, and performance evaluation and optimization. Prerequisites: 106B or consent
of instructor.
URL: http://www.stanford.edu/class/cs107/

CS 108: Object-Oriented Systems Design
Software design and construction in the context of large OOP libraries. Taught in Java. Topics:
OOP design, design patterns, testing, graphical user interface (GUI) OOP libraries, software
engineering strategies, approaches to programming in teams. Prerequisite: 107.
URL: http://www.stanford.edu/class/cs108/

CS 109: Introduction to Probability for Computer Scientists
Topics include: counting and combinatorics, random variables, conditional probability,
independence, distributions, expectation, point estimation, and limit theorems. Applications of
probability in computer science including machine learning and the use of probability in the
analysis of algorithms. Prerequisites: 103, 106B, and multivariate calculus.
URL: http://www.stanford.edu/class/cs109/
(Also listed as a course exemplar in CS2013)

CS 110: Principles of Computer Systems
Principles and practice of engineering of computer software and hardware systems. Topics
include: techniques for controlling complexity; strong modularity using client-server design,
virtual memory, and threads; networks; atomicity and coordination of parallel activities; security,
and encryption; and performance optimizations. Prerequisite: 107.
URL: http://www.stanford.edu/class/cs110/

CS 140: Operating Systems and Systems Programming
Operating systems design and implementation. Basic structure; synchronization and
communication mechanisms; implementation of processes, process management, scheduling,
and protection; memory organization and management, including virtual memory; I/O device
management, secondary storage, and file systems. Prerequisite: 110.
URL: http://www.stanford.edu/class/cs140/

CS 144: Introduction to Computer Networking
Principles and practice. Structure and components of computer networks, packet switching,
layered architectures. Applications: web/http, voice-over-IP, p2p file sharing and socket
programming. Reliable transport: TCP/IP, reliable transfer, flow control, and congestion control.
The network layer: names and addresses, routing. Local area networks: ethernet and switches.
Wireless networks and network security. Prerequisite: 110.
URL: http://www.stanford.edu/class/cs144/
(Also listed as a course exemplar in CS2013)

- 501 -

CS 145: Introduction to Databases
The course covers database design and the use of database management systems for applications.
It includes extensive coverage of the relational model, relational algebra, and SQL. It also covers
XML data including DTDs and XML Schema for validation, and the query and transformation
languages XPath, XQuery, and XSLT. The course includes database design in UML, and
relational design principles based on dependencies and normal forms. Many additional key
database topics from the design and application-building perspective are also covered: indexes,
views, transactions, authorization, integrity constraints, triggers, on-line analytical processing
(OLAP), JSON, and emerging NoSQL systems. Class time will include guest speakers from
industry and additional advanced topics as time and class interest permits. Prerequisites: 103 and
107.
URL: http://www.stanford.edu/class/cs145/

CS 147: Introduction to Human-Computer Interaction Design
Introduces fundamental methods and principles for designing, implementing, and evaluating user
interfaces. Topics: user-centered design, rapid prototyping, experimentation, direct manipulation,
cognitive principles, visual design, social software, software tools. Learn by doing: work with a
team on a quarter-long design project, supported by lectures, readings, and studios. Prerequisite:
106B or equivalent programming experience.
URL: http://www.stanford.edu/class/cs147/
(Also listed as a course exemplar in CS2013)

CS 155: Computer and Network Security
Principles of computer systems security. Attack techniques and how to defend against them.
Topics include: network attacks and defenses, operating system security, application security
(web, apps, databases), malware, privacy, and security for mobile devices. Course projects focus
on building reliable code. Prerequisite: 140.
URL: http://www.stanford.edu/class/cs155/

CS 161: Design and Analysis of Algorithms
Worst and average case analysis. Recurrences and asymptotics. Efficient algorithms for sorting,
searching, and selection. Data structures: binary search trees, heaps, hash tables. Algorithm
design techniques: divide-and-conquer, dynamic programming, greedy algorithms, amortized
analysis, randomization. Algorithms for fundamental graph problems: minimum-cost spanning
tree, connected components, topological sort, and shortest paths. Possible additional topics:
network flow, string searching. Prerequisites: 103 and 109.
URL: http://www.stanford.edu/class/cs161/

CS 181: Computers, Ethics, and Public Policy
Primarily for majors entering computer-related fields. Ethical and social issues related to the
development and use of computer technology. Ethical theory, and social, political, and legal
considerations. Scenarios in problem areas: privacy, reliability and risks of complex systems, and
responsibility of professionals for applications and consequences of their work. Prerequisite:
106B.
URL: http://www.stanford.edu/class/cs181/

- 502 -

CS 194: Software Project
Design, specification, coding, and testing of a significant team programming project under
faculty supervision. Documentation includes a detailed proposal. Public demonstration of the
project at the end of the quarter. Prerequisites: 110 and 161.
URL: http://www.stanford.edu/class/cs194/

EE 108B: Digital Systems II
The design of processor-based digital systems. Instruction sets, addressing modes, data types.
Assembly language programming, low-level data structures, introduction to operating systems
and compilers. Processor microarchitecture, microprogramming, pipelining. Memory systems
and caches. Input/output, interrupts, buses and DMA. System design implementation
alternatives, software/hardware tradeoffs. Labs involve the design of processor subsystems and
processor-based embedded systems. Prerequisite: 106B.
URL: http://ee108b.stanford.edu/

- 503 -

Williams College

Department of Computer Science
www.cs.williams.edu

Contact: Andrea Danyluk (andrea@cs.williams.edu)

Curricular Overview
Williams College is a highly-selective liberal arts college of about 2200 students. To complete
the requirements for the Bachelor of Arts degree, students must take at least 32 regularly graded
one-unit courses, satisfy the requirements for a major, and fulfill distribution requirements (3
courses in each Division – Arts and Languages; Social Studies; Science and Mathematics.
Students must also complete 1 Exploring Diversity course, 2 writing-intensive courses, and 1
quantitative/formal reasoning course). In order to ensure that students are free to explore a wide
range of academic subjects in the liberal arts tradition, the College places a limit on the number
of courses that may be required for a major – typically 9. Students are free to take as many
courses in their majors as they’d like, provided they complete the distribution requirements.

The Computer Science Department has eight faculty with a wide range of research interests and
expertise, including distributed systems, parallel programming, architecture, artificial
intelligence, programming languages, algorithms, graph theory, graphics, and networks.

Computer Science Major
The Williams College Computer Science major has been strongly influenced by LACS (Liberal
Arts Computer Science Consortium) model curricula.

In all, 10 courses are required for the major.

A minimum of 8 courses is required in Computer Science, including

Introductory Courses (offered every semester)

• CSCI 134: Introduction to Computer Science
• CSCI 136: Data Structures and Advanced Programming

Core Courses (offered once each year)

• CSCI 237: Computer Organization
• CSCI 256: Algorithm Design and Analysis
• CSCI 334: Principles of Programming Languages
• CSCI 361: Theory of Computation

Electives
Two or more electives (bringing the total number of Computer Science courses to at least 8)
chosen from 300- or 400-level courses in Computer Science. At least one of these must be a
course designated as a PROJECT COURSE. “Reading”, “Research”, and “Thesis” courses do
not normally satisfy the elective requirement.

- 504 -

Current electives are

• Computer Networks
• Digital Design and Modern Architecture
• Distributed Systems [PROJECT]
• Advanced Algorithms
• Computational Graphics [PROJECT]
• Artificial Intelligence [PROJECT]
• Machine Learning
• Operating Systems [PROJECT]
• Compiler Design [PROJECT]
• Computational Biology
• Integrative Bioinformatics, Genomics, and Proteomics Lab

Electives are offered, on average, once every other year.

Required Courses in Mathematics
MATH 200: Discrete Mathematics
and any other Mathematics or Statistics course at the 200-level or higher

In addition, seniors are required to attend weekly computer science colloquia.

Curricular Analysis
Here we provide a high level picture of our coverage of CS2013 Core-Tier1 and Tier2 topics.

For this analysis, we consider a typical major to take the introductory sequence, the four core
courses, and three electives, as well as Discrete Mathematics. Though only two electives are
required for the major, Computer Science students take, on average, 3.6 electives (computed
over the last three years). Many students also enroll in Reading, Research, or Thesis courses, but
we do not include those in our analysis.

We have offered two different versions of our Introduction to Computer Science course over the
last several years. The one offered most frequently has been a network-themed course. We use
that in our mapping below.

The specific electives we have used in the mapping are:

• CSCI 337: Digital Design and Modern Architecture
• CSCI 373: Artificial Intelligence
• CSCI 432: Operating Systems

 Tier 1 Tier 2

Typical major – Intro, Core, Discrete Math + Architecture, AI, and OS 83% 60%

Common CS core – Intro, Core, Discrete Math – not the complete major 70% 40%

Typical major from row 1 + either Distributed Systems or Networks 85% 68%

- 505 -

Knowledge Units in a Typical Major
See preceding section for explanation of what we are taking to be a “typical” major. The mapping below
(as well as the % coverage) would be different for other paths through the major.

Notation:
 < 25% of KU covered #
25-75% of KU covered #
 > 75% of KU covered #

13
4:

 I
nt

ro
 t
o
 C

S

13
6:

 D
at

a
St

ru
ct

ur
es

23

7:
 C

o
m

p
ut

er

O
rg

an
iz

at
io

n
25

6:
 A

lg
 D

es
ig

n
an

d
 A

na
ly

si
s

33
4:

 P
ri
nc

ip
le

s
o
f

Pr
o
g
 L

an
g
ua

g
es

36

1:
 T

he
o
ry

 o
f

C
o
m

p
ut

at
io

n
D

is
cr

et
e

M
at

h

37
3:

 A
I

43
2:

 O
S

33
7:

 D
ig

ita
l D

es
ig

n
&

 A
rc

h

%
 T

ie
r

1

%
 T

ie
r

2

AL

Basic Analysis 3 4

100 100
Algorithmic Strategies 1 4.5 .5

Fund. DS & Alg. 1 10 12 1

Basic Autom. & Comp. 6

AR

Digital Logic 3 3

n/a 96

Machine-level rep. of data 3

Assembly level mach. org. 5.5 .5 1.5

Memory org. and arch. 2 1.4 2.7

Interfacing and comm. .17 .34 .5 .17

CN Fundamentals (336) 0 n/a

DS

Sets, Relations, & Functions 4

98 75

Basic Logic 9

Proof Techniques 2 8.3

Basics of Counting 5

Graphs & Trees 2.7 2.7 .67

Discrete Probability 4 4 6

GV Fundamental Concepts 1.8 80 30

HCI
Foundations

0 0
Designing Interaction

- 506 -

Notation:
 < 25% of KU covered #
25-75% of KU covered #
 > 75% of KU covered #

13
4:

 I
nt

ro
 t
o
 C

S
13

6:
 D

at
a

St
ru

ct
ur

es

23
7:

 C
o
m

p
ut

er

O
rg

an
iz

at
io

n
25

6:
 A

lg
 D

es
ig

n
an

d
 A

na
ly

si
s

33
4:

 P
ri
nc

ip
le

s
o
f

Pr
o
g
 L

an
g
ua

g
es

36

1:
 T

he
o
ry

 o
f

C
o
m

p
ut

at
io

n
D

is
cr

et
e

M
at

h

37
3:

 A
I

43
2:

 O
S

33
7:

 D
ig

ita
l D

es
ig

n
&

 A
rc

h

%
 T

ie
r

1

%
 T

ie
r

2

IAS

Fund. Concepts in Security .7

63 12

Principles of Secure Design .8 .14

Defensive Programming .7

Threats and Attacks .4

Network Security

Cryptography

IM

Info. Management Concepts .2 .2 .4

20 7 Database Systems

Data Modeling .4 .4 .4

IS

Fundamental Issues 1

n/a 83
Basic Search Strategies 3.8

Basic Knowledge Rep. 3

Basic Machine Learning .3

NC

Introduction 1.1 .38

83 63

Networked Applications .9

Reliable Data Delivery .5 1

Routing and Forwarding 1

Local Area Networks 1.5

Resource Allocation

Mobility

- 507 -

Notation:
 < 25% of KU covered #
25-75% of KU covered #
 > 75% of KU covered #

13
4:

 I
nt

ro
 t
o
 C

S
13

6:
 D

at
a

St
ru

ct
ur

es

23
7:

 C
o
m

p
ut

er

O
rg

an
iz

at
io

n
25

6:
 A

lg
 D

es
ig

n
an

d
 A

na
ly

si
s

33
4:

 P
ri
nc

ip
le

s
o
f

Pr
o
g
 L

an
g
ua

g
es

36

1:
 T

he
o
ry

 o
f

C
o
m

p
ut

at
io

n
D

is
cr

et
e

M
at

h

37
3:

 A
I

43
2:

 O
S

33
7:

 D
ig

ita
l D

es
ig

n
&

 A
rc

h

%
 T

ie
r

1

%
 T

ie
r

2

OS

Overview of OS 2

92 80

Operating Systems Principles .55 1.8

Concurrency 2.6

Scheduling and Dispatch 2.1 .43

Memory Management 1.5 2.3 2

Security and Protection 1.5

PD

Parallelism Fundamentals 2

100 21

Parallel Decomposition 1

Comm. & Coord. 2.2 .6

Parallel Algorithms

Parallel Architecture 1

PL

Object-Oriented Programming 2.7 2.7 10

100 100

Functional Programming 7

Event-Driven & React. Prog. 2

Basic Type Systems 5

Program Representation 1

Language Translation 3

SDF

Algorithms and Design 9 11

97 NA
Fund. Prog. Concepts 10

Fund. DS 4 12

Development Methods 4.6 6.2 1.5 .77

- 508 -

Notation:
 < 25% of KU covered #
25-75% of KU covered #
 > 75% of KU covered #

13
4:

 I
nt

ro
 t
o
 C

S
13

6:
 D

at
a

St
ru

ct
ur

es

23
7:

 C
o
m

p
ut

er

O
rg

an
iz

at
io

n
25

6:
 A

lg
 D

es
ig

n
an

d
 A

na
ly

si
s

33
4:

 P
ri
nc

ip
le

s
o
f

Pr
o
g
 L

an
g
ua

g
es

36

1:
 T

he
o
ry

 o
f

C
o
m

p
ut

at
io

n
D

is
cr

et
e

M
at

h

37
3:

 A
I

43
2:

 O
S

33
7:

 D
ig

ita
l D

es
ig

n
&

 A
rc

h

%
 T

ie
r

1

%
 T

ie
r

2

SE

Software Processes .8

43 28

Software Project Manage. 1.3 1.3 1.3

Tools and Environments .67 .67

Requirements Engineering 1.5

Software Design 1 2.4

Software Construction .3 .2 .3

Software Verif. & Valid. .5

Software Evolution .25 .25

Software Reliability

SF

Computational Paradigms .3 1.4 .65 .3 .6

76 80

Cross-Layer Communications .4 1.8 2.4

State and State Machines 5.5 2 .5

Parallelism .4 .25 .5

Evaluation 1.5 1.5 2.1

Resource Alloc. & Sched. 2

Proximity 3 3

Virtualization & Isolation 1 1

Reliab. through Redundancy .6 1 .33

SP

Social Context

4 0

Analytical Tools

Professional Ethics

Intellectual Property

Privacy & Civil Liberties

Prof. Communication .43 .43 .43

Sustainability

- 509 -

Possible Curricular Revisions
Note that here we analyze the complete Williams College Computer Science curriculum, rather
than the path that any individual student might take through the major.

The major areas of difference between our complete curriculum and the CS2013 core are
as follows.

No coverage or very minimal coverage:

• Human-Computer Interaction (HCI)
• Information Management (IM)
• Social Issues and Professional Practice (SP)

More coverage but not close to CS2013 targets:

• Software Engineering (SE)
• Core-Tier 2 of Parallel and Distributed Computing (PD)

Could use more coverage:

• Information Assurance and Security (IAS)

Students are, in general, gaining more knowledge in SP and SE than our formal mapping
suggests, through their lab experiences in project courses, research and reading courses, and
colloquia. In addition, because our students are required to take courses in the humanities and
social sciences, they gain a broad appreciation for social, ethical, and political considerations that
students at many engineering institutions do not.

Considerations for possible changes in curriculum:
We begin by noting that the complete Williams CS curriculum is quite strong in Algorithms and
Complexity, Architecture, Discrete Mathematics, Graphics, Intelligent Systems, Networking and
Communication, Operating Systems, Core-Tier 1 of Parallel and Distributed Computing,
Programming Languages, and Software Development Fundamentals. It also covers Systems
Fundamentals very well.

In revising our curriculum to better meet the CS2013 recommendations, our goal would be to
balance the following considerations. We want to continuously evolve our curriculum to remain
current and even cutting-edge. We desire to also maintain our traditional strengths. And we
must work within the constraints of a relatively small department and the restriction on the
number of courses we can require for the major.

Possible changes:
We have been involved in major curricular discussions over the past year. Among the revisions
we have discussed is the following

Remove the following requirements:

• Theory of Computation (but keep as an elective)
• Discrete Mathematics + one additional Mathematics/Statistics course

- 510 -

Add:

• Mathematical Foundations of Computer Science – this course would introduce topics
from Discrete Mathematics in a more CS-focused manner. Basic computability topics
could be integrated into this course.

• Introduction to Software Design – this could be a third course following our traditional
introductory sequence. It would introduce basic topics from software engineering and
HCI, preparing students even better for our project electives. This would also have the
side effect of freeing up time in those electives that is currently spent on basic project
management and design issues.

• Topics in Security and Parallel Processing to existing courses/electives as appropriate.

Though a number of the Information Management learning outcomes fit well within a liberal arts
context, quite a few seem less appropriate. Similarly, the topics we would introduce in our
Software Design course would not literally follow the CS2013 Software Engineering core.

Appendix: Information on Individual Courses

A note on tutorial format courses: Modeled on Oxford-style tutorials, these courses offer
students the opportunity to take a heightened responsibility for their own intellectual
development. Tutorials are typically limited to an enrollment of 10. Each week the professor
sets the agenda, but the students are responsible for working through the material. Once each
week, students meet in pairs with the instructor to present their work and together delve even
more deeply into the material.

CSCI 134 – Introduction to Computer Science
This course introduces fundamental ideas in computer science and builds skills in the design,
implementation, and testing of computer programs. Students implement algorithms in the Java
programming language with a strong focus on constructing correct, understandable, and efficient
programs. Students explore the material through the application area of computer networks.
Topics covered include object-oriented programming, control structures, arrays, recursion, and
event-driven programming.
Format: lecture/laboratory

http://dept.cs.williams.edu/~cs134/

CSCI 136 – Data Structures and Advanced Programming
This course builds on the programming skills acquired in Computer Science 134. It couples work
on program design, analysis, and verification with an introduction to the study of data structures.
Students are introduced to: lists, stacks, queues, trees, hash tables, and graphs. Students are
expected to write several programs, ranging from very short programs to more elaborate systems.
Emphasis is placed on the development of clear, modular programs that are easy to read, debug,
verify, analyze, and modify.
Format: lecture/laboratory

http://dept.cs.williams.edu/~jeannie/cs136/index.html

- 511 -

CSCI 237 – Computer Organization
This course studies the basic instruction set architecture and organization of a modern computer.
Over the semester the student learns the fundamentals of translating higher level languages into
assembly language, and the interpretation of machine languages by hardware. At the same time,
a model of computer hardware organization is developed from the gate level upward. Final
projects focus on the design of a complex control system in hardware or firmware.
Format: lecture/laboratory

CSCI 256 – Algorithm Design and Analysis
This course investigates methods for designing efficient and reliable algorithms. It introduces
several algorithm design strategies that build on data structures and programming techniques
introduced in Computer Science 136. These include induction, divide-and-conquer, dynamic
programming, and greedy algorithms. Particular topics of study include graph theory, hashing,
and advanced data structures.
Format: lecture

See course exemplar in Appendix C

CSCI 334 – Principles of Programming Languages
This course examines the concepts and structures governing the design and implementation of
programming languages. It presents an introduction to the concepts behind compilers and run-
time representations of programming languages; features of programming languages supporting
abstraction and polymorphism; and the procedural, functional, object-oriented, and concurrent
programming paradigms. Programs are required in languages illustrating each of these
paradigms.
Format: lecture

See course exemplar in Appendix C

CSCI 361 – Theory of Computation
This course introduces a formal framework for investigating both the computability and
complexity of problems. Students study several models of computation including finite
automata, regular languages, context-free grammars, and Turing machines. Topics include the
halting problem and the P versus NP problem.
Format: lecture

http://dept.cs.williams.edu/~heeringa/classes/cs361/f12/

CSCI 336 – Computer Networks
This course explores the principles underlying the design of computer networks. It examines
techniques for transmitting information efficiently and reliably over a variety of communication
media. It looks at the addressing and routing problems that must be solved to ensure that
transmitted data gets to the desired destination. Students come to understand the impact that the
distributed nature of all network problems has on their difficulty. The course examines the ways

- 512 -

in which these issues are addressed by current networking protocols such as TCP/IP and
Ethernet. Format: tutorial – students will meet weekly with the instructor in pairs to present
solutions to problem sets and reports evaluating the technical merit of current solutions to
various networking problems.

http://dept.cs.williams.edu/~tom/courses/336/

CSCI 337 – Digital Design and Modern Architecture
This tutorial course considers topics in the low-level design of modern architectures. Course
meetings review problems of designing effective architectures including instruction-level
parallelism, branch-prediction, caching strategies, and advanced ALU design. Readings are taken
from recent technical literature. Labs focus on the development of custom CMOS circuits to
implement projects from gates to bit-sliced ALU’s. Final group projects develop custom logic
demonstrating concepts learned in course meetings.
Format: tutorial/laboratory

CSCI 339 – Distributed Systems
This course studies the key design principles of distributed systems. Covered topics include
communication protocols, processes and threads, naming, synchronization, consistency and
replication, fault tolerance, and security. Students also examine some specific real-world
distributed systems case studies, ranging from the Internet to file systems. Class discussion is
based on readings from the textbook and research papers. The goals of this course are to
understand how large-scale computational systems are built, and to provide students with the
tools necessary to evaluate new technologies after the course ends.
Format: lecture/laboratory

http://dept.cs.williams.edu/~jeannie/cs339/index.html

CSCI 336 – Advanced Algorithms
This course explores advances in algorithm design, algorithm analysis and data structures. The
primary focus is on randomized and approximation algorithms, randomized and advanced data
structures, and algorithmic complexity. Topics include combinatorial algorithms for cut, packing,
and covering problems, linear programming algorithms, approximation schemes, hardness of
approximation, random search trees, and hashing.
Format: tutorial

http://dept.cs.williams.edu/~heeringa/classes/cs356T/f11/

CSCI 371 – Computational Graphics
This course teaches the fundamental techniques behind applications such as PhotoShop, medical
MRIs, video games, and movie special effects. It begins by building a mathematical model of the
interaction of light with surfaces, lenses, and an imager. Students then study the data structures
and processor architectures that allow for efficiently evaluating that physical model. Students
complete a series of programming assignments for both photorealistic image creation and real-
time 3D rendering using C++, OpenGL, and GLSL. These assignments cumulate in a multi-week
final project. Topics covered in the course include: projective geometry, ray tracing, bidirectional

- 513 -

surface scattering functions, binary space partition trees, matting and compositing, shadow maps,
cache management, and parallel processing on GPUs.
Format: lecture/laboratory

See course exemplar in Appendix C

CSCI 373 – Artificial Intelligence
This course introduces fundamental techniques in the field of Artificial Intelligence. It covers
methods for knowledge representation, reasoning, problem solving, and learning. It then explores
those further by surveying current applications in selected areas such as game playing and
natural language processing. Students complete several programming projects, including a large
project of their own design that spans most of the second half of the semester.
Format: lecture/laboratory

http://dept.cs.williams.edu/~andrea/cs373/

CSCI 374 – Machine Learning
This tutorial examines the design, implementation, and analysis of machine learning algorithms.
It covers examples of supervised learning algorithms (including decision tree learning, support
vector machines, and neural networks), unsupervised learning algorithms (including k-means and
expectation maximization), and optionally reinforcement learning algorithms (such as Q learning
and temporal difference learning). It introduces methods for the evaluation of learning
algorithms, as well as topics in computational learning theory.
Format: tutorial

http://dept.cs.williams.edu/~andrea/cs374/

CSCI 432 – Operating Systems
This course explores the design and implementation of computer operating systems. Topics
include historical aspects of operating systems development, systems programming, process
scheduling, synchronization of concurrent processes, virtual machines, memory management and
virtual memory, I/O and file systems, system security, os/architecture interaction, and distributed
operating systems.
Format: lecture/laboratory

See course exemplar in Appendix C

CSCI 434 – Compiler Design
This tutorial covers the principles and practices for the design and implementation of compilers
and interpreters. Topics include all stages of the compilation and execution process: lexical
analysis; parsing; symbol tables; type systems; scope; semantic analysis; intermediate
representations; run-time environments and interpreters; code generation; program analysis and
optimization; and garbage collection. The course covers both the theoretical and practical
implications of these topics. Students construct a full compiler for a simple object-oriented
language.
Format: tutorial/laboratory

See course exemplar in Appendix C

- 514 -

CSCI 315 – Computational Biology
This course provides an overview of Computational Biology. Topics covered include database
searching, DNA sequence alignment, phylogeny reconstruction, protein structure prediction,
microarray analysis, and genome assembly using techniques such as string matching, dynamic
programming, suffix trees, hidden Markov models, and expectation-maximization.
Format: lecture/laboratory

CSCI 319 – Integrative Bioinformatics, Genomics, and Proteomics Lab
This course makes use of one well-studied system, the highly conserved Ras-related family of
proteins, which play a central role in numerous fundamental processes within the cell. The
course integrate bioinformatics and molecular biology, using database searching, alignments and
pattern matching, phylogenetics, and recombinant DNA techniques to reconstruct the evolution
of gene families by focusing on the gene duplication events and gene rearrangements that have
occurred over the course of eukaryotic speciation. By utilizing high throughput approaches to
investigate genes involved in the MAPK signal transduction pathway in human colon cancer cell
lines, students uncover regulatory mechanisms that are aberrantly altered by siRNA knockdown
of putative regulatory components. This functional genomic strategy is coupled with independent
projects using phosphorylation-state specific antisera to test hypotheses. Proteomic analysis
introduces the students to de novo structural prediction and threading algorithms, as well as data-
mining approaches and Bayesian modeling of protein network dynamics in single cells. Flow
cytometry and mass spectrometry are used to study networks of interacting proteins in colon
tumor cells.
Format: laboratory/lecture

A Cooperative Project of

